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Abstract 

Implementation of geometric nonlinearity in micro-electro-mechanical system (MEMS) 
resonators offers a flexible and efficient design to overcome the limitations of linear MEMS by 
utilizing beneficial nonlinear characteristics not attainable in a linear setting. Integration of 
nonlinear coupling elements into an otherwise purely linear microcantilever is one promising 
way to intentionally realize geometric nonlinearity. Here, we demonstrate that a nonlinear, 
heterogeneous micro-resonator system, consisting of a silicon micro-cantilever with a polymer 
attachment exhibits strong nonlinear hardening behavior not only in the first flexural mode but 
also in the higher modes (i.e., second and third flexural modes). In this design, we deliberately 
implement a drastic and reversed change in the axial vs. bending stiffness between the Si and 
polymer components by varying the geometric and material properties. By doing so, the resonant 
oscillations induce the large axial stretching within the polymer component, which effectively 
introduces the geometric stiffness and damping nonlinearity. The efficacy of the design and the 
mechanism of geometric nonlinearity are corroborated through a comprehensive experimental, 
analytical, and numerical (Finite Element) analysis on the nonlinear dynamics of the proposed 
system.  
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I. INTRODUCTION 

Many of micro-electro-mechanical systems (MEMS) employ mechanical resonators, often 

fabricated into a beam-type structure from novel materials such as nanotubes, graphenes, 

crystalline silicon, etc. The high structural quality of those materials combined with the reduced 

effective mass allows such beams to operate at very high resonance frequencies with extremely 

high Q factors (i.e., low damping). These beneficial attributes provide the basis for exceptional 

performance of MEMS applications such as extremely sensitive sensors [1-4], mechanical 

energy harvesters [5-7], nano/micro-relays [8,9], logic memory and computation [10-12], field 

effect transistors [13], and a high frequency reference in oscillators [14-16]. The MEMS devices 

implemented in these applications were mostly designed to operate in their linear resonant modes 

with the above-mentioned benefits. Mechanical resonators at micro/nano-scale, however, can 

easily transit from linear to nonlinear resonances because of its remarkable properties of ‘small 

size’ and ‘low damping.’ Whereas the absolute magnitude of the involved resonance is small, the 

relative magnitude of the oscillation amplitude can be substantially large compared to the 

reduced device size owing to their high Q factor. As a result, the significant abatement of linear 

dynamic operational range renders linear operational displacements to be restricted to an 

extremely small magnitude, which is often comparable to the noise level [17]. Thereby 

performance and practical applications of MEMS resonators are often limited by difficulties in 

transduction of miniscule displacements and requirements of impractical environments such as 

extremely low temperature and pressure to reduce the noise.  

In order to overcome the limitation of linear MEMS resonators, recent efforts have been 

devoted to design MEMS devices that implement [18] or harness nonlinearity [19]. Utilization of 

intentional geometric nonlinearity in MEMS has proved to achieve higher bandwidth resonances, 
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frequency tunability, and instantaneous hysteresis switching that are difficult to attain in a linear 

setting. One of the commonly used applications of nonlinear micro-resonators is in sensing. Cho 

et al. [20] developed a highly sensitive mass sensor by employing geometric nonlinearity in a 

fixed-fixed nanotube in which the sensor performance could be improved by utilizing nonlinear 

instability. Venstra et al. [21] developed a micro-cantilever based gas sensor where the frequency 

shift due to adsorption and desorption in the nonlinear regime is larger by a factor of three 

compared to operating in the linear regime. Researchers have also recently taken advantage of 

nonlinear characteristics such as internal resonance [14], parametric feedback [22], and 

bifurcation topology amplification [23] in suppressing phase noise level to improve oscillator 

performance by overcoming the operational limits due to thermal noise [17,24,25]. Another 

significant application of nonlinear micro-resonators is in developing mechanical memory 

devices and logic gates where coexistence of two stable states enables switching of the output 

logic values [10,11,26,27]. 

