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We study the effect of band anisotropy with discrete rotational symmetry CN (where N ≥ 2) in the
quantum Hall regime of two-dimensional electron systems. We focus on the composite Fermi liquid
(CFL) at half filling of the lowest Landau level. We find that the magnitude of anisotropy transferred
to the composite fermions decreases very rapidly with N . We demonstrate this by performing density
matrix normalization group calculations on the CFL, and comparing the anisotropy of the composite
fermion Fermi contour with that of the (non-interacting) electron Fermi contour at zero magnetic
field. We also show that the effective interaction between the electrons after projecting into a
single Landau level is much less anisotropic than the band, a fact which does not depend on filling
and thus has implications for other quantum Hall states as well. Our results confirm experimental
observations on anisotropic bands with warped Fermi contours, where the only detectable effect on
the composite Fermi contour is an elliptical distortion (N = 2).

I. INTRODUCTION

Two-dimensional electron gases in strong perpendic-
ular magnetic fields exhibit a range of interesting be-
havior which has engaged condensed matter physics for
the past several decades1,2. These phenomena go under
the name of “quantum Hall effect”, an umbrella term
which includes gapped states (both Abelian and non-
Abelian) as well as the gapless composite Fermi liquid,
found when the lowest Landau level is half-filled (filling
factor ν = 1/2). One topic of recent interest is under-
standing such gapless states in the absence of rotational
symmetry. Though much of the research on quantum
Hall systems has made the assumption of rotational sym-
metry, this is not essential to the quantum Hall effect3–6;
consequently, such an understanding should be possible.
Rotational symmetry may be broken theoretically by in-
troducing a metric into the Hamiltonian through either
the dispersion relation or dielectric tensor. This approach
yields an elliptical anisotropy, which has been studied
previously by several groups7–10. In this work we refer
to this as a ‘2-fold’ anisotropy, since ellipses are invariant
under the group of π rotations C2.

The effects of anisotropy can also be probed experi-
mentally, e.g. by straining samples11 or studying elec-
tron systems in semiconductors which have anisotropic
dispersion relations12,13. In high magnetic field at half-
filling of the lowest Landau level, such experiments real-
ize a ‘composite Fermi liquid’1,14: a compressible phase
where composite fermions, consisting of an electron and
two flux quanta, see no effective magnetic field at the
mean-field level, and form a ‘composite Fermi sea’. The
outline of this composite Fermi sea (a composite Fermi
contour) can be detected experimentally and compared
to the zero-field electron Fermi contour.

The dispersion relations of carriers in experiment lead
to zero field Fermi contours that are more complicated
than simple ellipses15. Nonetheless, the composite Fermi
contours observed experimentally do not seem to exhibit
measurable deviations from an ellipse16. Furthermore,

the shape of the composite Fermi contour can also be de-
termined numerically17, and numerical studies of a com-
posite Fermi liquid with elliptical anisotropy are found
to agree with the experimental observations18.

One way to discuss the response of a system to
anisotropy is in the language of the ‘intrinsic metric’3.
The idea is that a quantum Hall state contains a metric,
distinct from that introduced by curved space or that
from an anisotropic Hamiltonian (which could be due to
an anisotropic dispersion relation or dielectric tensor).
The intrinsic metric is dynamical, and measuring it is a
way to quantify the system’s response to externally im-
posed anisotropy. For elliptical anisotropies the intrin-
sic metric appears as a variational parameter in model
wavefunctions7. By finding the value of this parame-
ter which maximizes the overlap between exact states
and model states, one can determine the dependence of
the intrinsic metric on externally applied anisotropy for
gapped states8. For composite Fermi liquid states, the
intrinsic metric gives the shape of the composite Fermi
contour19, and therefore using the techniques described
above, it can be measured both numerically and experi-
mentally.

Another language with which to describe anisotropy
is that of the ‘generalized pseudopotentials’20. The Hal-
dane pseudopotentials21 are a decomposition of any in-
teraction into its action on pairs of electrons with speci-
fied relative angular momentum, and therefore their def-
inition requires rotational symmetry. Generalized pseu-
dopotentials provide a way to achieve a similar decom-
position in the absence of rotational symmetry.

