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The pyrochlore metal CdaRe2O7 has been recently investigated by second-harmonic generation
(SHG) reflectivity. In this paper, we develop a general formalism that allows for the identifica-
tion of the relevant tensor components of the SHG from azimuthal scans. We demonstrate that
the secondary order parameter identified by SHG at the structural phase transition is the z® — y?
component of the axial toroidal quadrupole. This differs from the 32z% — r? symmetry of the atomic
displacements associated with the I4m2 crystal structure that was previously thought to be its ori-
gin. Within the same formalism, we suggest that the primary order parameter detected in the SHG
experiment is the 3z% — r? component of the magnetic quadrupole. We discuss the general mecha-
nism driving the phase transition in our proposed framework, and suggest experiments, particularly
resonant X-ray scattering ones, that could clarify this issue.

PACS numbers: 78.70.Ck, 75.25.-j, 75.70.Tj, 42.65.-k

I. INTRODUCTION

Transition metal oxides with the pyrochlore structure
A5B507; have been intensively studied in the past twenty
years, mainly because of their highly-frustrated magnetic
lattice that leads to a rich phase diagram. In some py-
rochlores, the magnetic degrees of freedom can remain
liquid-like without any long-range order!, in others, the
ground state degeneracy can be lifted via a phase tran-
sition that either lowers? or not® the symmetry of the
lattice. Among these materials, CdsOs;O7 is charac-
terized by a metal-insulator transition* at 227 K, with
an ordering of magnetic degrees of freedom but no lat-
tice distortion®. The order parameter driving this tran-
sition was identified recently by resonant elastic X-ray
scattering (REXS)®. It is a ferro-ordering of magnetic
octupoles that breaks time-reversal symmetry without
leading to macroscopic magnetization and without alter-
ing the crystal-lattice symmetry. This is also known as
‘all in - all out” magnetic order, where spins on a given
Os tetrahedron either point inwards or outwards of the
center, resulting in novel physical properties?.

Interestingly, the pyrochlore obtained by replacing Os
with Re, CdyRe2O7, is also characterized by a phase tran-
sition at about the same temperature (T¢; ~ 200 K), yet
instead is characterized by a large drop in the resistiv-
ity when moving into the lower temperature phase. In
this case, the phase transition is also characterized by a
crystal-symmetry reduction from cubic Fd3m to tetrag-
onal I4m2”. This, along with the failure to observe mag-
netic order by nuclear magnetic resonance (NMR)® 19,
led to the transition being interpreted in terms of a soft
phonon mode'!, identified as the parity-odd doublet (E,,)
of the octahedral point group O,'2. In this framework,
the drop in the magnetic susceptibility!® at T.; was in-
terpreted as a consequence of a reduction in the elec-

tronic density of states'®. Yet, the atomic displacements
involved in the transition are so small (less than 0.005
A for the Re-O distance, less than 0.008 A for the Re-
Re distance!®!6) that other mechanisms, leading to the
crystal-symmetry reduction as a secondary effect, should
not be excluded a priori. Moreover, the close analogy
with the case of CdsOs307 might also suggest that mag-
netic degrees of freedom could play a role here as well,
even though dipolar order has not been observed.

In this context, the recent study of the phase transition
of CdaRez07 by second-harmonic generation (SHG)7
provides a clear indication that a primary order param-
eter (OP) different from the softening of the phonon
mode is the driving element of the phase transition. The
SHG results were interpreted in terms of a primary, time-
reversal even, nematic order pauraumeter18 (of symmetry
T5,) inducing a parity-breaking lattice distortion as a
secondary order (of symmetry E,). In order to achieve
the necessary coupling in Landau theory (where the sec-
ondary OP goes as the square of the primary OP, as indi-
cated by the temperature dependence of the SHG signal),
a third OP is needed, of T, symmetry, whose physical
interpretation was unclear. All the irreducible represen-
tations, or irreps, here refer to the octahedral group Oy
of the high-temperature phase.

As we will show below, the OP of E, symme-
try detected in both SHG experiments conducted on
CdyRep0771? is not the E, OP proposed in'2, but
rather an axial toroidal quadrupole of 2% — y? symmetry
(in the cubic Fd3m coordinates, with z along the tetrag-
onal ¢ axis). Concerning the primary OP, we find that
a time-reversal even scenario is not the only possibility.
In order to have a time-reversal even primary OP, Har-
ter et al.'” had to suppose a symmetry lowering to the
point group 4, as a T, primary OP is not allowed in the
space group I4m?2 characterizing CdyReoO7 below T;.



But this would imply the simultaneous breakdown of the
mirror symmetry and the two-fold axes in the ab plane,
inconsistent with the findings of X-ray”'® and neutron?’
diffraction. Instead, such a symmetry lowering is not
necessary for the case of time-reversal odd OPs. Many
experimental techniques, X-ray diffraction included, are
blind to magnetic multipolar OPs, so that a time-reversal
odd multipolar primary OP could be compatible with
the absence of a magnetic signature at the transition as
measured by NMR® 10, In that context, we have found
that two magnetic space groups could explain the SHG
data without requiring a further lowering of the crystal
symmetry: I4m’2’ and I4m/2, both characterized by the
breaking of the mirror symmetry for magnetic OPs, a key
feature that could explain the SHG data, as discussed in
Section I1.B.

In order to clarify the above statements and provide
a general framework to describe the phase transition of
Cd3ResO7, the present paper is organized in three main
sections. Section II is devoted to the symmetry analysis
of the polarization tensors in an SHG experiment. This
analysis, usually not performed in the literature (i.e., just
the symmetry analysis of the matter tensor x;;i is per-
formed), allows us to deduce the quadrupole nature of
the primary OP by symmetry considerations and the re-
quirement of no measured signal in an SS geometry?!.
In turn, this allows a straightforward explanation of the
azimuthal dependence of the SHG intensity. Then, if we
impose the requirement of no further reduction of the
point group symmetry at the transition (i.e., not to 4),
this naturally leads to the identification of the primary
OP as a magnetic quadrupole. Our polarization analy-
sis leads, as a byproduct, to the prediction of significant
changes in the azimuthal scan if the incidence angle of
the laser beam is varied.

In Section III, we focus on the analysis of all allowed
magnetic tensor components compatible with the known
experimental constraints, and we propose magnetic pat-
terns for the pyrochlore structure allowed by the two
magnetic groups. For a summary of the work in Sections
IT and III, see Table I.

TABLE I: Summary of the work in Sections II and III. For
each of the scenarios, non-magnetic (I4) and two magnetic
(I4m'2' and I4'm’'2), we list the order parameters (OP, sec-
ondary or primary) along with their symmetry (% is the sym-
metry under time reversal and u/g the parity under spatial
inversion), and in parenthesis their interpretation (ATQ is an
axial toroidal quadrupole, MQ is a magnetic quadrupole, and
MO is a magnetic octupole). For the second scenario, I4m'2’,
one also has a toroidal octupole (T3,,).

OP 14 I4m'2’ 14'm'2
secondary, u Ef (ATQ) E} (ATQ) El (ATQ)
primary, u T () Ty (MQ) By (MQ)
primary, g T (7) Ty, (MO) A;, (MO)

In Section IV, we evaluate, both analytically and

numerically, the outcomes of REXS experiments that
could provide an experimental verification of our model
and confirm the existence of ferro-quadrupolar magnetic
order. The numerical analysis is performed via the
FDMNES program?? with the proposed magnetic struc-
tures as input. As a byproduct of our analysis, we also
address the existence (or not) of a second phase transi-
tion in CdsResO7 around Te.o ~ 120 K that has been
claimed in the literature” but for which there is no clear
consensus2®. We suggest a key REXS experiment to clar-
ify this issue as well. Finally, in Section V, we provide
our conclusions.

II. ANALYSIS OF SHG IN CD;RE,O~

Second-harmonic generation is a third-order process in
the matter-radiation interaction, determined by two ab-
sorptions of a photon Aw and the emission of a photon
2hw?*. Tts total scattering amplitude, Agpq, can be writ-
ten in quantum-mechanical terms using third-order per-
turbation theory?®, instead of the semiclassical approach
usually adopted in the optics literature?®. The advan-
tage of the quantum mechanical approach, compared to
the semi-classical one, is twofold. First, it makes ab initio
quantum mechanical calculations possible. Second, and
more important for the present work, it allows represent-
ing the SHG signal as a scalar coupling of tensors describ-
ing the properties of the material with the corresponding
tensors describing the electromagnetic field (see Eq. (2)
below), in full analogy with the REXS case?”, where it
proved extremely useful in identifying multipolar orders.
In particular, as demonstrated below, such a coupling
highlights a general property of SHG signals for purely
electric dipole transitions (E1-E1-E1): in the SS chan-
nel, SHG is blind to quadrupolar OPs. So the absence
of an SHG signal in the SS channel, as in the case of the
SHG experiments for CdsResO7, necessarily points to
a quadrupolar OP. It is remarkable that E1-E1-M1 and
E1-E1-E2 transitions do not have this property (M1 is
a magnetic-dipole transition, E2 an electric-quadrupole
transition). Therefore the absence of an SS signal and
the presence of an SP signal is a signature of E1-E1-E1
transitions.

A. General derivation of the SHG signal

The full cross-section for SHG and its explicit deriva-
tion have been reported in Appendix A.1 and in Section
IIT of Di Matteo and Norman?® (DMN in the following).
Here we recall some of the results that can be useful for
the present analysis, in particular the analogy with the
REXS tensor interpretation®”. We also explicitly write
the coupling terms of the susceptibility tensor, x;jx, for
each spherical-tensor component, that was not done in
DMN. Given the absence of an inversion center in the
low-temperature phase of CdyResO7, and because of the



absence of an SS signal, we can neglect magnetic dipole
and electric quadrupole SHG transitions and just focus
on the E1-E1-E1 SHG amplitude, written as:

Al o Rapreachel = 3 (Rapy + Xe)élche, (1)
where Yosy represents the susceptibility leading to the
SHG field (here, i and o refer to the incoming and outgo-
ing polarizations of the electromagnetic field). Its full ex-
pression is given in DMN. The second equality in Eq. (1)
is a consequence of the symmetry of the incoming po-
larization (efehe!, = €€l €}), and it implies that SHG
experiments are only sensitive to the part of the Xas
tensor that is symmetrized in the last two indices. In
what follows, we call it Xagy (SO Xagy = Xays). As the
overall amplitude Agyq is a scalar, Eq. (1) can be writ-
ten as a scalar product of the corresponding irreducible
representations of the three-dimensional rotation group,
SO(3). Following the results of Section A.3 in DMN, the
involved irreducible representations of the SO(3) group
are: two dipoles (I = 1), a quadrupole (I = 2) and an
octupole (I = 3). This can be obtained by first coupling
the two identical vectors eg and efyz the antisymmetric
(vector) part is zero and only the scalar and the symmet-
ric rank 2 tensor appear. Their coupling with €2 leads to
the above result. Therefore, Eq. (1) can be written as:

2
AES'GI){G X Z Xl(lz)lol(;)1 + Xl=2(jl=2 + Xl=301=3 (2)
=1

Given their importance in describing the azimuthal
scans in CdaRe2O7, we list the expressions for the five
quadrupole components (O;—» for the polarization, y;—o
for the susceptibilities). Dipoles and octupoles can be
found in Appendix A. Note Eq. (2) implies a sum over
all components (for [ = 2, 322 — 2, 22 — 4%, zy, zz,
yz). The polarization dependence and the correspond-
ing linear combination of susceptibilities x;;x for the five

quadrupole components are:

A i (0 =i
03,242 = 62(6 x € )Z & X322—p2 =

(Xafyz + Xzzy — Xyza — nyz)/Z;

O£2_y2 = [6;(60 X gz)z — GZ(EU X gL)y] S Xa2—y2 =

V3
- 1 . . ) )
Opy = —=€L(€2 x &)y + € (€7 X )| ¢ Xay =

(nyz + Xyzy — Xzzz — Xzzz + 2Xza:w - 2Xzyy)/(2\/§>,

- 1 .. . , :

Ors = [ X &)+ €4 (@ x ©):] 0 xaz =

(Xa:xy + Xayz — Xeyz — Xzzy T 2Xyzz — Qnya:)/(2\/§)§
(3)

. 1 .. A . .
Oy = —=[€L(E X @)y + €, (€ X &).] ¢ xyz =

V3
(Xzzac + Xzxz — Xyzy - nyz + 2Xﬂﬁyy - 2szz)/(2\/§)

with the usual definition of the vector product: (€ x
&), = €lel, — el

We remind that the susceptibility multipoles corre-
sponding to each polarization multipole, e.g., (Xzy- +
Xazy — Xyzz — Xyzz)/2 for the 322 — 72 component, can
have both a magnetic and a non-magnetic origin (see
DMN, Section III). In both cases, only inversion-odd mul-
tipoles can be detected by E1-E1-E1 SHG. For example,
the polarization term O in Eq. (3), with the symmetry
of a quadrupole, can be coupled either to a magnetic
quadrupole, time-reversal odd and inversion odd, or to a
non-magnetic quadrupole, time-reversal even and inver-
sion odd. Among the latter, we remind that the axial
toroidal quadrupole characterizes X-ray natural circular
dichroism (XNCD), and that a nematic quadrupole!® has
been proposed by Harter et al.'”. As anticipated above,
a key feature of the quadrupole term is that it is blind
to SS polarization, as clear from the vector product be-
tween incoming and outgoing polarizations that is high-
lighted in the formal expression of all five components
of Eq. (3). This is a general property of SHG, indepen-
dent of the point-group symmetries of the material to be
studied (not yet specified in the above equations). This
property is analogous, for example, to the well-known
fact that, in REXS, magnetic dipoles cannot be detected
in SS geometry, but only in the polarization rotated SP
channel. We remark that, of all the terms of Eq. (3),
the quadrupole is the only multipole that gives a zero
SS signal (as clear from the direct inspection of dipole
and octupole terms reported in Appendix A that have
non-zero contributions in SS geometry, as well as for the
E1-E1-M1 and E1-E1-E2 terms reported in DMN).

By reducing the symmetry from spherical to octahe-
dral, the above irreps of the SO(3) group branch to the
irreps of the Oy group as follows: both dipoles become
T1. irreps of Oyp. The octupole branches to Ty, Ao, and
Ty, irreps. Finally, the quadrupole branches to a dou-
blet, E,, the first two terms of Eq. (3), and a triplet,
Ts,, the last three terms of Eq. (3). We end with a tech-
nical remark that will be useful for the analysis of the
quadrupole, Eq. (3). It is an axial spherical tensor of
rank two, inversion odd. This implies that it has the
opposite behavior under inversion than a polar spherical
tensor of rank two, which is inversion even (we remind
that inversion properties of polar spherical tensors go like
(=1)P, where p is the rank of the tensor). This implies
that if a polar spherical tensor of rank two (e.g., the elec-
tric quadrupole @) has an invariant component Q3,2 _,.2
under the Sy, symmetry operation, for an axial tensor
this will not be invariant any more, as Sy, is the prod-
uct of a rotation, Cy, and inversion, I. Indeed, by di-
rect inspection, Os,2_,2 changes sign under Sy,, whereas
Og2_,2 is invariant, contrary to the general behavior of
a polar spherical tensor of rank two (Q3,2_,2 is invariant



under Sy, and Qg2_,2 changes sign). This property will
be used in the next subsection to classify the secondary
OP in Cd2R6207.

B. Application to Cd2Re207: the secondary OP as
an axial toroidal quadrupole

The considerations of the previous subsection are gen-
eral, applicable to any point group. In this subsection,
we shall apply them to the case of the 4m2 point group
of the low-temperature phase of CdaRe2O7, as well as to
some of its subgroups, in order to explain the SHG exper-
iments. We first make an important notational remark:
throughout this paper we label the SHG susceptibilities,
Xayz, With 2, y and z referred to the cubic axes of F'd3m,
in keeping with previous papers'”'?. This corresponds,
in principle, to the 42m point group, not 4m2, the two
being just a different description of the same geometry
related by a 45° rotation (see the end of Appendix B for
further explanation). Yet, the space group of CdsReyO7
below T, is the tetragonal I4m2 space-group (Interna-
tional Tables for Crystallography (ITC) No. 119), that
is physically different from the tetragonal I42m space-
group (ITC No. 121). In what follows, with a slight abuse
of notation, we shall omit this notational difference for
the point groups and refer also to the point symmetry as
4m2 (the correct relation with the SHG susceptibilities
in the tetragonal frame is given at the end of Appendix
B).
We remind that in the 4m2 point group, only the fol-
lowing susceptibilities are allowed (see Table II in Section
IIIA) Xzzy = Xzyz) Xyze = Xyzz and Xzzy = Xzyz- If
we limit to a time-reversal even OP, also the constraint
Xzzy = Xyz=o appears (see Section III.A). The SP spec-
trum measured by Harter et al.'” breaks the mirror sym-
metry of 4m2. This, in turn, calls for a second, inde-
pendent, tensor component x;;r that breaks the mirror
symmetry. Such a reduction can be achieved in two ways:
either with a symmetry lowering to the point group 4 (the
highest possible without the mirror plane), or by consid-
ering a magnetic OP associated with a time-reversed mir-
ror symmetry. In the latter case, two magnetic groups
are possible: 4m’2’ and 4m/2. In both cases, the mirror
symmetry is associated with time reversal so that any
magnetic OP that is odd with respect to the mirror sym-
metry alone can in principle explain the symmetry break-
ing measured in the SP channel. In previous work!”, the
case of a non-magnetic primary OP was considered. In
this paper, in the next section, we discuss instead the case
of a magnetic primary OP. However, we briefly recall the
main features of the 4 scenario for future comparison.

Reducing the point symmetry to 4 allows the following
susceptibility terms to appear: Xgz: = Xaze = —Xyyz =
—Xyzy A Xzzz = —Xzyy. Only terms with one z label
are allowed, which makes null the quadrupole terms cou-
pled to O, and O, in Eq. (3). The relations valid for
time-reversal even OPS, Xuzy = Xyze and Xayz = Xyazs

4

make null also the susceptibility that couples to Os,2_ 2
in Eq. (3). Extending the analysis to dipole and oc-
tupole terms as well (listed in Appendix A), a direct in-
spection shows that the only non-zero susceptibilities are
those that couple to the quadrupole O,2_,2 (E,) and Oy,
(T%y,) or to the octupole O~zyz (As,) and Oz(wz_yz) (Tow,)-
Using the above relations, valid for the 4 point group,
the matter tensors become: 2(Xuyz — Xzay) (for Ogz_y2);

Q(Xz.rr - X’I"I‘Z) (fOI‘ Q”cy)v Xzxy + 2chyz (fOI‘ OTyZ)7 and
2X 200 + 4Xaez (for O, (z2_y2y). In this framework, the
additional symmetries introduced in Ref. 17 in order not
to have an SS signal, i.e., that X,zy = —2Xay-. and that
Xzzz = —2Xzzz, can be understood as the requirement
of an absence of the octupole OPs with symmetry zyz
and z(z% — y?). As we shall see in Section III, this ad-
ditional symmetry that needs to be imposed here will be
automatically recovered with the magnetic group Im'2.

The explicit dependence of the azimuthal scans for all
the non-zero tensors of the 4 point group is reported in
Eq. (4). The same expressions will also be useful for
the magnetic point groups 4m’2’ and 4 m’2 that we shall
analyze in Section III.A. The detailed calculations are
reported in Appendix B. We have, for all allowed SP and
SS terms:

~ 1
oSt .= —g(ﬁcosﬁsin@q + sin 0 sin(2¢5)) (4)

~ 1

szjiyg = §< —V2cosfcos gy + sin§ cos(2¢ 1))
~ 2 1

Of; = 3—\/3(% cosfsin gy — sin@sin(2¢H))

6% = 5 (costsn ) —sno)
+V2sin 0sin(265))
(cos B cos(3p) — \% sin 6)

(cos(3¢) — cosdpr)

TYz

OSP _

Wl =

~ 1
S —

OZ(.’IJ2—y2) - ﬁ

~ 1

055 = -3 sin(3¢p)

TYz
Here ¢ is the azimuthal angle measured by Harter et
al.'” (see Fig. 10 in Appendix B), whereas § = 10° is the
incidence angle with respect to the surface normal used
in the experiment. This value of § makes cosf ~ 0.98,
so that the cos 6 term is dominant compared to the sin ¢
term, though the latter is not negligible (sinf ~ 0.17).
We remark that octupolar OPs, besides giving an SS
signal, have the wrong azimuthal scan even in the SP
channel, with a sin(3¢g) or cos(3¢g) behavior. In or-
der to recover the experimental azimuthal scan, two OPs
are required'”, one going like sin ¢ and the other go-
ing like cos ¢p. The former is associated with the pri-
mary OP and the latter with the secondary OP. Eq. (4)
shows that there is only one possibility for the secondary
OP, that has necessarily the symmetry of an 22 — y?
quadrupole. Instead, the primary OP could have either



the symmetry of a 322 — r? quadrupole or that of an zy
quadrupole, both going like sin ¢r. The latter belongs
to a Ty, irrep, compatible with the Landau free energy
proposed in Harter et al.'”. The former does not con-
tribute in the 4 point group as stated above (it couples
0 Xayz+ Xazy — Xyzz — Xyo» that is zero in 4 in the absence
of magnetism). However, as we shall see in Section III.A,
the inclusion of magnetic point groups makes the linear
combination Xgyz + Xazy — Xyzz — Xyz» associated with
the 322 — r? quadrupole non-zero and its symmetry (E,)
is allowed in the free energy. We shall discuss about the
magnetic origin of the primary OP in Section III. Here,
we discuss the physical interpretation of the secondary
OP, an 22 — 32 axial toroidal quadrupole. We remark
that it is not the same OP as the atomic displacements
of 322 — r2 symmetry that have been proposed before to
explain the SHG secondary OP'719,

In order to understand the physical origin of the SHG
signal determined by the secondary OP, consider the fol-
lowing model. We start with the positions of Re ions in
the cubic Fd3m phase?®:

1= (1/8,1/8,1/8)
s =(—1/8,1/8,—1/8)

(—1/8,-1/8,1/8)  (5)
F4:(1/8,—1/8,—1/8)

We have also the following displacements from the cu-
bic positions in the 74m2 and I4;22 phases®®

(=21, =1, 21) (6)

54 = (501,*'5/1,*21)

51=($1,91721) 522

03 = (*xhyl’*Zl)

We remind that for 74m2, we have the relation ; = ¥
(and 27 and z; have opposite signs), and for 14,22 we
have 1 = —y; and z; = 0. Though 14,22 symmetry has
been excluded at T, it is useful to consider it for further
analysis in Section IV.