Considering these applications of nonlinear micro-resonators, the ability to manipulate 

the level of nonlinearity is beneficial to explore their targeted nonlinear behaviors. In the recent 

years, substantial efforts have been put forth to tailor the strength of structural nonlinearity 

[18,28,29]. Saghafi et al. [28] provided an analytical scheme based on a continuous system 

model to predict the onset of nonlinearity in a bilayer clamped-clamped micro-beam to enhance 

the working dynamic range. Dou et al. [18] established a systematic numerical approach 

combined with the optimization technique to maximize or minimize objective nonlinearity in a 

clamped-clamped beam by varying its thickness profile. Li at al. [30] experimentally verified the 

efficacy of the optimized design in which the nonlinear coefficient can be altered from three-fold 

increase to two-fold decrease by optimizing the thickness profile.  
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In contrary to previous resonator designs based on simple homogeneous and/or prismatic 

beam type resonators, a heterogeneous and non-prismatic design provides more freedom to 

control the targeted level of nonlinearity and provide rich nonlinear behaviors. For example, 

authors’ previous works have successfully introduced strong geometric nonlinearity by coupling 

a nanoscale structure such as a boron nitride (BN) nanotube [31, 33] or a silicon nano-membrane 

[32] into a silicon micro-cantilever. However, these systems require the manual integration of 

nanotube and nanomembrane and, thereby, they are not practical to be integrated into the batch-

fabricated MEMS devices. The difficulties in the fabrication also limit the room to adjust the 

structural dimensions of the system to provide the optimal nonlinearity. Moreover, the 

assumptions used to simplify the actual system into a theoretical model have never been 

validated in details.   

In the current work, we consider a non-prismatic, heterogeneous micro-beam structure, 

comprised of a silicon micro-cantilever with a polymer coupling. We developed the batch 

fabrication process that enables the integration of two dissimilar materials (e.g., silicon and 

polyimide) in a free-standing fashion. Owing to the feasibility in controlling the structural 

dimension and material properties, the beam could be intentionally designed to exhibit a drastic 

change in the stiffness between two materials, which has been confirmed to be the basis of strong 

geometric nonlinearity. A comprehensive experimental, analytical, and numerical analysis is 

applied to understand the origination of geometric nonlinearity in the design. Especially the finite 

element analysis (FEA) is employed as a strong complementary approach to experimental 

characterization and analytical modeling, to provide detailed dynamic responses throughout the 

structure during nonlinear resonances.  
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II. SYSTEM DESCRIPTION AND FABRICATION 

The scanning electron microscope (SEM) image of the microcantilever-polymer system 

is depicted in Fig. 1(a). The system consists of a silicon (Si) microcantilever bridged to a firm 

ground by a polymer (polyimide) attachment. The length, width, and thickness of the Si 

cantilever are L1=500 µm, b1= 100 µm, and t1=2 µm; and those of the polymer attachment are 

L2=50 µm, b2=12 µm, t2=3 µm. The subscripts 1 and 2 denote the Si cantilever and polymer 

attachment, respectively. In this design, we intentionally implement a drastic change in the 

stiffness between the Si cantilever and polymer attachment by varying the geometrical 

dimensions (i.e., length and cross-sectional area) and material (i.e., Young’s modulus) of the 

beam structure. As a result, the ratio of effective bending stiffness between the Si cantilever (1) 

and polymer attachment (2) is kbending,1 : kbending,2 = 0.18 : 1  and the ratio of effective axial 

stiffness between these two components is kaxial,1 :  kaxial,2 = 40 : 1. Note that this non-prismatic, 

non-homogeneous structural design not only results in a large discrepancy in the effective 

stiffness between the Si cantilever and polymer attachment but also gives an opposite trend in the 

magnitude ratio of the bending and axial terms. Thus, in a 2-dimensional planar motion of this 

beam, the bending force induces a relatively larger bending deflection in the Si cantilever part 

due to its lower bending stiffness; while the axial force mainly stretches the polymer attachment 

due to its lower axial stiffness. In other words, when this microcantilever-polymer system is 

driven to oscillate near one of its mode frequencies, a large vertical, bending displacement of the 

free end of Si cantilever relative to the neutral position induces the axial stretching of the 

polymer bridge, which effectively accomplishes the intentional geometric nonlinearity in this 

design.  



