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Ab initio atomic relaxations often take large numbers of steps and long time to converge, especially
when the initial atomic configurations are far from the local minimum or there are curved and
narrow valleys in the multi-dimensional potentials. An atomic relaxation method based on on-the-
flight force learning and a corresponding new curved line search algorithm is presented to accelerate
this process. Results demonstrate the superior performance of this method for metal clusters when
compared with the conventional conjugate-gradient method.

One major usage of ab initio density functional the-
ory (DFT) in material science simulation is to determine
the ground state atomic configuration for a given system
[1, 2]. Overall, such applications probably take most of
the DFT simulation time. There are two types of ground
structure searching. The first is to find global minimum
among many local minima [3, 4]. This has become an
intensely studied topic in material design projects [5–
9]. Various types of evolutionary algorithms [6–10] or
simulated annealing [11] schemes have been developed,
as well as the minimum hopping methods [5]. The sec-
ond type is the conventional local minimum optimiza-
tion, which is the concern of the current study. The
related calculation is dominated by the conjugated gra-
dient (CG) method [12–14] and the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method [15–17]. Although
these methods guarantee to converge into a local min-
imum, the convergence rate could be agonizingly slow,
e.g. with hundreds of steps, thus a faster method will
be extremely helpful. This local minimum problem also
presents itself in the global minimum search since each
global minimum search step usually deploys one or more
local minimizations [5–9]. One reason for the slow con-
vergence of the local minimization steps is the possible
narrow and curved energy valley leading to the minimum,
which prevents the efficient execution of the conventional
CG or BFGS methods. Imaging a rotation of a molecule
on the surface of a substrate. Such rotation cannot be de-
scribed by a straight line in cartesian coordinates which
is used under CG or BFGS methods. In higher dimen-
sion, the situation can be more complicated, making it
impossible to find the natural degree of freedom (e.g.,
the rotation angle). One such example is a metal cluster
[4, 18, 19] (which will be studied in this paper), where
hundreds of steps might be needed to relax a structure
while there is no obvious natural (or say internal) de-
gree of freedom to speed up the convergence. To over-
come these problems, one needs to do the minimization
steps along guided curved lines following the energy val-
leys. We will call such algorithms the guided curved-line-

search (CLS) algorithms.

The issue is how to find such guided curved lines. In
this work, we will show that such guided curved line can
be provided by model surrogate potentials with their pa-
rameters provided by on-the-flight fitting (OTFF) to the
ab initio atomic forces [20–22]. We will demonstrate the
efficiency of our CLS algorithm on metal clusters. Over-
all, we have found that the CLS method can speed up
the traditional CG method by a factor of 2 to 4 for both
the number of steps and wall clock times, in problems
(Pt, Co, CuAu clusters) with initial configurations far
from minima or with narrowly curved energy valley. CLS
as well as our previous modified pre-conditioned CG al-
gorithms for problems with ill-conditioned Hessian ma-
trix [23], also demonstrated that OTFF can be effectively
used to speed up the atomic relaxations, not just molec-
ular dynamics as it has been usually used [20–22].

As mentioned before, the guided curved line will be
provided by a surrogate potential. One possible option is
to carry out ab initio line minimization along the steep-
est descent line (SDL) of this surrogate potential. We
will use on-the-flight fitting (OTFF) to ensure that the
atomic forces of this surrogate potential at the beginning
of each step equal that of the ab initio forces. When
the system approaching the final minimum point, the
curved line will become straight in the small scale, then
the curved line search will go back to the conventional
straight line search. In practice, we found that the SDL
can be warped with sharp twists in high dimensions. Be-
sides, using SDL will miss the conjugated gradient fea-
ture between different line searches. To overcome these
shortcomings, we will use the surrogate potential con-
jugate gradient descent line (SP-CGDL). To construct
SP-CGDL, the conventional CG formalism is applied to
the initial atomic force direction to yield the CG search
direction. Then a straight line minimum search based on
the surrogate potential is carried out. From the new line
minimum point of the current surrogate function, subse-
quent CG straight lines are carried out. Thus, our SP-
CGDL curved search line is consisted with many straight
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lines segments of the surrogate potential CG path. The
ab initio line minimization will be carried out along this
SP-CGDL on DFT energy landscape. One might worry
that the ab initio energy function along this segmented
line might not be smooth enough to carry out ab initio

line minimization. But in practice, we found that one can
effectively use the Brents algorithm [24] to search for the
ab initio line minimum along this SP-CGDL, and such
line search often finds the minimum at a few segments
down the road along the SP-CGDL. Typically two ab

initio calculations are needed in the Brents algorithm to
search for the minimum along the SP-CGDL [25], much
like the conventional line minimization calculation. After
the ab initio line minimization are done, we call this one
step, and the algorithm will repeat itself (from OTFF to
construction of SP-CGDL, then ab initio line minimiza-
tion). The overall flow chart of this CLS algorithm is
shown in Figure 1. Note, the above procedure maintains
the feature of CG, when close to the minimum.
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FIG. 1. The flow chart of the curved-line-search (CLS) algo-
rithm. OTFF indicates on-the-flight fitting.