We can now evaluate the axial toroidal dipole?? deter-
mined by these displacements for the tetrahedral cell. We
remark that the value of this vector is independent of the
choice of the origin, because the tetrahedron is non-polar
even after the displacements (i.e., Z?zl 5 = 0). The
values we get for each tetrahedron are equal to one-half
those of the unit cell in the tetragonal phase, because of
the bece translation. Using § = Z?Zl gi, with g; = 7 % 5
we obtain:

!
ngg(Zl—yhm—Zly%—ﬂh) (7)
§2=g(—Z1+y1,—x1+217y1—a?1)

o1

932g(—21+y1,$1—21,—y1+l‘1)

o1

94=§(2’1—y1,—$1+2’1,—y1+$1)

which gives, for the total axial toroidal dipole of the tetra-
hedron g = E?:l g; = 0, as expected for both 4m2 and

422 symmetries. We can now evaluate the corresponding
axial toroidal quadrupoles, Gj;:

4
1
Gwy = Z Zriwgiy + TiyGiz = 0 (8)
=1
1 4
Gyz = 1 TizGiz T TizGiz = 0 (9)
i=1
Gy= = - ngzy +7iygiz =0 (10)
i=1
=
Gseap2 = Z3Tizgz‘z —TgoxcT — (11)
i=1
1
Grryp = 1 eria:giz — TiyGiy X 221 — X1 — Y1 (12)
) = _Re;
‘ T 61
Re, /
0, 0;
S,
5 Mg g R L
3\\ Re3 lze1 1\)
b) Top view
SZX) Re, Re4 _l“v
B g4[
FIG. 1: (a) The unit tetrahedron with the Re; positions of

Eq. (5) and the displacements of Eq. (6), depicted as green
arrows. (b) View from the top of the tetrahedron, with the
axial toroidal dipoles of Eq. (7) at each Re; position depicted
as blue arrows. Both planes (z:ié) contribute one-half to
the total axial toroidal quadrupole.

Notice that G,2_,2 # 0 and Gs3,2_,2 = 0 in [4m?2
because of the condition 1 = y; and the opposite sign
of z; and 7. In the other case (I4122), we would have
had instead G3,2_,2 # 0 and G2_,2 = 0, because of the
condition x1 = —y; and z; = 0.

Now we can solve the apparent contradiction of
322 — 2 versus 22 — y2 OPs: the coordinate dependence



of the axial toroidal quadrupole G 2_,2 o 21 +y; — 22
is the same as that of the E, (322 —r?) component of the
Re atomic displacements'? associated with I4m2. Here,
though, G is a quadrupole of 22 — 32 symmetry and for
this reason is associated with the polarization spherical
tensor Og2_y2. The reason for this change in the na-
ture of the tensor detected by SHG (22 — y? instead of
322 —r?) was already sketched at the end of Section IT.A.
The displacement OP'2 is a polar spherical tensor (the
displacement is a polar vector) whose behavior under the
symmetry operations of I4m2 are such that, in particu-
lar, 322 — r? is invariant under the Sy, symmetry opera-
tion, whereas x2 —y? changes sign. So, as correctly found
in the literature!?, the transition to the I4m2 space group
is characterized by a 322 — 72 polar tensor, as the 22 — y?
polar tensor would not be invariant. However, SHG is
not sensitive to a rank-two spherical polar tensor, but to
a rank-two spherical axial tensor, that we have identified
as the axial toroidal quadrupole. Under the Sy, = ICy,
symmetry operation, the inversion symmetry behavior
is opposite for polar and axial tensors. Therefore, for
an axial rank-two tensor, z? — y? is invariant under the
Sy, symmetry operation, whereas 322 — 2 changes sign,
in keeping with the above discussion. We remark that
our findings are further confirmed by the fact that 74,22
allows for an XNCD signal, whereas I14m2 does not3°,
since as is well known3!, when the X-ray beam is along
the tetragonal c-axis, XNCD is sensitive to the G3,2_,2
component of the axial toroidal quadrupole and not to
Gy2_,2. A pictorial representation of the axial toroidal
quadrupole for the single tetrahedron is reproduced in
Fig. 1.

We conclude this subsection by showing that both SHG
experiments on CdaResO7171° are associated with the
axial toroidal quadrupole calculated above. The first
SHG experiment, by Petersen et al.'®, can be reproduced
with the formula cos? o, sin®(c, — @ay,), plotted in the
left frame of Fig. 2(a). The details of the calculation,
valid for the the I4m2 space group, and the experimen-
tal setup are reported in Appendix B. The whole signal
is provided only by the OfQP_yz term, the second line of
Eq. (4). It is therefore the same OP identified as the sec-
ondary OP in Harter et al.'” and it is associated with the
axial toroidal quadrupole. We only remark that in the
present approach, we have not considered the corrections
reported in Ref. 19 due to linear birefringence (see below
and also the discussion in Appendix B).

Harter et al.’s azimuthal scan can be recovered as well
by means of Eq. (4). Technical details are provided in
Appendix B. We remark however that a clear discrep-
ancy with the experimental data can be seen in the right
panel of Fig. 2(b), around ¢ = 0 and ¢ = 180°. This
is mainly determined by the interference of the cos ¢ g
and cos(2¢y) functions in Of{i ». We can suggest two
reasons for this discrepancy. First, the effective incident
angle 6 could be reduced with respect to its nominal value
by refraction at the sample surface. If the effective 0 is
sufficiently small, Eq. (4) would properly describe the

300°,

90° 2709

FIG. 2:

(a) Left:
experiment'® from O3

description of Petersen et al. SHG
42 of Eq. (4) (without the birefrin-
gence term, see Appendix B). Right: The result if O:le;frz,
that would be active in the 4,22 space group, was used in-
stead. (b) Dots represent the fit of Harter et al.'” to their data
at T=199.7 K (left) and at 196.6 K (right). The azimuthal
angle is ¢ (see Fig. 10). Curves are our fit, for § = 10°, from
term ONfQI::yQ for the secondary OP and term O:le;fﬂ (dashed

green) or OF} (dashed red) for the primary OP.

experimental data (Fig. 3). Second, the interference can
be reduced if one component of the outgoing beam is
dephased, say due to linear birefringence!®. If, for exam-
ple, ¢ multiplied the third component (e2'*) of the last
line of Eq. (B3), this dephasing by 7/2 would propagate
to Eq. (4), leading to a sum in quadrature of the cos ¢p
and cos(2¢p) terms (for the secondary OP) and of the
sin ¢ and sin(2¢g) terms (for the primary OP), leading
to the azimuthal dependence measured by Harter et al.
The physical origin of the discrepancy (whether re-
fraction or birefringence) might be established through
Eq. (4), by performing the same experiment for larger
values of #. If the origin of the effect were refraction,
increasing # would make the interference terms more ef-
fective and a strongly asymmetric pattern would appear
(Fig. 3). Interestingly, varying the incident angle 6 also
allows differentiating the two terms Og;_ﬂ and Off ,
reproduced in Fig. 2(b), in dashed green and dashed red,
respectively, and barely distinguishable for # = 10°. The
two cases can instead be identified for § = 20° from the
left panel of Fig. 3(c), as the O35, term (dashed green)
is symmetric in the small lobes and asymmetric in the big
lobes, whereas the Off (dashed red) is symmetric in the
big lobes and asymmetric in the small lobes. The im-
portance of the latter point is that, as demonstrated in
the next section, the two terms are associated with two
different magnetic groups and OPs. We finally remark



FIG. 3: Same as Fig. 2b, but for (a) § = 0°, (b) = 5°, and
(c) 8 = 20°. For these three plots, the fit coefficients are the
same as Fig. 2b. (d) A fit to the data where it is assumed
that 6§ = 0°.

that this difference would not appear if the discrepancy
with the experimental data in Fig. 2(b) was due to bire-
fringence.

III. POSSIBLE MAGNETIC ORDER FOR
CD2RE>0O~

_In this section, we analyze the magnetic subgroups of
I4m2 in order to determine a possible magnetic origin of
the primary OP.

A. DMagnetic point group of Cdz:Re207 below T ;

A possible magnetic origin of the quadrupole primary
OP cannot be determined by the polarization analy-
sis, since it produces the same azimuthal scan for time-
reversal even and time-reversal odd quadrupolar OPs.
As seen above, only two terms can play the role of pri-
mary OPs, those associated with the polarization terms
Oy and Os,2_,2. Interestingly, there are two irreps of
4m?2 that break the mirror symmetry, A; and Bj, the
former with symmetry O,, and the latter with symme-
try ngz,rz. Their character table is shown in Table II
below:

TABLE II: Character table of ﬁ42 and Bj irreps of 4m2,
corresponding to the O, and Os,2_,2 components of the
quadrupole. For magnetic OPs, they become the totally sym-
metric irrep A; for 4m’2" and 4'm’2, respectively.

Zm? E 254 sz 20293 20',1
Ay +1 +1 +1 -1 -1
B +1 -1 +1 +1 -1

They become the totally symmetric irrep (i.e., 4;) for
the magnetic groups 4m’2’ and 4 m'2, respectively. In
fact, for magnetic OPs, the 4m’2’ point group changes
the sign of Cy; and o4 because of the associated time-
reversal operation, making them positive and changing
therefore A5 into A;. Analogously, the Im'2 point group
changes the sign of Sy and o4 for magnetic OPs because
of the associated time-reversal operation, making them
positive and changing therefore By into Aj.

We remark that, in the case of reduction to the 4 point
group'”, the two symmetry operations Cp, and o4 dis-
appear, and with them also the two associated negative
characters. So, in the 4 point group, the Aj irrep of
the susceptibilities associated with O, becomes totally
symmetric and allowed as an OP (but not By).