6 

 

The device was fabricated by the batch process based on the standard MEMS fabrication 

combined with a modified soft lithographic technique [34]. The detailed process sequence is 

explained elsewhere [35]. Briefly, a pattern of micro-cantilever was formed in a silicon-on-

insulator (SOI) wafer using a conventional photolithography technique and reactive ion etching 

(RIE). Then, a thin polymer layer (Polyimide, PMDA-ODA) was blanket transferred to the Si 

device layer and patterned by applying an additional photoresist film. Etching was then 

performed to reveal the suspended polymer layer suspended over the gap. Finally, a backside 

deep reactive ion etching (ICP-DRIE) was performed to release the free-standing 

microcantilever-polymer system. In contrast to the previous works in [31-33], where the 

nonlinear attachments (i.e., BN nanotube) were manually integrated in a one-by-one and 

strenuous fashion, the proposed device was manufactured by a massively parallel, scalable 

process, suitable for the practical MEMS applications. 

III.  ANALYTICAL MODELING 

Considering this dynamic configuration of the structure, we can simplify the nonlinear 

microcatilever-polymer system based on the lumped parameter model shown in Fig. 1(b). The Si 

microcantilever is modeled as a damped, linear harmonic oscillator with mass (m), viscous 

damper (c1), and spring (k1). The vertical bending motion of the Si cantilever is modeled as a 

vertical displacement of the lumped mass m about the static equilibrium position (SEP) in this 

lumped model, resulting in the linear compression and tension within the vertical spring during 

oscillations.  Due to its smaller dimension and density, the mass of polymer is considered to be 

negligible (cf., m1≈233 ng, m2≈2 ng). Instead, its storing and dissipative forces are modeled as 

horizontally attached linear spring (k2) and damper (c2), based on the Kelvin-Voigt model. The 

damping in the polymer emerges from the viscoelastic properties of the polymer at high strain 
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rates [33].  The horizontal arrangement of the polymer in the model will eventually simulate the 

geometric nonlinearity due to the axial stretching within the polymer attachment. It is important 

to note that the horizontal spring is subject to tension only, when the mass is vertically displaced 

from the SEP either in the positive or negative direction (i.e., +y or –y), assuming that the 

horizontal spring is in its unstretched length (L2) at the SEP. The validity of these assumptions 

will be later supported by the numerical simulations. Finally, the harmonic excitation force is 

modeled to be directly applied to the mass m, even though the base excitation using a 

piezoelectric actuator is employed in the experiment. Our previous works confirmed that this 

simplification is valid when the dissipative forces are much smaller than the restoring terms, as 

for microscale structures in a vacuum environment [32-33].  

The governing equation of this model can be obtained by performing the balance of 

vertical forces applied to the lumped mass m when it is displaced vertically from the SEP. With a 

vertical displacement of y, the horizontal spring and damper undergoes the force of 2 2k cδ δ+ &  

where 2 2
2 2L y Lδ = + − . The vertical component of this force can be expressed as 
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after the terms beyond the third order are truncated with an assumption of a 

small vertical displacement compared to L2 (i.e., y/L2 <<1). Then the governing equation of this 
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Eq. (1) is a Duffing equation with cubic nonlinear stiffness and damping terms both originating 

from axial deformations in the horizontal spring (i.e., polymer attachment), which is of a pure 

geometrical origin. We can proceed to find the steady state solution by normalizing Eq. (1).  
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Introducing a small scale parameter ε, we rescale Eq. (2) according to y yε→ , 1 1ζ εζ→ , and 

23f fε→ . The method of multiple scales is utilized to derive the steady state response assuming 

that the response is expressed in two time scales. A set of autonomous modulation equations are 

obtained after inserting the complex amplitude into the modulation equation as: 
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where a and β are real valued amplitude and phase as a function of slower time scale 1T ετ= . σ is 

the frequency detuning parameter defined as σ = Ω-1. The relation between steady state 

amplitude and frequency is derived by setting 0a γ′ ′= =  in Eq. (3): 
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where Ass is the steady state amplitude and ζeff is the overall damping accounting for both the 

constant, linear viscous damping ( 1ζ ) and the amplitude-dependent, nonlinear damping 

(ζ2Ass
2/8). Eq. (4) leads into the so-called “backbone curve” equation by taking the values of the 

damping and forcing terms as zeros, i.e., 0.58( )
3ssA σ
α

= , which directly relates the frequency to the 

steady state amplitudes with the nonlinear coefficient.  