Our goal in this work is to better understand the re-
sponse of a quantum Hall system to the presence of
band anisotropy beyond the simplest elliptical case. The
anisotropies we will consider have a discrete N -fold rota-
tional symmetry (where N is an even integer), i.e. they
are invariant under CN . This is a generalization of the
elliptical case (obtained for N = 2), which has been the
focus of most of the previous work on anisotropy in quan-
tum Hall states. One exception, in which bands with C4

symmetry are considered, is Ref. 22.
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There are generally two ways to introduce anisotropy
in a quantum Hall system: either via the one-electron
dispersion, or via the electron-electron interaction. In
the case of elliptical (N = 2) anisotropy, the two ap-
proaches are equivalent, since a linear coordinate trans-
formation can move the anisotropy between the band
mass tensor and the dielectric tensor. For more com-
plicated anisotropies no linear transformation can ac-
complish this, and thus band anisotropy and interaction
anisotropy are not identical.

In this work we concentrate on the former, for rea-
sons that will become clear later (though we also con-
sider anisotropic interactions in Section IV). We con-
sider a simple set of dispersions, one for each CN sym-
metry group. Completely general anisotropies such as
those studied in experiments can then be thought of as
arising from a sum of terms with different CN symme-
tries, so the response of the CFs can be broken down into
their response to each individual “harmonic”.

We quantify the anisotropy by αF (the ‘anisotropy pa-
rameter’), which is the ratio of the largest and small-
est Fermi momenta for the system at zero magnetic field
(we choose dispersions such that αF is independent of
the Fermi energy). Elliptical anisotropy of a given αF
can be obtained by introducing the unimodular metric
diag[αF , 1/αF ] into the electron mass. We can then de-
fine αCF , which parameterizes the quantum Hall sys-
tem’s response to applied anisotropy, by writing the in-
trinsic metric as diag[αCF , 1/αCF ]. For the compos-
ite Fermi liquid case, αCF is precisely the ratio of the
largest and smallest Fermi momenta of the composite
Fermi surface. Going beyond the elliptical case, we can
no longer use the language of metrics, but for CFL states
we can still define αCF as the ratio of Fermi momenta.
At present it is not known how to generalize Ref. 7 by
writing a model wavefunction which shows more general
anisotropy, or how to generalize the coordinate trans-
formation of Ref. 20. Therefore comparing the ratio of
Fermi momenta in gapless states is the only available
method to quantitively study the effects of more general
anisotropy.

In Section II we formulate dispersion relations with
N -fold anisotropy and determine the corresponding form
factors. We express the effective interaction between
one-electron orbitals with these form factors in terms
of generalized pseudopotentials. We find that for fixed
αF the strength of the anisotropic pseudopotentials de-
creases rapidly with N . In Section IV we present the re-
sults of a numerical density matrix renormalization group
(DMRG) study with anisotropic dispersion, in particular
we show αCF vs αF for N = 2, 4, and 6. In agreement
with the result for anisotropic pseudopotentials, we find
that the dependence of αCF on αF is sharply reduced as
N is increased. Our results suggest that anisotropies with
N > 2 have a very small effect on quantum Hall systems,
for reasonable values of αF such as those encountered in
experiment.

II. MODEL

We study a system of electrons in two dimensions in
the presence of a perpendicular magnetic field with the
following Hamiltonian:

H =
∑
i

E(~Πi) +Hint, (1)

where ~Π ≡ ~p − e ~A/c is the kinetic momentum for elec-

trons in a magnetic field, E(~Π) is the electron dispersion
and Hint is the interaction between electrons. Unless ex-
plicitly indicated otherwise, for the rest of this work we
take Hint to be the Coulomb interaction. Further, we
study the simplest dispersions that have CN symmetry,
which are homogeneous polynomials23 of degree N in the
kinetic momenta Πx,Πy. The family of such polynomi-
als that are bounded from below (giving rise to a stable
dispersion) can easily be constructed as follows.