We will use metal cluster [4, 18, 19] to demonstrate our
CLS algorithm. The metal cluster potential is intrinsi-
cally high dimensional due to their long range atom-atom
interaction. As a result, it is often difficult to reach their
local minima. The metal cluster is an important subfield
related to catalysts [4, 10, 18]. A lot of works have been
done in searching of the optimal cluster structures, and
the density of local minima in energy [4, 5, 10, 18, 19, 26–

28]. For metallic systems, we found that the N -body
Gupta force field [29] is a very good general potential. It
has been used to model various types of metal clusters.
The potential is a special case of the embedded atom po-
tential [30] based on the second moment approximation
of the tight binding theory and it has the following form:
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where rij represents the distance between the atom i and
j in the cluster. The five groups of parameters Aij , ξij ,
pij , qij , r

0
ij are allowed to vary independently to match

the forces from DFT calculations. We restrict Aij = Aji,
ξij = ξji, pij = pji, qij = qji and r0ij = r0ji, and set
them to zero when the rij is larger than a cut-off distance
to limit the number of the variables (see Supplemental
Material [31]). Parameters are also restricted to vary
within a physically meaningful range.

Because the analytic expression for atomic forces of
this model is a non-linear function of these parameters,
in order to have an accurate force fitting, we have used
a parallel differential evolutional algorithm [10] to glob-
ally minimize the force error. The resulting best solution
is further optimized by a CG local minimization algo-
rithm for these parameters. This approach enable us to
always fit the atomic forces with an error less than 0.005
eV/Å, which is a few times lower than the typical ab
initio minimization stoping criterion. Although the fit-
ting procedure (at the beginning of every ab initio line
minimization step) might sound complicated, its com-
putational cost is negligible, about 5% of the ab initio

computational time.

To show the quality of atomic force fitting, we present
the atomic force error in Figure 2 for a Pt100 cluster
(with 100 Pt atoms). To begin with, we use the Gupta
parameters from Ref. 29, 32, and 33 which have the pa-
rameters for almost all the major metallic elements. The
atomic force error compared to ab initio calculation us-
ing these original parameters without fitting is about 1
eV/Å. After the parameter fitting, they becomes about
10−3 eV/Å. This improvement on the force is at no cost of
degradation of other properties of this potential. For ex-
ample, Figure 2(c),(d) compare the atomic force changes
between the Gupta and DFT results when the atomic
positions have been randomly displaced. The original
Gupta result is already rather good, and it has been im-
proved after force fitting. Such data to some extent shows
the second-order differential information of energy land-
scape.

To demonstrate the speedup of the CLS method, we
first test five random Pt20 clusters [10] with different ini-
tial structures and corresponding different initial energy.
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FIG. 2. (a-b) Deviation of atomic forces for Pt100 between DFT calculations and approximate models: (a) conventional un-fitted
Gupta potential; (b) force-fitted Gupta potential. Their x-axis is DFT force FDFT while y-axis is the deviation |FGupta−FDFT|
(in unit of eV/Å). (c-d) Comparisons of the values of force difference F − F0 between DFT and approximate models: (c)
un-fitted potential; (d) force-fitted potential, where F0 is the force at the atomic structures (R0) used for force fitting and F is
the one at randomly displaced structures (R) around R0. Their x-axis is DFT force difference (F − F0)DFT while y-axis is the
approximate one (in unit of eV/Å). Color bar for (c) and (d) indicates the distance (in unit of Å) of R from R0. Note that the
plot contains several different groups of R0.

The convergence results are shown in Figure 3 in com-
parison with the conventional CG results. We see that,
the initial energy is more than 10 eV higher than their
local minima energy, indicating these initial structures
are far from stable minima. Such situation is very com-
mon in structure searches. Their CG relaxations need
more than 200 ab initio force evaluations. However, by
using the new CLS algorithm, a factor of 2-4 speedup
are achieved for most cases. Especially, a factor of 3-6
speedup are achieved in the initial relaxation steps. Note,
the wall clock time of other operations is much less than
the one of DFT force evaluations. In our test, one force
fitting costs about 5% time of one DFT force evaluation,
and all the other lines of codes including construction
of SP-CGDL cost less than 1% since these operations are
performed on classical force field. Each ab initio line min-
imization usually calls about two DFT calculations, thus
the total computational time in CLS is about 3% higher
than the one in CG at the same number of DFT cal-
culations. This demonstrate that CLS can speedup the
relaxation for both the number of steps and wall clock
time.