IV.  EXPERIMENTAL RESULTS 

The experimental setup consists of three main parts for device actuation, dynamic 

response measurement and data acquisition parts. The experiment is designed in a way to 

mitigate sources of nonlinear mechanisms related to actuation and detection such that the origin 

of nonlinearity is purely from the structure. A piezoelectric shaker was employed to actuate the 

microstructure system from the base. Since the piezoelectric shaker was carefully selected to 

avoid its own resonance near the excitation frequencies, the nonlinearity related to excitation can 

be considered negligible, making the assumption of a linear harmonic excitation valid. The 

shaker was excited by applying AC voltage at peak-to-peak voltage amplitudes (Vpp) ranging 

from 0.1 V to 20 V by a waveform generator (Tektronix AFG3022c). The dynamic response of a 

device was measured via a laser Doppler vibrometer (Polytec OFV-534 sensor & OFV-5000 

controller) while the laser light was focused near the point where the cantilever exhibited the 

maximum vertical displacements. The measured signal delivered to a remote computer through 

an oscilloscope (Tektronix DSOX4034A) was analyzed to produce the frequency spectrum of the 

response. The device was located in a vacuum environment with an absolute pressure of 5 mTorr 

to reduce the effects of air damping loss on the response.  
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As the first step, we obtained the linear modal frequencies by measuring 

thermomechanical spectrum from the microcantilever. Then the excitation frequency was swept 

around the linear resonant frequency while fixing the excitation voltage of Vpp. The oscillation 

amplitude at each excitation frequency was obtained from the displacement frequency spectrum 

completed by Fast Fourier transforming of the integrated velocity signal from the LDV. This step 

was repeated at different levels of Vpp around the mode of interest. When we observed the 

nonlinear behavior during the upward frequency sweep at high Vpp, we repeated the measurement 

as the frequency was swept downward to capture the nonlinear hysteresis. Through the 

experimental characterization of the system, we observed clear hardening resonances in all of the 

first three bending modes.  Figures 2(a)-(c) show the experimentally measured response 

spectrums in the 1st, 2nd, and 3rd flexural modes, respectively (cf., blue curves and circles). In Fig. 

2, the gradual transition from linear to nonlinear responses with the increase of the excitation 

voltage illustrates that the cubic nonlinear stiffness term as a result of stretching of the polymer 

component starts to affect the global dynamics of the whole structure as the amplitude of 

oscillations increases beyond a certain amplitude. Note that this stiffness hardening effect 

effectively introduces nonlinear dynamics into the first three flexural modes. Since the resonant 

frequency increases as the oscillation amplitude is increased due to the nonlinear effect, the 

resonant bandwidth expands over a wider frequency range compared with the bandwidth of a 

corresponding linear system. The bandwidth depends not only on the strength of nonlinearity but 

also on the excitation force level, which confirms the frequency tunability. However, the 

resonant bandwidth is also limited by nonlinear damping, which increases with the oscillation 

amplitude as well. Figures 3(a)-(c) show a nonlinear hysteresis phenomenon. The responses 

during the upward and downward frequency sweeps are presented by red circles and blue 
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crosses, respectively. This hysteresis phenomenon indicates that there exist more than one stable 

branches over a frequency range so that the realized nonlinear responses are not identical 

depending on the frequency sweep direction. While the frequency is swept upward, the response 

follows the upper stable branch, followed by an abrupt drop to the lower stable branch at the 

drop-down frequency. The branch selection is reversed while the frequency is swept down: the 

response stays in the lower branch up to the jump-up frequency at which the response suddenly 

jumps to the upper branch.  

The analytical model is first validated by the experimental results. The backbone curve 

(black line) was first obtained in Fig. 2 by fitting the maximum displacements of the 

experimentally acquired nonlinear frequency responses at different excitation levels (black 

crosses). The linearized resonant frequency (ωo) and nonlinear stiffness coefficient (α) of each 

mode are obtained to give the best fitting of the backbone curve to the experimental data. Given 

these values, the whole frequency spectrums in Fig. 3 were fitted to Eq. (4) to find the effective 

damping ratio ζeff and the equivalent excitation force ( f ). The frequency responses predicted by 

the analytical model using these estimated parameters were plotted by the dashed lines in Fig. 3, 

which almost perfectly agrees with the experimental results. As shown in Eq. (4) the effective 

damping ζeff is dependent on the oscillation amplitude (Ass). We estimated the linear damping 

ratios (ζ1) from a linear frequency response with a small resonant amplitude below the critical 

amplitude exhibiting the onset of the nonlinearity. All parameters obtained by the analytical 

model are listed in Table I for the first three bending modes.  