Consider the function

Eani(~k) ≡ kN cos(Nθ). (2)

where (k, θ) are polar coordinates in two-dimensional
momentum space. This clearly has the desired CN
symmetry. Moreover, by observing that kN cos(Nθ) =
Re(keiθ)N = Re(kx + iky)N , we see that this is a homo-
geneous polynomial of degree N in kx, ky. The family
of CN -symmetric energy dispersions we consider is then
given by

E(λF ; ~Π) =
E0`

N
0

~N
[
|~Π|N + λFEani(~Π)

]
, (3)

where E0 and `0 are arbitrary units of energy and length,
respectively. Requiring this function to be bounded from
below (so that the Hamiltonian Eq. (1) has a well-defined
ground state) forces −1 < λF < +1.

The zero field electron Fermi contour for the dispersion
in Eq. (3) is given by

kF (θ) =
A

`0

(
1

1 + λF cos(Nθ)

)1/N

(4)

where the dimensionless prefactor in Eq. (4) is A =
(EF /E0)1/N , EF being the Fermi energy. The disper-
sions E(−λF ) and E(λF ) are related by a π/N rotation,
so we can assume λF ≥ 0 without loss of generality.

The anisotropy parameter αF can thus be expressed in
terms of λF :

αF =
kF (π/N)

kF (0)
=

(
1 + λF
1− λF

)1/N

. (5)

While other anisotropic dispersions are possible, the
one we have chosen to study has the advantage of being
homogenous, which makes the shape of the Fermi surface
(and therefore αF ) independent of the Fermi energy, as
is clear from Eq. (4), since EF appears only in the pref-
actor A. We contend that the central result of this work,
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namely the rapid decrease with N of the effect of N -fold
anisotropy of the zero-field Fermi contour on the compos-
ite Fermi contour (CFC), is generic, and not particular
to our form of anisotropic dispersion.

As in the usual isotropic case, the single-particle solu-
tions to Eq. (3) are organized into degenerate ‘Landau
levels’, which we denote with tildes (0̃, 1̃, 2̃ . . . ) to distin-
guish them from the isotropic Landau levels (0, 1, 2 . . . ).
Once we project to the lowest anisotropic Landau level
0̃, electrons interact via the effective potential20:

V (~q) = |F0̃(~q)|2V bare(~q), (6)

where V bare(~q) is the original interaction in momentum
space (e.g. for the Coulomb interaction used in this work
V bare(~q) = 2π/|~q|), and F0̃(~q) is the ‘form factor’ of the
0th anisotropic Landau level which is determined from
the single-particle degenerate ground state of Eq. (3).
The anisotropic form factors can be expressed in terms
of the isotropic ones, which result from using E(k) ∝
|k|2, as follows. In our dispersion Eq. (3), we replace

(`B/~)Πx 7→ (a + a†)/
√

2, (`B/~)Πy 7→ (a − a†)/i
√

2,
in terms of the Landau cyclotron annihilation operator
a. Here `B ≡

√
~/eB is the magnetic length. Then,

expressed in the basis {|n〉 : n ∈ N0} of isotropic Lan-
dau levels, the kinetic energy Hamiltonian becomes a tri-
diagonal matrix (with entries in diagonals 0 and ±N),
whose low-lying energy states can easily be found with
a sparse eigensolver. This provides the coefficients {un}
in the basis expansion |0̃〉 =

∑∞
n=0 un|n〉 , which in turn

give the desired form factor:

F0̃(~q) =
∑
j1,j2

uj1u
∗
j2Fj1,j2(~q) . (7)

The isotropic form factors Fj1,j2(~q) in the above formula
are expressible analytically in terms of generalized La-
guerre polynomials2.

An example of the Landau level mixing coefficients
un as a function of the anisotropy parameter αF and
the rotational symmetry N is given in Figure 1. A few
properties of the mixing are apparent from the figure.
First of all, a CN -symmetric dispersion only mixes Lan-
dau levels whose indices differ by an integer multiple of
N ; in particular, the ground state |0̃〉 is a mixture of
{|0〉, |N〉, |2N〉, . . . }. Secondly, the amplitudes un decay
exponentially at large n, and the decay gets slower for
increasing αF and N . Finally, the leading anisotropic
contribution (n = N) gets weaker for increasing N .