We analyze now how the susceptibilities transform in
the two magnetic groups 4m’2’ and 4'm/2. We add the
parent group 4m2 for comparison. For simplicity, we
remove the identity and consider only the terms with
one z label, whose azimuthal scan is given by Eq. (4):
Xay> and xyz» (allowed in 4m2), x> and xyy.. For the
non-magnetic group 4m2, we have Table III.

TABLE III: Transformation properties of the relevant suscep-
tibilities for 4m2.

4m2 254 Ca. 205, 204
Xayz Xyzz Xzyz Xzyz Xyzz
Xyzz Xzyz Xyzz Xyzz Xwyz
Xzzz —Xyyz Xzxz —Xzazz Xyyz
Xyyz —Xzxz Xyyz —Xyyz Xz

From the first two components of Table III, we ob-



tain that the linear combination X,y + Xyz. behaves like
the totally symmetric irrep, whereas Xgy. — Xyzz = 0
(already used in the previous section). Similarly, from
the last two components, we get Xzz. = —Xzz> = 0 and
Xyyz = —Xyy> = 0, as already known. Doing this for the
magnetic subgroups, we have instead Tables IV and V.

TABLE IV: Transformation properties of the relevant suscep-
tibilities for 4m'2’.

ZmIQI 25’4 CQZ QTCQZ 2T0'd
Xzyz Xyzz Xzyz Xayz Xye=
Xyzz Xzyz Xyzz XZzz X:yz
Xzzz —Xyyz Xzwz —Xaaz X;yz
Xyyz —Xazzz Xyyz _X;yz Xrwz

TABLE V: Transformation properties of the relevant suscep-
tibilities for 4'm’2.

'm'2 2T'S, Cs. 2C12, 2oy
Xzyz quzz Xwyz Xzyz X'Zzz
Xyezz Xay= Xyez Xyez Xay=
Xaaz —Xyy= Xzaz —Xazaz Xoy=
Xyyz ~Xaaz Xyy= —Xyy= Xawz

The previous relations are valid only for polar carte-
sian tensors (like the SHG susceptibility x;jx), as they

are based on the relations Sy.(z,y, z) = (y, —z, —z) and
Ga(z,y,2) = (y,x,z). Their interpretation goes as fol-
lows: for 4m’2’, Table IV shows that there are two in-
dependent totally symmetric irreps, a non-magnetic and
a magnetic one: R(Xzys + Xyzz) and S(Xzzz — Xyyz)-
This also implies that R(Xzy> — Xyz2) = 0, and Sxzy. =
Sxyze = 0 and that S(Xze> + Xyyz) = 0, and Ryze. =
Rxyy> = 0. The non-magnetic Ay, irrep, R(Xayz + Xyaz)s
cannot be associated with the quadrupole polarization
Os3,2_,2 of the first line of Eq. (3), as the latter is pro-
portional to R(Xzy> — Xyzz) (= 0). It can lead however
to a signal from the octupole term sz of Eq. (A6),
proportional to R(Xzy> + Xyzz)- Yet, the latter would
give a signal in the SS channel, from Eq. (4), in contra-
diction with experiment!”. So, the non-magnetic totally
symmetric irrep of 4m’2’ can be excluded, as expected,
because it coincides with the 4m2 case. The magnetic
irrep $(Xezz — Xyy-), & magnetic quadrupole, is associ-
ated with the correct T3, symmetry of the primary OP
that couples to the O,, polarization term in Eq. (3).
However, the same irrep also couples to the magnetic
octupole term O(,2_,2y in Eq. (A5), with the wrong
angular dependence in the SP case and a non-zero SS
signal. In order to remove this term, the extra condition
S(2Xwxz + Xzaz) = 0 must be fulfilled, analogous to the
proposal of Harter et al.'”.

For the 4 m’'2 magnetic group, from Table V, we get as
well one magnetic and one non-magnetic totally symmet-

ric irrep. In this case, Xzz. = Xyy- = 0. The totally sym-
metric irrep is the linear combination Xuy. + X}, With
a magnetic and a non-magnetic contribution given by
S(Xwyz—Xyz=) a0d R(Xzy>+Xyz=), respectively. This also
implies that R(Xzy> — Xyz-) = 0, and F(Xzy- + Xyz=) = 0.
We consider only the magnetic totally symmetric irrep
S(Xwy> — Xyzz)s as the non-magnetic case would again
lead to the same conclusion of the 4m2 case. The term
S(Xayz — Xym) only couples to the polarization term
Os,2_,2 of Eq. (3). Remarkably, the coupling of this
magnetic OP with the octupole term, proportional to
S(Xwys + Xyzz), is automatically zero for I'm'2 mag-
netic point group. There is no need to impose ex-
tra conditions like the ones imposed for the previous
4m’2" group (3(2Xeez + Xzze) = 0) and for the 4 group
(2Xzwz — Xaze = 0)'7. So, all the symmetry conditions
needed to obtain the experimental azimuthal scan are au-
tomatically satisfied in the Im'2 magnetic group, what
makes it the most serious candidate to explain all the
details of the SHG experiment. This is confirmed by ex-
plicit calculations with a specific magnetic pattern satis-
fying the I'm/2 symmetry, proposed in Section I1I.B.

We remark that all the previous terms are compati-
ble with the measured temperature dependence (linear
in T,y — T for secondary OPs and /T, — T for primary
OPs) and the constraints imposed by Landau theory!”.
In the case of the 4m’2’ magnetic point group, the OPs
involved are E;, the secondary OP of 22 — 3? symme-
try, time-reversal even (the axial toroidal quadrupole)
described in the previous subsection, T5,, the primary
OP that couples to the O~zy polarization term, a magnetic
quadrupole, and 77, a magnetic octupole of (522 —3r?)
symmetry (not contributing to the SHG signal, being
inversion-even). All these OPs have the correct sym-
metry as required by the analysis already performed by
Harter et al.'”, and therefore provide the correct temper-
ature dependences for the secondary and primary OPs.
A detailed analysis of this case, with a possible micro-
scopic mechanism for its realization, is presented in the
next subsection. In the case of the 4 m’2 magnetic point
group, the symmetries of the OPs involved are differ-
ent: the primary/secondary OP coupling is of the kind
E, ElA;, that is an allowed term in the free energy,
as the totally symmetric irrep A;, is contained in the
product. Here, E is a primary magnetic quadrupole of
symmetry Ms,2_,2, time-reversal odd (7), and parity-
odd (), E; is the same secondary OP as above, an axial
toroidal quadrupole of z2 — y? symmetry, time-reversal
even (*), and Agg is an zyz component of the magnetic
octupole, a primary OP sharing the same physical origin
as the magnetic quadrupole E; . A possible physical re-
alization of this state is described in the next subsection.
We conclude by highlighting the following technical re-
mark. Rule 2 of Harter et al.’s SM8'” seems to exclude
the possibility of having a primary OP transforming like
a doublet FE,, as it forbids a linear coupling of the pri-
mary and secondary OPs in the free energy that would



lead to a /1.1 — 1 dependence for the secondary OP
as well. However, this rule only applies to non-magnetic
OPs: this coupling is automatically forbidden in our case,
because it is of the kind E; E;f, and would not be allowed
in the free energy since it is time-reversal odd.

B. Possible magnetic patterns for Cd:Re2O~

Here, we provide a possible physical realization of the
two magnetic groups, 4m’2’ and Im'2.

V. \

|
\ ~
-
/

a) W Re, /
Top view Re
Re, % -~
/ Re, / np _‘,.,,.‘ﬁez

Re, RV
Top view
Re, vl \ ) P
/Ré: Aﬁ 1 Re;

Top view J

Re, Re,
/ | \ / Rez
N Re, 1
Re,

Qa Rig/

' Top view
f o AN

FIG. 4: (a) Possible magnetic pattern for 4m’2’ magnetic
group, with its projection in the zy-plane, showing a two-
in, two-out pattern. (b) Possible magnetic pattern for Tm'2
magnetic group, with its projection in the xy-plane, showing
an all-in all-out pattern.

~

Case of 4m'2’': The 4m'2’ group corresponds to the
following magnetic configuration on a tetrahedron of Re
ions (see Fig. 4a):

g = ( ARG , COS ) (13)
N sinoe  sina

ma = (— 7 ,— 7 ,CO8 )

N sinav  sina

ms = ( - , COS )

corresponding to the Re ions of Eq. (5). Here « is the
angle between the magnetic moment and the c-axis. The
origin is taken at the center of the tetrahedron, inscribed
in a cube of unit length. We remind that the group 4m2
is non-abelian as S;,C; # C5;S4.. This implies that
the labeling of the Re atoms on the tetrahedron must
take into account the correct space-group symmetry re-
lations of the tetragonal I4m2 crystal, as the Re; are not
translationally equivalent, not even in the cubic phase
(see Fig. 5). The total magnetic moment in a tetragonal
unit cell (made of the two identical tetrahedra) is zero
only if & = 7/2. In this case, the magnetic quadrupole
is independent of the choice of the origin. Keeping the
center of the tetrahedron as the origin, we get the five
components of the magnetic quadrupole per Re ion:

4
1 sin «v
=1

4

1
i=
1 4
Myz = Z ; TizMiy + TiyMiz = 0
1 4
M2y = 1 Zrmmm — TiyMiy = 0
i=1
1 4
M322_T2 = Z Z37‘izmiz —77-m=0 (14)
=1

Here 7;, is the z-component of the Re; atom, etc.
The only non-zero component, of 15, symmetry, com-
bines with O, polarization. For future use, we remark
that the equivalent components of the toroidal magnetic
quadrupole (defined with #; = 7 x 1, replacing 7; in all
previous formulas) are zero. The three relevant compo-
nents of the magnetic octupole are (the remaining four



are zero):
1 4

Owyz = Z E TigTiyTMiz + TizMiyTiz + MigTiyTiz = 0

=1

4

!

Oz(w2—y = 1 E )
+ 2Tiz (rixmix - Tiymiy) =0

4
1
Oz(5z2—3r2) = Z § miz(57'i22 - 7“12)
=1

3
— 37 - 1) = — (cos o — V2sin @)

2iz5iz 1z
+ 27, (5rim 3

where the first term above has Ay, symmetry, the second
T54 symmetry, and the last 77, symmetry relative to the
(001) direction. This last term has the same physical
origin as the magnetic quadrupole term, M, so that the
two can represent the coupled T1,4-T5, terms needed for
the Landau symmetry analysis given in Harter et al.'”
We remind that the 77, octupole component cannot be
seen directly by SHG, at least as a purely electric-dipole
(E1-E1-E1) signal, since it is inversion even.