V. FINITE ELEMENT SIMULATION 
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We also performed the FEA using ABAQUS 6.14 (Hibbit Inc., Providence, RI) to better 

understand the nonlinear mechanism observed in the microcantilever-polymer structure. The 

procedure of FEA to obtain the nonlinear dynamic response is described in Fig. 4. The material 

properties used for this numerical simulation are provided in Table II. We modeled the 3-D 

structure of the system as seen in its SEM image (cf., Fig. 1(a)), with the boundary conditions 

taken as clamped-clamped. The structure was properly meshed with reduced order quadratic 

hexagonal elements to accurately model a thin beam in bending. As a first step, we performed 

the linear modal analysis to get the linearized mode frequencies and mode shapes of the structure 

(cf., the inset of Fig.  4(b)). The simulated linearized resonant frequencies showed a good 

agreement with the experimentally obtained frequencies in all three flexural modes with the 

maximum discrepancy less than 3.6 %, as provided in Table I. Then, the dynamic time response 

of this system was simulated when the structure was released from a sufficiently large initial 

deflection corresponding to the associated mode shape. The goal of this dynamic analysis was to 

obtain the nonlinear amplitude-frequency dependency while a flexural mode of interest was 

excited by applying its mode shape as an initial condition. Simulating the decaying time 

responses, one can extract the backbone curve from time responses by calculating the resonant 

frequencies from the successive time periods of oscillations. Figure 4(a) shows the simulated 

time response of the system at the point of maximum deflection in the Si microcantilever when 

the 1st flexural mode is excited. As seen in the wavelet transformed results (cf., the upper inset of 

Fig. 4(a)), the time-frequency representation of the signal, the excited 1st mode is dominantly 

exhibited in the simulated dynamics, while the higher modes are slightly excited. We speculate 

that the discrepancy between the nonlinear and linear mode shapes can slightly excite other 

modes.  Finally, the frequencies of oscillation were calculated at varying oscillation amplitudes 
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to find the frequency-amplitude relationship in Fig. 4(b). The comparison of FE simulation 

(circle) and experiment (cross) backbone curves at the first, the second, and the third modes are 

shown in Figs. 4(b) and 5(a)-(b), respectively, which clarifies that the two plots agree 

surprisingly well with each other. The numerically obtained nonlinear coefficients listed in Table 

I also show a good agreement with the coefficients obtained from the experimental results for all 

of the first three flexural modes with errors less than 30 %.  

Figure 6 illustrates the linear mode shapes of the first three flexural modes simulated by 

FEA. As we intended in the micromechanical resonator design by setting drastic, reversed 

stiffness arrangements between silicon and polymer component, large vertical bending 

displacements are achieved at the end of the silicon cantilever in all three modes, which induces 

the large axial stretching in polymer component. It verifies the effective implementation of 

geometric nonlinearity in our nonlinear design. To further justify the design, we investigated the 

effect of stiffness parameters on the resulting nonlinearity as summarized in Fig. 7 and Table III. 

We performed FE simulation for the fundamental mode of the same structure while fixing the 

geometry and all material properties other than the Young’s modulus in the nonlinear coupling 

element (i.e., polymer component). The resulting frequency-amplitude dependence curves (i.e., 

nonlinear backbone curves) are provided in Fig. 7 when Young’s modulus is varied from 1 MPa 

to 60 MPa. As estimated in Table III, as the material of the nonlinear coupling element gets 

stiffer, the difference in axial stiffness between the two components is reduced. Thereby, the 

nonlinear component is less likely to stretch at the same level of excitation and thus, the resulting 

Duffing nonlinearity is diminished. Besides, the simulation results show that the validity of the 

proposed model is limited to a range of material stiffness: as Young’s modulus exceeds some 
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threshold value, the global dynamics switches to softening and the proposed analytical model is 

no longer valid.   