III. ANISOTROPIC PSEUDOPOTENTIALS

It is instructive to express the effective potential
Eq. (6) in terms of the generalized pseudopotentials of
Ref. 20. Such pseudopotentials can be written as V σm,n,
with m,n non-negative integers and σ = ±. The gen-
eralized pseudopotentials with n = 0, σ = + are the
traditional Haldane pseudopotentials, and for isotropic

1.0

0.01|u
n
|

N=2 αF = 2.00

αF = 4.00

αF = 8.00

1.0

0.01|u
n
|

N=4

0 20 40 60 80 100
n

1.0

0.01|u
n
|

N=6

FIG. 1. Landau level mixing coefficients un for the ground
state of the two-, four- and six-fold symmetric dispersion in
a high magnetic field, at several values of the Fermi contour
anisotropy αF . Larger anisotropy leads to a stronger mixing
with higher Landau levels. Only Landau levels with n which
is a multiple of N are involved.

interactions they are the only terms that appear. For
N -fold anisotropy, terms with n ≥ N appear in addition
to n = 0. As in the case of traditional pseudopotentials,
only terms with odd m contribute for fermions.

In this approach, the true anisotropy of the system in a
high magnetic field is best estimated not from the disper-
sion relation in Eq. (3) but from the effective potential in
Eq. (6), whose anisotropy can be quantified by means of
the generalized pseudopotentials. Since they form a com-
plete basis, we can expand Eq. (6) in terms of these pseu-
dopotentials and compare the size of the contributions at
n = 0 (the isotropic part) with those at n > 0. Some
technical comments are in order. The effective interac-
tion Eq. (6) is not normalizable, i.e.

∫
d2q(V (~q))2 = ∞,

due to the q → 0 singularity in the Coulomb potential24.
Luckily this singularity only appears in the m = n = 0
pseudopotential, whereas the only terms which are rel-
evant to the physics of our fermionic system are those
with odd m, n multiple of N , and σ = + (σ = − would
appear if we rotated our coordinates). We thus measure
anisotropy as follows: we compute the coefficients

C+
m,n ≡

∫
d2qV (~q)V +

m,n(~q), (8)

then we compute the total norm of terms at a given n as

χn ≡
√ ∑
m odd

(C+
m,n)2, (9)
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FIG. 2. (a) Relative weight of leading anisotropic pseudopo-
tentials in the effective interaction Eq. (6), as a function of
anisotropy αF , for N = 2, 4 and 6. The quantity χN/χ0

is defined in the main text. (b) Same quantity plotted for
the anisotropic Coulomb interaction defined in Eq. (10). In
both cases the growth with αF is slow (logarithmic or sub-
logarithmic) and the effect decreases quickly for increasing
N .

and finally we normalize it by the norm of the isotropic
part, χ0, computed in the same way. The sum over m
should range over all odd positive integers, but we cut
it off when numerical convergence is achieved (typically
m <∼ 100).

Our results for the leading anisotropic contribution,
χN/χ0, are shown in Figure 2 and reveal that the effect of
a given kinetic energy anisotropy becomes rapidly smaller
for increasing N , i.e. the effective Hamiltonian Eq. (6)
is more robust to higher angular momentum distortions.
Importantly, this statement is true at the Hamiltonian
level, and thus in principle applies to states at all fill-
ings. A practical consequence is that, for gapped states,
anisotropy-driven transitions to states with discrete CN
rotational symmetry (N > 2) are expected to occur only
at very large values of the symmetry-breaking field25, if
at all. For the gapless CFL state at filling ν = 1

2 , the
expectation is that the Fermi contour should be signifi-
cantly stiffer than it is for the elliptical (N = 2) case18,
where αCF ∼ α0.5

F . This expectation is tested numeri-
cally in the next section.