There is, however, a drawback associated with the
I4m/2" magnetic point group: if we evaluate the toroidal
octupole (inversion odd) associated with this magnetic
configuration, we obtain the following nonzero compo-
nent (the remaining six, in particular T, ., are zero):

+ 2rzz (Tzwtzx Tiytiy)

This nonzero component has Ts, symmetry and cou-

ples to the octupolar polarization terms Oz(a«Z ) and
Of(zQ_yQ) evaluated in Eq. (4) for the SHG signal. In or-

der to reproduce the correct azimuthal SP scan and the
absence of an SS signal, they should have been instead
zero (this corresponds to the relation X.zo = —2Xzz»
imposed by Harter et al.). T, (z2—y2) is zero only for
tana = /2, i.e., a ~ 54.74°, corresponding to the mag-
netic moment along the trigonal axis. This result, as for
all the others in this subsection, has been calculated for
the cubic positions 7;. However, T, (,2_,2) remains zero
for this value of o even with a tetragonal distortion. In
fact, even allowing 7; — 7; + 5“ the change in T.,(,2_,2)
is AT, (p2_,2) = (B2 + B2 ) (cosa — %) We re-
mark that the other relation imposed by Harter et al.,
Xzzy = —2Xazyz, 15 automatically satisfied, as it corre-
sponds to the Ay, term, T, ., which is null.

This confirms the general symmetry analysis of Sec-
tion III.A with the important addition that for a =~
54.74°, even with a tetragonal distortion, this mag-
netic group could explain the Harter et al.’s condition

Xzzz = —2Xazzz- Yet, just having a single angle where
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the condition is fulfilled seems implausible. Moreover,
this solution would be ferromagnetic, against experiment
(only o = /2 would lead to an acceptable antiferromag-
netic solution). Interestingly, the above relations for x ...
and X ..y are instead both automatically satisfied for any
angle « in the model presented below, corresponding to
the 4'm’2 group. This leads to a null SS signal, indepen-
dent of any other imposed constraint.

Case of I'm'2: Magnetic moments are compatible with
the I4'm/2 magnetic group if they have the configuration
(see Fig. 4b):

my = ( 7 , COS ) (15)
. sina  sina
mo = (— N \/Q,cosa)
S sina sina
3 = ( Vo) cos o)
N sina  sina
4= cos «)

We remark that, as in Eq. (13), these magnetic mo-
ments have to stay within the local mirror planes at
sites Re;, so as to enforce the m’ symmetry. Atoms Re;
and Rey must be related by the two-fold axis around z
(as well as Res and Res). Finally, my = T'S4.m; and
mg =T S'Z’Zrﬁl. This configuration has I Im’2 symmetry
for any «, which is the angle that the magnetic dipole
makes with the c-axis. The total magnetic dipole of the
tetrahedron is zero.

We can now evaluate the magnetic quadrupole and
octupole components for both the cubic and tetrag-
onal phases. In the cubic phase, we get that all
magnetic quadrupole components are identically zero,
except Msz,2_,2 < cosa — sin a/\/i. Analogously,
for the octupole magnetic moments, six components
are zero (OZ(IZ—yz)) Ow(y2—22)7 Oy(z2—m2)7 02(522—37‘2)7
Og(502—3r2), Oy(5y2—3,2)) and only one is different from
zero, the Ao, term, that is given by: Oy, o cosa +
V2sina.  We remark that the magnetic quadrupole
Ms,2_ 2 is zero when the magnetic octupole Oy, is max-
imal, i.e., for a« = 54.74°, corresponding to magnetic
dipoles along the three-fold axis of the cube diagonal.
Therefore, in the high-temperature cubic phase where the
three-fold symmetry is present, the magnetic configura-
tion of Eq. (15) is equivalent to the all-in all-out magnetic
pattern of CdyOs2073, with zero magnetic quadrupole
and the Og,. magnetic octupole as the lowest non-zero
magnetic multipole.

We now evaluate the same quantities in the I4m2
phase, where 7; — 7; + 5;-, in order to identify a possible
relation between the magnetic quadrupole and octupole
and the tetragonal distortion. The displacements from
the cubic positions for each Re atom in the two tetrag-
onal phases, reported above in Eq. (6), can be rewrit-

ten for the I4'm’2 magnetic group (x1 = y1) as: 01 =



(x17x17zl) 6 = (56'1,—1‘1,—21), 63 = (_1'171'17—21)
and 54 (=z1,—x1,21). Then we get that again
M,, = Myz = Mgy = My=2_y» = 0 and Oz(mz,yz) =
Ow(y("fz‘z) = Oy(z27a:2) = Oz(52273r2) = Ygz(5z2-3r2) =
Oy(5y2—3r2y = 0. The changes AMj.>_,> and AO,,. in
the terms Mj,2_,2 and Oy, between the tetragonal and
the cubic phases, up to the first order in the displacement
terms, are given by:

AMs,2_,2 = 221 cosa — V2x, sina

T sin &
onyz = Z Ccos & + m

We remark that the tetragonal correction to the mag-
netic quadrupole due to the displacements 5; is not zero
even when the magnetic moment is directed along the
local three-fold axes. In this sense, Eq. (16) highlights
the connection between a non-zero value of the mag-
netic quadrupole and the tetragonal distortion. For x;
and z; around the experimental values (z; ~ 0.002 and
z1 ~ —0.002, in fractional units), the correction deter-
mined by Eq. (16) is almost constant for small variations
of a (as AMs,>_,2 o v/2cosa + sina is a maximum for
a = 54.74°).

Interestingly, all toroidal octupole components associ-
ated with this magnetic configuration are zero and, in
particular, T, (;2_y2y = 0 and T, = 0, i.e., the only two
components that would have both given a spurious signal
in the SS channel and the wrong azimuthal scan in the
SP channel, as detailed in Section II.B. So this solution
is fully compatible with Harter et al.’s azimuthal scan, as
the constraints X.zo = —2Xzz. and X.zy = —2Xay. are
automatically satisfied by this magnetic pattern, in keep-
ing with the general symmetry analysis of Section IIT.A.
This is a remarkable result that suggests that I'm'2 is
the actual magnetic point group. Moreover, as sketched
above, the non-zero component Ms.2_,2 has E, sym-
metry. The only non-zero component of the magnetic
octupole generated by this configuration, O, ., has A,
symmetry and can represent the even-parity primary OP
in the Landau free energy. So, all OPs are correctly rep-
resented by the non-zero magnetic multipoles associated
with this case.

In the next section, we suggest new REXS experiments
that could highlight the magnetic pattern of the I7m'2
magnetic space group.

(LUl +Zl) (16)

IV. REXS ANALYSIS OF THE PHASE
TRANSITIONS IN CD>RE;O~

In this section, we analyze the possible outcomes of the
predicted magnetic-quadrupole ground state by means of
resonant X-ray elastic scattering (REXS), that has the
sensitivity to confirm the proposed magnetic configura-
tion. We shall also touch on the possible signature of the
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other phase transition reported in the literature, around
T=120 K, again investigated by REXS.

A. Probing by REXS the 7.1 phase transition of
Cd2Re207: how to confirm a magnetic-quadrupole
oP

In Table VI we report the fractional coordinates of Re
atoms for both Fd3m and I4m2 space groups as mea-
sured by Huang et al.'®. In keeping with the previous
sections, we have switched the origin choice 2 used by
Huang et al. for Fd3m to the origin choice 1, corre-
sponding to a global shift of (1/8,1/8,1/8) for all the
atoms. We remark also that with our choice of Re;
for the cubic phase, the corresponding Re atom in the
tetragonal phase is the second entry of the ITC, No. 119.
This point can be checked from the symmetry opera-
tions reported in the ITC (Nos. 119 and 227), by re-
minding that the group is not abelian (as the Sy oper-
ator does not commute with two-fold rotations, the or-
der is important): S4.Cozz = C24254, = 0, whereas
SY4ZCA'2M = OQwi§4z = 6. So, the correct correspondence
is Re; — Reb; Res — Rel; Res — Reb; Req — Relj, as
shown in Fig. 5.

TABLE VI: Fractional positions (z,y, z) of Re atoms in the
Fd3m and I4m2 space groups. The twelve fcc translations
(for Fd3m) and the four bee translations (for I4m2) are not
reported. Of all symmetry operations relative to Re1, only the
one used to derive the resonant structure factor is highlighted.

Atom‘ z,y,2) FdSm‘ Fd3m‘ (z,y,2) T4m2 ‘ I4m2
Re, (1,4 E | (0.7529,0,0.8729)| Co.
Res ) Ca. | (0.2471,0,0.8729)| FE

Res 11l L Coy | (0,0.7529,0.1271)| ICy.
Rey 1-1-4 Cor | (0,0.2471,0.1271)| IC

Here and in what follows, I and E are the inversion
and the identity operators, and Csy; are two-fold rotations
around the ¢ axis (z,y, z parallel to cubic a,b,c). In the
following, we label w = 0.2471 and u = 0.8729'°. Taking
into account the space-group symmetries, the resonant X-
ray structure factor for the F'd3m space group, summed
over the 16 Re atoms, can be written as:

Fhkl

o 0 (L4 (=1)F 4 (1) (— )M (17)

(14 ()" Cos + ()" Coy + () Coa) /o
where f7 is the resonant atomic scattering amplitude for
Re atom 1 (see, e.g., Ref.27).

The resonant X-ray structure factor for the I4mz2 space
group, summed over the 8 Re atoms, can be written as:

Fhkl

L o (1 4 (—1)hHhH) (e2im(butlu) (1 4 p—dimhués, )

+ e_2i”(kw+lu) (1 + €+4iﬂkwé2z)fé4z)f1t (18)
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FIG. 5: Pyrochlore structure of Re ions depicted for the four planes along the c-axis. Green arrows represent in-plane Re

displacements 5;. Tetragonal zy-unit cell is shown in red. The z coordinate of each plane is reported for the cubic cell (z.) and
for the tetragonal cell (z;). Re1 of the cubic cell (ITC No. 227) corresponds to Rez of the tetragonal cell (ITC No. 119). The
6 O ions around Re; are reported in blue. Their positions relative to Re; are given in Appendix C. We notice that O; and Ogs

have both z. = 3/4.

where f1; is the resonant atomic scattering amplitude for
tetragonal Rel. We remark that for the all-in, all-out
I7m'2 magnetic group, the only change in the structure
factor is the replacement of ICy. in the last term by
TICy,.

A key class of reflections that can be used in REXS
to identify the breaking of the Fd3m space group is
(0,0,4n + 2). If we specialize Eq. (17) in this case, we
get:

FR0A2 o 4(1 4 Coz — Coy — Cax) o (19)
which is forbidden out of resonance (it gives zero if we put
C’zz = 021 = égy = 1, as appropriate out of resonance).
In anomalous conditions, though, such a reflection be-
comes allowed. We remind that, at Ly 3 edges, only E1-
E1 transitions are possible and REXS is sensitive only to
a time-reversal even OP, which is the electric quadrupole

@, and a time-reversal odd OP, the magnetic dipole m.
In the high-temperature cubic phase, there is no mag-
netism and only @ can be detected at the (0,0,4n+2)
reflections. Of the 5 components of Q (Q3.2_r2, Qu2_y2,
Qzz; Qyz, Quy), the only term that is nonzero when acted
upon by the linear combination (1 + C’gz - C’gy - C\YQx) of

EQ- (}9) is QI’[} (as CA’2z62wy = +waa CAVQUszy = _wa
and C2;Qzy = —Qgzy). All the other terms are zero.