We take advantage of the FE simulation to further investigate the dynamic response of 

the system and test the assumptions used in our analytical model. In Fig. 8, the blue curves plot 

the normal axial strains at the midplane of the polymer attachment (a) and the Si cantilever (b) as 

a function of the simulated time; and the red curves plot the axial strains averaged per oscillation 

cycle. The notable difference between the Si cantilever and polymer attachment is that the Si 

cantilever experiences positive (tensile) and negative (compressive) axial strains over an 

oscillation cycle while the polymer attachment mainly undergoes tensile strain (i.e., axial 

stretching). As a result, the averaged axial strain over a cycle is almost zero for the Si component 

(cf., the red curve in Fig. 8(b)) regardless of the oscillation amplitudes, while that of polymer 

attachment is always positive and decreased with the decrease in the oscillation amplitude (cf., 

the red curve in Fig. 8(a)). This trend is also clearly shown in the insets, displaying a few cycles 

of vertical displacement (blue) and axial strain (red) at the midplane of the polymer attachment 

and Si microcantilever, respectively. Assuming that the response obeys the general form of a 

harmonic response y(t)=Asin(ωt), the axial strains in the Si microcantilever (e1) and polymer 

attachment (e2) are derived based on the aforementioned analytical model: 

1
1

1 1
2

2
2 2

2 2

(sin( ))

(1 cos(2 ))
4

L Ae t
L L
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L L

ω

ω

Δ= =

Δ= = −

                                                (5) 

Eq. (5) clarifies that the strain response in the Si microcantilever has the same frequency as the 

excitation frequency, but becomes twice the excitation frequency in the polymer attachment as 

we can confirm from the inset of Fig. 8. Also, note that the value of the axial strain is more than 
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an order of magnitude smaller in the Si component compared with the axial strain in the polymer 

attachment while its vertical oscillation amplitude is higher, due to the large difference of the 

axial stiffness between these two. This detailed interpretation of the FEA results validates the 

assumptions made in our analytical model. The vertical spring representing the Si cantilever 

experiences the compressive and tensile stresses when the mass oscillates vertically about the 

SEP, while the horizontal spring modeling the polymer attachment is under the tension only 

throughout the oscillation. As the theoretical model showed, this polymer attachment (i.e., 

horizontal spring) is the main source of geometric nonlinearity of this whole microcantilever-

polymer system. It is worth to note again that this unique integration of intentional nonlinearity 

was achieved by implementing a largely dissimilar stiffness in the beam structural design via a 

sudden change of geometric parameters and material.  

VI.  CONCLUSION 

In this paper, we integrate a nonlinear component (i.e., polymer) to an otherwise linear 

microcantilever to implement strong, geometric nonlinearity. It is found that the investigated Si 

microcantilever-polymer system exhibits a strong nonlinear behavior in the first three flexural 

modes. The comprehensive experimental, analytical, and numerical analyses were performed to 

investigate the nonlinear mechanism induced by the unique design of this nonlinear system. The 

deeper understanding we obtained in this work offers a new strategy of tailoring the geometric 

nonlinearity based on the structural optimization of a non-prismatic, heterogeneous microbeam 

resonator. 
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Figure Caption: 

Figure 1: (a) A SEM image of the system. The system consists of a silicon micro cantilever 

(dimensions: 500 μm x 100 μm x 2 μm) bridged to the ground by a polymer attachment 

(dimensions: 50 μm x 12 μm x 3 μm). (b) A lumped parameter model of the system. A flexural 

displacement of the micro cantilever is modeled by a linear spring (k1), linear damping (c1), and 

mass (m) which is constrained by a horizontal spring (k2) and damper (c2). The large vertical 

motion of the mass renders stretching in the polymer component so that the global dynamics 

switches from linear to nonlinear hardening. 

Figure 2: Nonlinear hardening responses at the (a) 1st mode (b) 2nd mode, and (c) 3rd mode. 

Experimentally acquired frequency responses at different base excitation voltages (in blue 

circle). At high driving voltages tension is introduced in the midplane of the polymer structure, 

therefore cubic nonlinearity dominates the system dynamics. As the driving amplitude increases, 

the resonant frequency increases, and thereby, the resonance curve bends toward higher 

frequencies. The backbone curves are fitted to the maximum of the frequency responses (in 

black) to obtain the nonlinear coefficients and linearized resonant frequencies.  