We can also ask what happens when the interac-
tion, rather than the dispersion relation, is anisotropic.
We should point out that this scenario is not as well-
motivated experimentally. The most natural way to en-
gineer an anisotropic interaction with CN -symmetry in a
real system would be to use a cold atomic system com-
posed of ‘molecules’ of positively and negatively charged
atoms with N -fold symmetry. Note that the molecules
cannot be neutral, since in that case they could orient
themselves to have attractive interactions, and since in a
single Landau level there is no kinetic energy they would
form bound states instead of a quantum Hall phase. For
molecules that have net charge, their long ranged inter-
actions will be dominated by the isotropic Coulomb re-
pulsion (which goes as r−1) rather than the anisotropic
N -fold symmetry part (which comes from the multipolar

nature of the molecules and decays as r−(N+1) ). There-
fore such molecules will have only weakly anisotropic in-
teractions. We attempted to make an analog of Fig. 2(a)
for such molecular objects, and found that increasing N
by 2 decreased χN/χ0 by approximately four orders of
magnitude.

Though it is less physically motivated, we can also
study an anistropric interaction by making the following
change to the Coulomb interaction:

1

r
→ 1

r[1 + λ cos(Nθ)]1/N
. (10)

This yields equipotential contours that have the same
shape as the Fermi contours described by Eq. (4). χN/χ0

for such potentials are shown in Fig. 2(b). We see quali-
tatively similar behavior as for anisotropic dispersion re-
lations, with χN/χ0 growing sublinearly with αF and
shrinking as N is increased. Thus we see that the inter-
action anisotropy, for N > 2, is small for physical models,
or qualitatively similar to anisotropic dispersion for less
physically motivated models. Consequently, in the next
Section, we consider only anisotropy arising from the dis-
persion.

IV. DMRG RESULTS

In this section we numerically calculate αCF as a func-
tion of αF for N = 4 and 6. We obtain the ground
state of a system of electrons with dispersion relation
given in Eq. (3) and Coulomb interactions, on an infi-
nite cylinder, using density matrix renormalization group
(DMRG) for a half-filled lowest Landau level. The ap-
plication of DMRG to quantum Hall systems has been
described elsewhere26; the only modification we make
to this procedure is replacing the standard Landau level
form factors with those found in Eq. (7).

Once we have obtained the ground state, we map out
its Fermi contour by locating singularities in the guiding
center structure factor, a method which has been used
successfully on systems with circular and elliptical com-
posite Fermi surfaces17,18. To summarize the method, on
an infinite cylinder the allowed momenta values are con-
tinuous in the x direction but discrete in the y direction
(see Fig. 3). If we measure the guiding center structure
factor S(qx, qy) at fixed qy = 0, there will be a singularity
whenever qx corresponds to the distance between differ-
ent points on the Fermi contour along one of the gray
lines in Fig. 3. By finding all such lines we then estimate
the shape of the Fermi surface.

Examples of the data that we gather with this method
are shown in Figure 4. In the figure we plot the locations
of the observed singularities in polar coordinates, i.e. the
Fermi momentum kF as a function of the angle around
the Fermi contour θ. The resulting data should satisfy
Eq. (4), but with λ replaced by λCF , from which αCF can
be derived using Eq. (5). Each plot aggregates singulari-
ties from different system sizes (three to five distinct val-
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N=2

kF

kCF N=4 N=6

FIG. 3. Fermi contours for the fermions (thick blue) and the composite fermions (thin red), for different values of N , for
the same value of zero-field Fermi contour anisotropy, αF = 4. αCF is obtained from Fig. 5. The green dots correspond to
a circular (isotropic) Fermi contour for reference. The gray lines indicate the accessible momenta on a cylinder of diameter
Ly = 20 magnetic lengths. The guiding center structure factor is singular (when qy = 0) at values of qx for which the gray lines
connect two parts of the composite fermion Fermi contours, and we use this feature to determine αCF .
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FIG. 4. Fermi wavevector kCF as a function of angle θ, for N = 4 (left) and N = 6 (right) and band anisotropy αF = 4
(top) and αF = 1/4 (bottom). Changing αF 7→ 1/αF rotates the dispersion by π/N and thus these values of αF provide a

consistency check for our method. The solid line represents a fit to kCF (θ) = A/(1 + λCF cos(Nθ))1/N [Eq. (4)]. From λCF one
can estimate αCF via Eq. (5). The N = 4 data shows anisotropy, whereas the N = 6 Fermi contour appears circular within
numerical accuracy (i.e. the effect of band anisotropy on the CFs, if present, is too small to be detected).