If we perform an azimuthal scan around ¢ = (0,0, 4n+
2), and put the azimuth zero corresponding to the in-
coming S polarization (perpendicular to the scattering
plane) along the d-axis, then we get an azimuthal scan
~ c0s?(2¢) for SP and PS scattering and ~ sin?(2¢) for
SS and PP scattering, because of the xy dependence for
the only allowed term @;,. We remark that each P po-
larization further introduces a reduction by sin 6, where
0 is the Bragg angle. This azimuthal behavior for non-
magnetic REXS is the same as obtained by Yamaura et
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FIG. 6: The X-ray absorption intensity (XAS) near the Re L3
edge for the Fid3m and I4m2 space groups. The two peaks
are due to the unoccupied tzy and e, states. We also show
the REXS signal for the (006) reflection in SP geometry, at
both 0° and 45° azimuth. The latter signal is zero, suggesting
where to look for the magnetic signal in the low-temperature
phase.

al.%, who studied the (006) reflection for Cd2Os207. We
finally remark that the @), electric quadrupole does not
probe only Re d, orbitals, because the local oxygen oc-
tahedron around each Re-ion is not oriented along the @,
5, and ¢ cubic axes. The calculation to rotate the local
axes to the crystal axes is performed in Appendix C. The
result shows that in the energy scan of the (0,0,4n+2) re-
flections, both to4 and ey local states are detected with
a relative weight of 65% for to, and 35% for e;. The
eg peak is further smeared by lifetime broadening, which
increases by a factor of about two when passing from the
lower energy taq4 states to the higher energy ey ones. This
is confirmed by our FDMNES numerical calculations??,
fully relativistic (spin-orbit included) in SP geometry for
¢ = 0° and ¢ = 45° shown in Fig. 6 at the Re L3 edge.
We remark that similar results are obtained at the Lo
edge3?. Huang et al.’s positions'® for the Fd3m space
group were used. As CdsOsy07 is a metal, we did not
include a Hubbard U, but we checked that nonzero val-
ues of U (up to 2 eV for both Cd and Re) do not affect
the main conclusions of this section. As noted above,
no signal appears for ¢ = 45°. The t24-e4 separation is
about 5 eV, in keeping with the ab initio calculations of
Huang et al.'®.

Below the transition, in I7m'2 group, (0,0,4n + 2)
reflections become instead Bragg-allowed. In fact, if we
specialize Eq. (18) to the case (0,0, 4n + 2) for the mag-

netic group 14 m’2, we have:

FRPAm2 o0 2(1 4 Cog) (/7D eI G ) £y
(20)

Though [ = 4n + 2 reflections are Bragg-allowed, the
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Bragg term only contributes to SS or PP scattering,
whereas the magnetic signal is only visible in SP or PS ge-
ometry, together with the electric-quadrupole terms, Q.
However, in a real experiment, there is the further issue
of possible leakage in the SP channel of Bragg scattering
from the SS channel. Because of this, a full symmetry
analysis for all the possible terms must be performed. Of
the five electric-quadrupole components, Qz. and Qg
give exactly no signal, being odd with respect to Cs..
The other three are even under Cs,. @3,2_,2 is also even

for TICy., whereas Qz2_5> and Qz5 are odd, because of

the C.s, rotation (all electric quadrupoles are even under
Tf) Therefore, Q3,2_,2 is reduced by cos(2mu(4n+2))33,
whereas Qz2_g2 and Qzy go as isin(2wu(4n + 2)). We
remark that Eq. (20) is written in terms of tetragonal
symmetry operations, with x and y cubic and = and g
tetragonal axes rotated by 45° - see Fig. 5. So, Qz2_j2
corresponds to @z, of the cubic phase. A numerical cal-
culation of the order of magnitude of these terms by the
FDMNES program shows that Qz5 and Q3,2_,2, i.e., the
components induced by the tetragonal distortion (o< §2)
are totally negligible compared to Qz2_j2, to the mag-
netic m, term, and to the Bragg term. If we fix to
1000 the intensity of the Bragg term, Iq, , ., ~ 1072,

Ig,, ~ 107%, 1q,,_,» ~ 10 and I, ~ 10. As above,
our calculations were fully relativistic, with spin-orbit
included. Huang et al.’s atom positions'® for the I4m?2
space group were used. Therefore the total intensity can

be simplified as follows (I = 4n + 2):

Flof/lm’Q = 8[008(217ru)(f@0 + fQ3z2,T2) - Sin(Qlﬂu)fmz]

+ &isin(2lmu) [fQiLgQ + fQas]
~ 8[ cos(2lmu) fq, — sin(2mu) fr. |

+ 8isin(2mu) fQ .. (21)
where we have explicitly written each multipole contri-
bution to the atomic scattering factor fi;, including the
Bragg term, fq,.

In an ideal experiment, fg, does not contribute to SP
scattering and the magnetic contribution f,,_ can be eas-
ily separated from the Templeton term J‘Qizﬂj2 because
of their different azimuthal dependence, the magnetic
term being proportional to sin? (2¢), the Templeton term
(as seen above in SP geometry) to cos?(2¢). The zero
of the azimuthal scan is always given relative to the cu-
bic d-axis. Therefore, a signal measured at 45° is purely
due to magnetism, analogous to the case of Cdy0s,0~°.
This is further confirmed by the numerical calculations
performed with the FDMNES program for the 14'm'2
magnetic space group (relativistic calculation with two
magnetic 5d electrons per Re ion and atomic positions
of I4m2'%) and shown in Fig. 7a. Its intensity is purely
magnetic.

However, in a real experiment, a leakage from the SS
channel of around 1% would contaminate this magnetic
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FIG. 7: a) Re Ls-edge SP (0,0,4n + 2) energy scans. The
signal is purely magnetic, with a main contribution at the ¢34
energy and a smaller one at the ey, energy. The azimuthal
scan for (0,0,14) is also shown in the inset (black curve for 5
eV, red curve for 10 eV, multiplied by 5). b) Re Ls-edge SS
(0,0,4n + 2) energy scans. ¢) SP (0,0,4n + 2) energy scans
with 1% leakage from the SS channel. The inset is a zoom
in to highlight the different energy positions of the lowest-
energy peak for (0,0,2). This and other interference features
are discussed in the text in order to identify the presence of
a magnetic component in the signal.

signal. The SS Bragg scattering is shown in Fig. 7b.
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Luckily, the magnetic term, usually out-of-phase by /2
with the Bragg term, brings with it an extra ¢ coming
from the isin(27u(4n + 2)) factor. Therefore, as already
shown in Eq. (21), the magnetic contribution f,,_ is in
phase with the Bragg scattering of SS origin fg, (con-
trary to the quadrupolar terms Qz2_g2, out of phase with
both). This situation is shown in Fig. 7c, where the mag-
netic signal can still be clearly identified as a modulation
of the SS signal. Three features can be experimentally
identified to provide evidence of a magnetic signal in SP
geometry, as a consequence of the interference with the
Bragg scattering (we remind that in the case of no mag-
netism, the SP energy scan would be just a reduced in-
tensity version of the SS energy scan): 1) the maximum
of the (002) SP reflection is shifted to a lower energy com-
pared to the other peaks (inset of Fig. 7c). This condi-
tion implies interference between fq, and fy,, that is not
present in the ideal case (Fig. 7a): in the case of a pure
magnetic signal, all peaks are proportional to each other.
2) The peak at the t5, energy is bigger than that at the
ey energy for (0,0,10) and (0,0,14) (Fig. 7c). This is not
the case for the Bragg SS signal of Fig. 7b, having three
peaks instead. 3) Finally, the tails of the Bragg signal
are characterized by a Lorentzian decrease as a function
of the energy whereas the magnetic peaks usually fall off
faster than a Lorentzian. In any case, the above signal
must be measured at 45° (or at 1350), where Qz2_g2 is
Z€ro.

To conclude this subsection on the search for mag-
netic ordering at T,;, we remark that it is in principle
also possible to look for a magnetic signal determined by
the magnetic quadrupole (and not by the dipole compo-
nent m,, as above). This can be done at the L; pre-
edge by E1-E2 transitions, that are allowed by inversion-
breaking. Several multipoles can contribute in principle
to the pre-edge intensity (the full list can be found, e.g.,
in Ref. 31). For the I4'm’2 magnetic group, only the
magnetic quadrupole and the axial toroidal quadrupoles
can be detected, so that if we could single out the two sig-
nals, their dependence as a function of T.; —T is expected
to follow a square root and a linear dependence, respec-
tively, in keeping with the SHG measurement. However,
the interest in this approach is unfortunately strongly
reduced by our FDMNES calculations, showing, in the
same energy range as the E1-E2 terms, the presence of
E2-E2 contributions (mainly determined by an hexade-
capolar OP), which are 10 to 30 times bigger, and would
completely hide the inversion-odd signal of E1-E2 origin.

B. Probing by REXS the 120 K phase transition of
Cd2R6207

Two different phase transitions have been reported in
CdsRexO7. Besides the phase transition at T, from the
high-temperature Fd3m cubic phase to the I4m2 phase,
studied above, a second phase transition has been mea-
sured around T, ~ 120 K”15. The crystal space group



below T, was identified as I4,22'°. However, several
doubts were raised in the literature about its existence?3.
Here we propose a REXS experiment that can definitely

settle the issue.

TABLE VII: Fractional positions of Re atoms in the 14122
space group'®. The four bec translations are not shown. Of
all symmetry operations relative to Req, only the ones used
to derive the resonant structure factor are highlighted.

Atom (oy2) 1422 | 14,22
Rey (0.9967,0.25,0.125) E
Res (0.5033,0.25,0.625) Cs.
Res (0.75,0.4967,0.375) Ca-
Rey (0.75,0.0033,0.875) Cr.

The resonant X-ray structure factor for the 14,22 space
group, summed over the 8 Re atoms, can be written as:

Fithy o (14 (—1)MFEH (22)
(egm(hs+k~/4+l/8)(1 + (_)h+le—4iﬂ'hsézz)+

62i7r(3h/4+ks+k/2+3l/8) (1 + (_)k+l€74i7rk56122)év4z)f1

Here, s = 0.99671°.