Figure 3: Nonlinear hysteresis phenomenon at the (a) 1st mode (b) 2nd mode, and (c) 3rd mode. 

The responses during sweeping up and down the excitation frequency are plotted in red circles 

and blue crosses, respectively. There is a region of bi-stability between drop-down and jump-up 

frequencies shown in arrows. The analytical predictions (in dashed black curves) are fitted on the 

experimentally measured frequency responses, which agree well with the experimental 

responses. 

Figure 4: FEA results at the first mode. (a) A free decay time response after releasing from a 

large deflection corresponding to its first mode. The wavelet transform of the response in the 
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upper inset shows that the first mode is dominantly excited. A magnified portion of the time 

response is shown in the lower inset figure. (b) A nonlinear amplitude-frequency dependence 

calculated from the FEA time response (in red) is compared with the experimental backbone 

curve (in blue). The comparison shows a perfect match between FE simulation and experimental 

results. The first mode shape of the system is illustrated in the inset figure. 

Figure 5: Experimentally obtained (blue) and FE simulated (red) backbone curves at the (a) 2nd 

mode, and (b) 3rd mode. A nonlinear amplitude-frequency dependence calculated from the FEA 

time response (in red) show an excellent agreement with the experimental backbone curve (in 

blue). The linear mode shapes of the second and the third mode of the system are illustrated in 

the inset figure. 

Figure 6: FE simulated linear mode shapes of the first three flexural modes: The mode shapes 

illustrates that large bending displacements in the silicon microcantilever induce axial stretching 

in polymer coupling. 

Figure 7: Simulated nonlinear frequency-amplitude curves for different values of Young’s 

modulus in the nonlinear component. It is clear that an increase in Young’s modulus of the 

coupling component reduces the effective Duffing coefficient. The effect of Young’s modulus on 

the stiffness ratios and nonlinear coefficients is summarized in Table III. 

Figure 8: (a) An axial strain response of the polymer component (in blue) and the average of 

axial strains per cycle (in red) at its midplane. The average normal strain is positive and increases 

as the oscillation amplitude increases, indicating that the polymer component is mainly in tension 

to be the source of Duffing nonlinearity at large amplitudes. The figure in the inset compares the 

axial strain response (in blue) with the vertical displacement (in red). It is clear that the 

frequency of polymer strain responses is twice of the displacement response. (b) An axial strain 
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response of the silicon cantilever (in blue) and average of axial strains per cycle (in red) at its 

midplane. The figure represents that the average normal strains in the cantilever remain close to 

zero regardless of the amplitude of the oscillations. The figure in inset compares the axial strain 

response (in blue) with the time response (in red) at midplane of the silicon cantilever. It is 

shown that the frequency of strain responses is equal to the frequency of the displacement 

responses, proving that the cantilever dynamical behavior is almost linear.    
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Table I. Comparison between experiment results and FE simulated results in the first three 
bending modes.  

 

 

Table II. Material properties used in FE simulation 
 Young’s 

modulus 
(GPa) 

Density 
(kg/m3) 

Poisson’s 
ratio 

Silicon 180 2330 0.28 

Polymer 3 1400 0.34 

 

 

Table III. Stiffness ratios between the two structural components and resulting nonlinear coefficients 
simulated in Fig. 7  
 kbending,1 : kbending,2 kaxial,1 :  kaxial,2 Nonlinear coefficient (α)  

E2 = 1 MPa 0.54:1 120:1 790.2 

E2 = 3 MPa 
(polymer) 

0.18:1 40:1 463.4 

E2 = 15 MPa 0.036:1 8:1 102.7 

E2 = 25 MPa 0.022:1 4.8:1 39.7 

E2 = 60 MPa 0.009:1 2:1 -242.1 

 

 

 

 

 
Flexural Mode Number 

1 2 3

Linearized resonant 
frequency  

Experiment [kHz] 37.6 89.5 203.4
Simulation [kHz] 36.5 86.4 199.1
Relative difference (%) 3.01 3.59 2.16

Nonlinear coefficient (α) 
Experiment 414.8 1041.4 473.4
Simulation 463.4 806.8 493.0
Relative difference (%) 11.72 29.07 4.14