ues of the cylinder circumference ranging between 13`B
and 21`B) at the same N and αF . The prefactor A in
Eq. (4) for the composite fermions is set by Luttinger’s
theorem. In a purely two-dimensional system, the Fermi
contour would need to enclose an area of π`−2B in mo-
mentum space, and this would set A = 1. At the finite
sizes we can simulate, our requirement is instead that the
sum of the length of all the cuts across the Fermi surface
totals L`−2B /2. A is modified from 1 to satisfy this con-
straint. In practice, we find this deviation is typically of
order 1 to 2%, which can be comparable in magnitude to

the modulation that we seek to measure. Therefore we
rescale each kF by the average of all the kF ’s measured
at that size. This allows a more accurate comparison of
different system sizes.

By fitting the data points at each αCF to Eq. (4), we
can extract the CF Fermi contour anisotropy parameter
αCF as a function of αF , the results of which we show in
Figure 5. We see that the dependence of αCF on αF gets
notably weaker as N is increased. While the results for
N = 2 suggest18 αCF ≈ α0.5

F , in this case we consistently
find αCF to be very close to 1 for N = 4 and 6. In
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FIG. 5. CF Fermi contour anisotropy αCF , extracted from
fits such as those shown in Figure 4, for αF in the range of
1 to 4

√
2, for the four- and six-fold symmetric one-electron

dispersions defined in Eq. (3). Each datapoint is obtained by
combining the estimates obtained at αF and 1/αF , which are
related by a π/N rotation (as in the top and bottom panels
of Figure 4).

particular, the data for N = 4 deviates from a power
law, showing saturation at αCF ' 1.05,27 while the data
for N = 6 is entirely consistent with αCF = 1 within
numerical uncertainty. This is also clear from Fig. 3,
where the CF Fermi contour (thin red line) for N = 6
is not distinguishable from a circle (green dots), whereas
for N = 4 there is, upon close examination, small but
systematic difference. This is not surprising based on
the drastic reduction in the magnitude of the effect when
going from N = 2 to N = 4 and then N = 6.

V. DISCUSSION

We have studied a two-dimensional electron gas at half-
filling of the lowest Landau level, in the case where rota-
tional symmetry is broken due to an anisotropic disper-
sion relation for the electrons. We investigated how the
anisotropy of the zero-field dispersion is transferred to the
composite fermions. In particular we studied anisotropies
with CN symmetry, and found that its effect on the com-
posite Fermi surface decreases rapidly with N . We ar-
rived at this conclusion both by analyzing the effective

interaction using generalized pseudopotentials, and by
performing numerical studies using DMRG to directly
measure the anisotropy of the ground state. This result
is consistent with our recent finding28 that CFs are com-
pletely insensitive to circularly symmetric band deforma-
tions (which can be thought of as the N → ∞ limit of
the present set of models), even when the zero-field Fermi
contour goes from being a circle to an annulus or a set of
disconnected annuli.

Experimental systems with anisotropy would typically
require modeling as a sum of such CN -symmetric dis-
persions. Our results show that reasonable approxima-
tions can be obtained simply by focusing on the smallest
value of N , namely N = 2, corresponding to band mass
anisotropy (elliptical distortion of the Fermi contour).

In the numerical part of this paper (Sections III and
IV) we studied a gapless system, namely the composite
Fermi liquid at half-filling. However our results for the
effective interactions should apply to any quantum Hall
state. They suggest that for all quantum Hall states, the
response to anisotropy drops rapidly with N . It would be
interesting to test this prediction numerically for N > 2.
One barrier to doing this is that the unlike the N = 2
case, for N > 2 we do not know how to define the param-
eter αCF for a gapped quantum Hall state. For N = 2,
in addition to being related to the shape of the compos-
ite Fermi surface, αCF is related to the intrinsic metric,
and can be thought of as a coordinate rescaling which
yields anisotropic model wavefunctions7,8 which can then
be used to probe the anisotropy of a gapped state. An
open question is whether a generalization of such rescal-
ing can be accomplished for N > 2, i.e. whether model
anisotropic wavefunctions with higher-order rotational
symmetry can be defined in a unique way, and how they
would depend on the anisotropy parameter αCF of the
parent composite Fermion state.
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