In actual work, one often uses Gupta to pre-relax the
initial atomic cluster to a Gupta local minimum, then
uses conventional ab initio CG relaxation to further re-
lax the total energy of the system. We will call such
scheme pre-CG. One can also start with the Gupta re-
laxed minimum, then use our CLS method, we will call
such method pre-CLS. Their results for these Pt20 clus-
ters and a bigger-size Pt100 cluster are shown in Fig-
ure 4. We can see that, due to the good approximation
of Gupta to DFT energy, the initial energy after pre-
relaxation is closer to the local minima, compared to the
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FIG. 3. The relaxation process of five random Pt20 clusters
with different initial structures and corresponding different
initial energies by the CLS and CG method, respectively. The
x-axis is the number (N) of ab initio force evaluation while
the y-axis is E − Ef (in unit of eV), where E is the energy
of the current step and Ef is the energy of the finally sought
structure.

one of Figure 3. Such pre-relaxation does provide a good
initial speedup for ab initio energy minimization, e.g.,
the E − Ef converges faster to 10−1 level. However, the
subsequent relaxation is as slow as the one without pre-
relaxation. This is due to the issue mentioned earlier.
There are no straight lines connecting these configura-
tions to their local minima. The relaxation path could
be twisted or curved in the energy landscape, making the
CG method very inefficient. We see that, by using CLS
method, the relaxation is much faster, and pre-CLS out
performs pre-CG by a factor of 2 to 4. For the global
search problems, or to search for local minima density,
one issue is that the pre-CG or pre-CLS method tends to
mislead the system to the same local minimum near the
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FIG. 4. The mean energy evolution in the ab initio relaxation
of five pre-relaxed Pt20 clusters, and the relaxation of Pt100
cluster. The x-axis is the number (N) of ab initio force eval-
uation while the y-axis is E − Ef (in unit of eV), where E

is the energy of the current step and Ef is the energy of the
finally sought structure.

Gupta potential basins for different initial configurations.
This reduces the diversity of the global search and might
miss the true DFT global minimum. On the other hand,
the CLS method without pre-relaxation is exempted from
such a problem. Since the cost of CLS is only modestly
increased compared to pre-CLS, we suggest CLS in both
local relaxation and global search problems.

Finally, we performed CLS relation on other types of
atomic clusters. The results for Co120 and Cu20Au18 al-
loy clusters are shown in Figure 5. The initial geometries
for the two clusters are from the global minimum of con-
ventional un-fitted Gupta force field. We can see that a
factor of 2 to 4 speedup is achieved, demonstrating the
generality of CLS algorithm for metallic cluster systems.
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FIG. 5. The relaxation process of Co120 and Cu20Au18 clus-
ters with the initial geometry from the global minimum of
conventional un-fitted Gupta force field. The x-axis is the
number (N) of ab initio force evaluation while the y-axis is
E − Ef (in unit of eV), where E is the energy of the current
step and Ef is the energy of the finally sought structure.

We have also considered another two methods, i.e.,
BFGS [15, 34] and Fast Inertial Relaxation Engine
(FIRE) [35], which have been used in the acceleration
of atomic relaxations. BFGS updates the Hessian ma-
trix as a pre-condition in the quasi-Newton optimization.
FIRE makes use of inertia of molecular dynamics in the

Newton optimization. We have found that both BFGS
and FIRE are not significantly better than CG in the re-
laxations of Pt100, Co120 and Cu20Au18 clusters and they
are both inferior when compared to our CLS method (see
Supplemental Material [36]).

In summary, we have presented a curved line search
(CLS) algorithm to speed up ab initio atomic structure
relaxation. This CLS uses a classical potential to pro-
vide the curved line on which ab initio line minimization
is carried out. The parameters of this classical poten-
tial are fitted on-the-flight at every step to the ab ini-

tio atomic forces. We tested this approach using metal
clusters with Gupta force field as the classical potential
and we expect similar approaches can be applied to other
systems. Compared to the traditional methods, we found
CLS can speed up by a factor of 2-4. The CLS method is
expected to be useful for general optimization problems.
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[20] G. Csányi, T. Albaret, M. C. Payne, and A. De Vita,

Phys. Rev. Lett. 93, 175503 (2004).
[21] Y. Lee and G. S. Hwang, Phys. Rev. B 85, 125204 (2012).
[22] X. Zhang, Q. Peng, and G. Lu, Phys. Rev. B 82, 134120

(2010).
[23] Z. Chen, J. Li, S. Li, and L. Wang, Phys. Rev. B 89,

144110 (2014).
[24] R. P. Brent, Algorithms for minimization without deriva-

tives (Courier Dover Publications, 2013).
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