Quality factor 
Linear Qlinear = 1/(2ζ1)  675 880 1100
Effective Qeff = 1/(2ζeff) 140 630 900
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Figures: 

 

 

Figure 1: (a) A SEM image of the system. The system consists of a silicon micro cantilever 
(dimensions: 500 μm x 100 μm x 2 μm) bridged to the ground by a polymer attachment 
(dimensions: 50 μm x 12 μm x 3 μm). (b) A lumped parameter model of the system. A flexural 
displacement of the micro cantilever is modeled by a linear spring (k1), linear damping (c1), and 
mass (m) which is constrained by a horizontal spring (k2) and damper (c2). The large vertical 
motion of the mass renders stretching in the polymer component so that the global dynamics 
switches from linear to nonlinear hardening. 
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Figure 2: Nonlinear hardening responses at the (a) 1st mode (b) 2nd mode, and (c) 3rd mode. 
Experimentally acquired frequency responses at different base excitation voltages (in blue 
circle). At high driving voltages tension is introduced in the midplane of the polymer structure, 
therefore cubic nonlinearity dominates the system dynamics. As the driving amplitude increases, 
the resonant frequency increases, and thereby, the resonance curve bends toward higher 
frequencies. The backbone curves are fitted to the maximum of the frequency responses (in 
black) to obtain the nonlinear coefficients and linearized resonant frequencies.  
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Figure 3: Nonlinear hysteresis phenomenon at the (a) 1st mode (b) 2nd mode, and (c) 3rd mode. 
The responses during sweeping up and down the excitation frequency are plotted in red circles 
and blue crosses, respectively. There is a region of bi-stability between drop-down and jump-up 
frequencies shown in arrows. The analytical predictions (in dashed black curves) are fitted on the 
experimentally measured frequency responses, which agree well with the experimental 
responses. 
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Figure 4: FEA results at the first mode. (a) A free decay time response after releasing from a 
large deflection corresponding to its first mode. The wavelet transform of the response in the 
upper inset shows that the first mode is dominantly excited. A magnified portion of the time 
response is shown in the lower inset figure. (b) A nonlinear amplitude-frequency dependence 
calculated from the FEA time response (in red) is compared with the experimental backbone 
curve (in blue). The comparison shows a perfect match between FE simulation and experimental 
results. The first mode shape of the system is illustrated in the inset figure. 
 
 
 
 
 
 
 
 
 
 



27 

 

 

Figure 5: Experimentally obtained (blue) and FE simulated (red) backbone curves at the (a) 2nd 
mode, and (b) 3rd mode. A nonlinear amplitude-frequency dependence calculated from the FEA 
time response (in red) show an excellent agreement with the experimental backbone curve (in 
blue). The linear mode shapes of the second and the third mode of the system are illustrated in 
the inset figure. 
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Figure 6: FE simulated linear mode shapes of the first three flexural modes: The mode shapes 
illustrates that large bending displacements in the silicon microcantilever induce axial stretching 
in polymer coupling. 
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Figure 7: Simulated nonlinear frequency-amplitude curves for different values of Young’s 
modulus in the nonlinear component. It is clear that an increase in Young’s modulus of the 
coupling component reduces the effective Duffing coefficient. The effect of Young’s modulus on 
the stiffness ratios and nonlinear coefficients is summarized in Table III. 
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Figure 8: (a) An axial strain response of the polymer component (in blue) and the average of 
axial strains per cycle (in red) at its midplane. The average normal strain is positive and increases 
as the oscillation amplitude increases, indicating that the polymer component is mainly in tension 
to be the source of Duffing nonlinearity at large amplitudes. The figure in the inset compares the 
axial strain response (in blue) with the vertical displacement (in red). It is clear that the 
frequency of polymer strain responses is twice of the displacement response. (b) An axial strain 
response of the silicon cantilever (in blue) and average of axial strains per cycle (in red) at its 
midplane. The figure represents that the average normal strains in the cantilever remain close to 
zero regardless of the amplitude of the oscillations. The figure in inset compares the axial strain 
response (in blue) with the time response (in red) at midplane of the silicon cantilever. It is 
shown that the frequency of strain responses is equal to the frequency of the displacement 
responses, proving that the cantilever dynamical behavior is almost linear.    
 
 
 

 

 