In order to have a clear differentiation of the 4422
and I4m2 space groups, we need to look for reflections
of the kind (h, h,4n + 2) near the resonant energy of Re
ions. In fact, these reflections are forbidden at the spe-
cial positions (8f) of Re ions in the I4;22 space group
(ITC No. 98) for SS geometry. The only contribution to it
would come from oxygen sites O1 (8d) and O3 (8e¢), there-
fore non-resonant. Instead, for the I4m2 space group, a
clear resonant behavior appears in the SS geometry. A
specific calculation by FDMNES for the (666) reflection
near the Re Ls-edge shows this quantitatively, as seen in
Fig. 8. Therefore a resonant behavior onsetting at T, is
the signature of the I4m2 space group. A change to the
non-resonant behavior at T.o would signal the transition
to 14122.

V. DISCUSSION AND CONCLUSIONS

As we demonstrated above, a magnetic scenario gives
a natural interpretation for the primary even-parity and
odd-parity order parameters implied by the second har-
monic generation data. This is in contrast to a structural
scenario, where only the interpretation of the secondary
order parameter as an axial toroidal quadrupole, common
to the magnetic interpretation, is obvious. On the other
hand, there is no evidence for magnetic order from NMR
and NQR data. Such order should show up as a split-
ting of the lines, which to date has not been observed3*.
Both our magnetic patterns should show such a split-
ting, unless the actual magnetic order parameter at the
Re site itself is a magnetic octupole. However, both
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FIG. 8: The REXS intensity for the (666) reflection near the
Re L3 edge. The black curve is calculated by FDMNES for the
14122 space group and is multiplied by 10. The weak intensity,
constant in energy, is due to the non-resonant contribution
from the oxygens. The red curve represents the calculation
for the I4m?2 space group. The strong energy dependence is
clearly seen at the Re L3 edge. Far from the edge, the signal
is about 35 times bigger than for [4,22. Both curves are
calculated in SS geometry.

polarized REXS and polarized neutrons should be able
to settle the question of magnetic order in the Re com-
pound. In the case of REXS, we have explicitly shown
how, in Section IV. Regardless, we think that a mag-
netic quadrupole/octupole explanation for the primary
odd/even-parity order parameters is an attractive possi-
bility worth exploring.

The other issue concerns the fact that Harter et al.’s
SHG data are most consistent with the €2 component
being in quadrature with €' and eg}” (here, outgoing po-
larization components refer to the last line of Eq. (B3)).
From our exact quantum mechanical expressions, these
quantities should instead interfere. As we stated in Sec-
tion I1.B and in Appendix B, a possible solution is repre-
sented by either birefringence or refraction. In the latter
case, we suppose that the effective 6 inside the sample
could be lower because of refraction, thus suppressing
the interference with the €2 term. This could be tested
by increasing the incidence angle of the incoming beam
as shown in Fig. 3. As discussed at the end of Section
I1.B, this case could also allow a clear identification of
the magnetic OP, whether Mj.2_,2 or M,,, because of
their different interference properties. Birefringence was
already proposed to explain outgoing elliptical polarized
radiation in Petersen et al.'®, but the geometry of this
SHG experiment had €2 = 0 and so it might not be
directly related to the case of Harter et al.'”.

Also in this paper, we have avoided any real discus-
sion concerning microscopics, but we offer a few remarks
here. First, unlike the Os compound, which is 5d® and an
insulator, the Re compound is 5d? and a metal. Surely,
these two differences have something to do with the dif-
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FIG. 9: Pictorial representation of the Re;-Os-Rez distortion
that would increase the DM interaction (see text).

ferences between the two materials, which should be in-
vestigated by further theoretical studies beyond those
done in Ref. 15. And, in regards to the spin nematic
scenario of Ref. 18, we wish to point out that from the
work of Ref. 15, the atomic spin-orbit coupling is already
large enough to cause a large splitting of the originally
Kramers degenerate Fermi surfaces (i.e., their Figure 8).
So, why an additional splitting of a similar form would
occur from another mechanism is not apparent to us.

We also note that the two magnetic structures pro-
posed in Figs. 4(a) and 4(b) correspond, respectively,
to particular cases of the so-called indirect and direct
magnetic configurations®® induced by the Dzyaloshinsky-
Moriya (DM) interaction in a pyrochlore lattice. This
line of thought is further motivated by the recent study
of the microscopic origin of the DM interaction in d!
pyrochlores®®, where it is shown that it arises from a
bond corresponding, in our case, to Re;-O5-Res in Fig. 5.
Although this bond locally breaks inversion symmetry, it
keeps the mirror symmetry in the Re;-Os-Res plane as-
sociated with time-reversal symmetry (i.e., the m’ in the

I4'm'2 space group). We show this in Fig. 9 in the ac
tetragonal plane. The strength of the DM interaction,
D, is determined by this bond angle (Fig. 2 of Ref. 36).
Its value increases with decreasing «y in Fig. 9 (D being
zero when this angle is 180°). This is exactly the trend
at the T, transition, where, as shown in Fig. 9, in the
tetragonal phase Re; and Res move towards each other,
whereas O5 moves down by go. Thus, the bond angle
decreases to 136.1° (versus a value of 139.6° in the cubic
phase), thereby increasing D37. We remark that this is
the largest Re-O-Re angle change at the transition and
might explain the structural coupling to the magnetic
degrees of freedom in CdyResO7: the angle tends to de-
crease, so as to increase the DM strength D, at the ex-
pense of elastic energy, and a new minimum is found
with a tetragonal distortion. In this picture, the mag-
netic degrees of freedom would be primary, the distor-
tion a secondary consequence. Whether the scenario of
Ref. 36 works as well in 5d? pyrochlores like CdyResO7
is however beyond the scope of the present paper.
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Finally, we would like to emphasize that SHG is a won-
derful method to identify hidden order associated with
novel electronic states and magnetic configurations char-
acterized by higher order, parity-odd, multipoles (e.g.,
magnetic quadrupoles). We remark that such multipoles
are not necessarily associated with orbital currents. In
the future, we expect that a photon energy sweep will
be critical in helping to unravel the nature of the optical
transitions, in particular the electronic states involved
in the transition, so as to provide further insight into
the origin of the observed SHG signals in CdaRe;O7 and
SrolrO4. To this aim, we also believe that further ad-
vances in understanding can be obtained by developing a
full polarization analysis of both linear and circular polar-
ization channels: having access to circular polarization,
for example, would be useful to investigate the origin of
the ® ~ /2 phase shift noted by Petersen et al.!? and
discussed in Appendix B. We remind that linear incom-
ing polarization can be transformed to circular outgoing
polarization by two resonances that are close in energy>2.
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Appendix A: Explicit multipolar expression of SHG
amplitudes

We give here the explicit general expressions for the
dipole and octupole terms of the E1-E1-E1 transitions,
not given in Section II. The two dipoles are (here « is
any of z, y or 2):

1

Og}) = 7363? L& e (X(mcx + Xoayy + Xoczz)/\/g; (Al)
~ 1 o 3 . .
0P =——eé . & - €@ o
V15 V15
! [Xaze + + 3( +
\/ﬁ Xazz T Xayy T Xazz 9 Xzaz Xzza
+ Xyay + Xyya + Xzza + Xzaz)] (A2)

We remind that the dipoles form 71, irreps in Oy sym-
metry.

The octupole terms, in the axial representation of



DMN?5, can be written as:

~ Leoi i i i o i i

Oy(322—y2) = 3 [ey(ez o~ €y€y) T QEIEzﬁy] (A3)
~ Lroiii i i o i i

Op(3y2—22) = 3 [ez(eyey —ee)+ 2eyeyez]

A 2 i/ 0 1 o_i 1 o[ 1 1 i1
Oz(z2—y2) = 3 [l (ege, — €eney) + iez(egjew —ey€r)]

A 2 o_i i o _i 1 o_i 1

Ozyz =1/ 3 [ezewey + €g€,6, + eyexez}

3
A 2 o4 —o T\ i 1 o i % G
O, = g[(56262—36 -e)ez+§ez(5ezez—3e “et)]
1

~ . - 1 o .-
Ogr2 = ——=|[(belel, — €° - €')es, + —€o(bere, — € - €
~ 1 ; - 1 o P
Oyz2 = —=[(belel — € - e')el, + -0 (betel — & - €')]

We remark that we have rewritten this equation in a
slightly different form than in Eq. (A48) of DMN??  in
order to highlight the symmetry of the tensor, that was
less evident in the original form?®. In fact, we remind
that O.s is a shorthand notation for O,.2_3,2), Oy.2
for Om(522,r2) and O~yzz for éy(5227r2)~ Eq. (A3) is how-
ever equal, line by line, to the octupole expression in
Eq. (A48) of DMN.

When the symmetry is cubic, it is more appropriate
to work with the irreps of the octupole under Op: Tiy
and Ty, triplets and the singlet, As,. We give the corre-
sponding x;;x irreducible components in this case.

The T, triplet can be obtained by combining the first
two and the last three terms of Eq. (A3):

2 . - 1 o P
Ogs =1/ T [(5egel, — 3E° - €')el, + 56;(56;6; —3e-€¢)] «

2 Xyyzx + Xyzy + Xzyy Xzzx + Xzxz + Xzzz .
g [Xzzm - 9 - 2 ]

)

2 o0,i o 3\, L oirii ]
Oy = \/B[(&yey —3€” - €')e, + 563’(563/69 — 3 e)]

5 [nyy - B - 9 }

)

~ 2 . - . 1 F— ; =
Ous = [ 1= [(ezel = 327 )el + Jel(Bebel = 38 - )]

2

= [Xzzz -

Xzzz + Xzzx + Xzzx _ Xyyz + Xyzy + Xzyy]
5 .

2 2

(A4)

where Oxs is a shorthand notation for Oz(5r2_3rz), and
oyz for Oy(5y2_3rz).

The T5,, triplet can be obtained by combining the first
three and the last two terms of Eq. (A3):
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. 1 , . , L
Op(y2—22) = T [2€L(e5el, — €2€L) + o ey el — eLer)]
(Xryy — Xzzz T Xyzy + Xyyxr — Xzxz — Xzzm)/\/6§

1
V6

(Xyzz - X'ijw + Xzyz + Xzzy - wam - X:mvy)/\/év

[2€,(€2€2 — €ei) + ey (ezes — €e,)]

Oy(2-s2) =

_ 1 . . _ U
Ox(a2—y2) = —=[26L(eo€l, — €ney) + €2(ehel, — ever,)]

V6

(Xzza — Xzyy * Xzzaz + Xzzz — Xyzy — nyz)/\/6§ (A5)
Finally, the As, singlet corresponds to the fourth term
of Eq. (A3):

~ 2 . . .
_ o_1 1 o_ 1 1 o_ 1 1
Ouy. = \/g[ 2626y T € €€, + €y6m6z] ~

Egs. (Al), (A2), (A4), (A5) and (A6), together with
Eq. (3) in Section II.A, represent the recoupling scheme
in spherical tensors of the SHG amplitude, valid in the
general case for Oy, and its subgroups. In the case of axial
symmetries (e.g., C), the first two terms of Eq. (A4) and
the first two terms of Eq. (A5) should be replaced by the
first two and the last two terms of Eq. (A3).

Appendix B: Calculation of the SHG azimuthal
scans for the allowed susceptibilities of the I4m2
subgroups

The azimuthal scan in Harter et al.'” was performed

around the (111) cubic direction. Here we calculate the
transformation from the coordinate set associated with
the cubic @, b, ¢ axes of the high-temperature Fd3m
space group (called x, y, z, here and in the rest of the pa-
per) and the coordinate set associated with the azimuthal
scan, called 2/, ¢/, 2/, with the 2’ axis along the (111) cu-
bic direction and the z’ axis parallel to the projection of
the ¢ axis in the (111) plane, as shown in Fig. 10. We
have:

(B1)

The opposite transformations can be written as:
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FIG. 10: Projection of the SHG experiment onto the plane
perpendicular to the (111) cubic direction. The 2" axis, paral-
lel to the (111) cubic axis, is out of the plane of the drawing.
Both ¢’ and Harter et al.’s ¢ refer to the angle of the pro-
jection of Harter et al.’s Eg, in the z’-y’ plane. Petersen et
al’s a, refers instead to the incoming in-plane polarization
vector, as E}’: is directed along the (111) cubic direction.

We remark that the usual azimuthal angle ¢’ goes from
7' to 3y’ and has the opposite rotation as the azimuthal
angle chosen by Harter et al.'”: ¢y = —¢’. Petersen et
al.’s angle, a, is related to the 90°-shifted xp —yp frame,
but it refers to the eg component, as shown in Fig. 10.
The incoming and outgoing S and P polarizations in the
Z', 9y, 2’ frame of the azimuthal scan for Harter et al.
experiment are given by:

6"5” = (sin ¢y, cos ¢y,0) = ?g“t;

e = (cos B cos ¢ g, — cos Osin ¢, sin 0);

Ept = (— cos 0 cos ¢y, cos O sin g, sin 6)

(B3)

The angle 6 is the angle between the incident beam
and the (111) direction.

We remind that in Section II and III, tensor labels x;;x
have been given with respect to the cubic crystal axes,
even in the low-temperature I4m2 phase. So, it is neces-
sary to transform incoming and outgoing polarizations,
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associated with the non-zero susceptibilities, in the cubic
frame. We get:

&g =& = (—singu /V6 + cos d /V2,
— sin g /V6 — cos brr /V2,1/2/3sin opr);

En = (—cosfcos prr/V6 — cosfsin g /V/2 + sin6/V/3,
— cos 0 cos ¢ /V6 + cos Osin g /2 + sin0//3,
+1/2/3 cosf cos py + sin6/V/3);

€t = (cos B cos ¢ /6 + cos Osin V2 + sin6/V/3,
cos 0 cos oy /V6 — cos O sin g /v/2 4 sin/+/3,
—\/2/3coscos g + sin6//3) (B4)

Using the definition of the quadrupole and octupole
polarization tensors given in Eqs. (3), (A5) and (A6), we
get the azimuthal contributions for each of the relevant
tensors in the I4m2 subgroups that are reported in Sec-
tion IL.B, Eq. (4).

It is then possible to reproduce the experimental data
of Fig. 4a of Petersen et al.'® with only the second line
of Eq. (4), i.e., the term O,2_,2 associated with the ax-
ial toroidal quadrupole G;2_,2. In fact, the experimental
geometry is in this case limited to both incoming and out-
going polarizations, € and €°, lying in the (111) plane (we
remind that § = 0° in Ref. 19). The two polarizations
are associated, respectively, with the angles a, and s,
both varying from 0 to 7. This is a mixed configuration
between SS and SP. In fact, the outgoing in-plane electric
polarization can have both a component along the incom-
ing electric polarization (which would give an SS config-
uration with zero intensity) and a component perpendic-
ular to the incoming polarization (leading to a signal due
to the SP configuration). The non-zero projection in the
SP channel is proportional to sin |y, — age|. This must
be weighted by the rotation of the incoming polarization
vector from a,, = 0 (parallel to zp) to a,, = 7 (antipar-
allel to —zp), leading to a factor cos a,, from the Omz,yz
term of the second line of Eq. (4) with # = 0. Squaring
the result for the intensity, we get cos? ay, sin®(a,, —aay,),
as reported in Section II.B and in Fig. 2(a), left plot.
In the case of 14,22, we would have gotten instead the
contribution of the first term of Eq. (4), Osz,2_,2, this
time sin oy, (again for @ = 0). So the final result is:
sin? oy, sin? (v, — gy, ), as plotted in Fig. 2(a), right plot.
We remark that a proper description of the experimental
data, as in the original paper'®, cannot be obtained in
this way, and an extra parameter ® has to be added to
describe the effect of birefringence. The value quoted in
Petersen et al. is ® = 1.1e!3". We remark that the effect
of such a parameter is to add a phase shift of roughly
/2 between the outgoing polarizations in the z’ and 3’
directions. This means that the outgoing electric field is
elliptically (and almost circularly) polarized.

In order to reproduce the results of Harter et al.'”, with
0 = 10° (cos® ~ 0.985, sinf ~ 0.174), a second compo-

nent is needed going like sin ¢, either from ngz,rz or



from Omy, as discussed in the text. It is then possible
to reproduce the experimental data by fitting the sec-
ond and the third (or the first) line of Eq. (4) together
with a surface component going like cos(3¢y). This is
shown in Fig. 2(b). In particular, the green dashed lines
in Fig. 2(b) is obtained through Os.2_,2, Omg,yz and the
surface component, whereas the red dashed line is a linear
combination of Oy, Oy2_,2 and the surface component.

However, again, a proper description of the experimen-
tal data cannot be obtained, mainly because of the in-
terference between the cos ¢y and the cos(2¢y) terms
in Ozz,yz. This is visible in the deformed shape of the
theoretical plot in the right frame of Fig. 2(b) for ¢ =0
and ¢y = m. Such a discrepancy might be explained in
terms of a lower effective 6 angle for the incoming beam,
due to refraction, that would reduce the interference with
cos(2¢p) in Og2_,2, as the latter term is weighted by
sin §3°. If this were the case, we might expect to resolve
the issue about whether the primary OP is determined
by Os,2_,2 or by Oy, by exploiting the different phase
of the interference (sin ¢y versus sin(2¢p)) in the two
terms (opposite sign for O~3,y, same sign for Os.2_,2),
as described at the end of Section II.B and shown in
Fig. 3(c).

We conclude with a remark on the tetragonal set of
coordinates for the space group I4m2. They correspond
to a rotation of the cubic coordinates by 45° around the
¢ axis. For such a set, say Z, 9, z, the mirror symmetry
becomes perpendicular to the  or § axes (it was 45° from
the z and y in the cubic frame), and the two-fold rotation
is along the diagonals in the &g plane (it was along = and
y axes in the cubic frame), as can be deduced from Fig. 5.
This implies a label switching of the susceptibilities, in
the same way as used for the electric quadrupole oper-
ator in Section IV: Xuyz + Xyzz = Xsz: — Xggz- Lhis is
valid for any point group. In particular, for point group
42m with the two-fold rotations along x and y, we have
Xzyz = Xyzz- Lhis is what is used throughout the whole
paper (tetragonal space group described with cubic axes)
with the alternative notation 4m2, for reasons explained
at the beginning of Section II.B. Actually, the 4m2 nota-
tion describes the same physical situation when expressed
in the 45°-rotated Ty frame with the two-fold rotations
along the diagonals (we remind that in the ITC nota-
tion, the first symmetry operation after the 4-fold axis
refers to the orthogonal coordinate axis, the second to
the diagonal). In this tetragonal frame, the former re-
lation becomes xzz. = —Xggz- S0, &S Xayz = Xaziz, the
same physical susceptibility appears with two different
labels according to the coordinate choice in the zy (Z7)
plane. So, particular care should be taken in specifying
the coordinate set associated with the susceptibilities.
Appendix C: Spherical harmonics rotation from the

local to the cubic basis

In Section IV, we have determined that reflections
of the kind (0,0,4n + 2) are sensitive to the electric-
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quadrupole operator Q,,, with the labels referring to the
cubic axes. However, the local oxygen-octahedral envi-
ronment of the Re ions in the cubic frame is rotated with
respect to the cubic crystallographic axes (and trigonally
compressed). In order to evaluate the weight of Re 5d or-
bitals contributing to the signal, we should perform the
rotation. For Re; at (000), as shown (projected) in Fig. 5,
the six nearest-neighbor oxygens (48 f Wyckoff label) are
at positions: O1=(-0.0652, 0.125, 0.125), O3=(0.0652, -
0.125, -0.125), O3=(0.125, -0.0652, 0.125), O4=(-0.125,
0.0652, -0.125), O5=(0.125, 0.125, -0.0652), Og=(-0.125,
-0.125, 0.0652)15.

Referring to Fig 5, if we choose to orient the z” axis
from Re; to Og, the z' axis from Re; to O3 and the y”
axis from Re; to Oy, then Euler angles are o = —45°, § =
69.75°, v = 45°. From the general transformation for
spherical tensors (0 and ¢ are the usual spherical angles
referred to the cubic frame, whereas 6” and ¢" refer to
the local frame with z"’-axis along Re;-Og):

Quy(0,9) = —

+ Qy”z” (9//7 ¢//
+ Qz”z” (9//, ¢H
+ Qz”y” (9//’ ¢//

1 2
- sin(QQ)%ﬁ sin ]

[Yo2(0,0) — Yo, _2(0,0)] =

(sin acsin B cos fsiny — cos asin 3 cosy)

Sl

(cosasin B cos B siny + sin asin 3 cos )

[cos(2a) cos 3 cos 7y

1 2
— Qurz_yr2 (0", ¢")[cos(2cx) %S'B siny

+ sin(2«) cos B cos 7]

— Q3zm2_y2(0", gf)”)? sin? (B sin vy

(C1)
we get the contribution for the (0,0,4n + 2) reflection
as determined by the local 5d Re orbitals, in the frame

x//y//ZI/:

Quy(0, ¢) =~ 0.245Q 22 (0", ¢") — 0.539Q3.2 2 (0", ¢")
+0.396Qqy (0", ¢") 4 0.631Q 2 (0", ¢")
—0.307Q . (6", ¢ (C2)

The first line in Eq. (C2) refers to the contribution of
the e, orbitals to the reflection and the last two lines
to the contribution of the ¢y, ones. We remark that the
choice of z”, ¢y and z” orbitals in the local basis is ar-
bitrary, so that the only physical information is the total
tag weight and the total e, weight. Squaring the first two
coefficients and summing them up gives a 35% contribu-
tion from e, orbitals to the reflection and squaring the
last three coefficients and summing them up gives a 65%
contribution from t,4 orbitals, as reported in Section IV.
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