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Abstract  
In ion irradiation processes, electronic stopping power describes the energy transfer rate from the irradiating ion to the 
target material’s electrons.  Due to the scarcity and significant uncertainties in experimental electronic stopping power data 
for materials beyond simple solids, there has been growing interest in the use of first-principles theory for calculating 
electronic stopping power.  In recent years, advances in high-performance computing have opened the door to fully first-
principles non-equilibrium simulations based on real-time time-dependent density functional theory (RT-TDDFT).  While 
it has been demonstrated that the RT-TDDFT approach is capable of predicting electronic stopping power for a wide range 
of condensed matter systems, there has yet to be an exhaustive examination of the physical and numerical approximations 
involved and their effects on the calculated stopping power. We discuss the results of such a study for crystalline silicon 
with protons as irradiating ions. We examine the influences of key approximations in RT-TDDFT non-equilibrium 
simulations on the calculated electronic stopping power, including approximations related to basis sets, finite size effects, 
exchange-correlation approximation, pseudopotentials, and more.  Finally, we propose a simple and efficient correction 
scheme to account for the contribution from core electron excitations to the stopping power, as it was found to be 
significant for large proton velocities. 
 
 



I. INTRODUCTION 
 

When an irradiating ion penetrates condensed matter, 
the ion transfers its kinetic energy via collisions with the 
nuclei and electrons in the target material.  The stopping 
power for an ion penetrating a material is the key quantity 
used to describe this energy transfer [1] Stopping power is 
defined as the kinetic energy loss per unit distance of 
projectile ion displacement. For irradiating ions with high 
kinetic energies (> ~10 keV/nucleon), collisions with nuclei 
in the material are negligible. Instead, the ion’s kinetic 
energy is transferred almost entirely via inelastic collisions 
to the electrons in the material.  This phenomenon is known 
as electronic stopping, and its associated stopping power is 
referred to as electronic stopping power.  

Electronic stopping power has been the focus of 
scientific research for decades due to its relevance in 
technological areas as wide-ranging as nuclear power [4,5], 
ion beam cancer therapy [7,8], aerospace materials [9,10],  
3D ion beam lithography [11], and more.  While 
quantifying electronic stopping power has become 
increasingly important in technology, experimental studies 
to determine electronic stopping power remain costly and 
complicated due to the need for advanced particle 
accelerators. At the same time, ever since the notion of 
electronic stopping was conceived, a wide range of 
analytical and simulation methods have been developed in 
an attempt to predict electronic stopping power and to 
provide deeper understanding into the mechanisms 
involved. Early approximated analytical models based on 
classical Coulomb scattering [12-14] were followed later by 
Bethe’s quantum-mechanical perturbation approach [15] 
and Lindhard’s calculations within the dielectric formalism 
based on the free-electron gas [16,17]. The formulae 
developed by Bethe and Lindhard both fall within the linear 
response formalism, and these approaches, with 
refinements and added corrections, remain some of the 
most widely used methods today.  In the last 20 years, first-
principles electronic structure theory has become available 
for calculating the microscopic dielectric response matrix in 
the context of linear response theory [18]. More recent 
work in this area has employed time-dependent density 
functional theory (TDDFT) formalism [19] in calculating 
the dielectric matrix, going beyond the random phase 
approximation in this context.  

In more recent years, advancements in high-
performance computing have opened up the possibility of 
studying electronic stopping by simulating the non-
equilibrium response of electrons using first-principles 
simulations based on TDDFT. The great potential of this 
approach was demonstrated in work by Pruneda et al. [20] 
and Hatcher et al. [21]. Using the real-time propagation 
approach to TDDFT (RT-TDDFT) simulations [22], in 
which time-dependent Kohn-Sham equations are integrated 
in time, the non-equilibrium response of the electronic 
system to the projectile ion can be simulated. In the last 10 

years, various aspects of the RT-TDDFT non-equilibrium 
simulation approach have advanced, and the approach has 
become increasingly popular and successful in studying 
electronic stopping in metals [23-27], semiconductors 
[6,28,29], and insulators [27,30], for a variety of projectile 
ions and a variety of condensed matter systems, including 
liquids [30] and two-dimensional materials [31-34].  At the 
same time, there have been some indications that various 
physical and numerical approximations in these RT-
TDDFT simulations could influence the calculated 
electronic stopping power curves. However, accurate 
experimental measurements of stopping power are rare for 
most materials, and discrepancies between RT-TDDFT and 
experimental results are hard to quantify.  

Within the framework of linear response theory, where 
TDDFT (i.e. TD-LDA) was used to obtained the dielectric 
matrix, recent work by Shukri et al. [6,35] discussed that 
obtaining a converged result is challenging and requires 
extrapolation schemes, even for relatively simple materials 
like silicon. In light of these observations and the recent 
work by Shukri et al. [6,35], we reexamine the RT-TDDFT 
approach for calculating the electronic stopping power by 
considering crystalline silicon with a proton as the 
projectile ion, for which ample experimental results exist. 
In this article, we first briefly describe the computational 
methodology by which electronic stopping power is 
calculated from RT-TDDFT simulations. We then discuss 
the effects of a range of numerical and physical 
approximations on calculating the stopping power, 
identifying the prominent role of the pseudopotential 
approximation, which not only removes core electrons in 
calculations but also modifies the behavior of valence 
electron wavefunctions near the nuclei. We then describe 
and demonstrate a computationally feasible correction 
scheme based on single-atom collision, all-electron, RT-
TDDFT simulations.  

 
 

II. METHOD 
 

A. Calculating Electronic Stopping Power from RT-
TDDFT 

 
We use the real-time propagation approach of TDDFT 

(RT-TDDFT) for obtaining electronic stopping power. In 
all simulations, the time-dependent Kohn-Sham (TDKS) 
equations are integrated for a system in which a classical, 
energetic proton with constant velocity travels through the 
material of interest (diamond cubic silicon), giving rise to a 
time-dependent external potential acting on the electronic 
system. A detailed description of the particular RT-TDDFT 
implementation used in this study can be found in Ref. 
[23].The average electronic stopping power can be obtained 
from the results of an RT-TDDFT simulation in a few 
different ways in practice.  Electronic stopping power is 
defined as the rate of energy transfer from the projectile ion 



to the electronic system per unit distance of projectile 
travel. Thus, the most intuitive approach to calculate 
stopping power is to determine the slope of total electronic 
energy versus time given from the RT-TDDFT simulations.  
This approach requires a choice of linear regression and/or 
spline fitting, and it can influence the calculated stopping 
power, especially for higher projectile ion velocities. 
Alternatively, it can be shown that the non-adiabatic (NA) 
force on the projectile is equivalent to the instantaneous 
electronic stopping power [24]. Thus, for crystalline 
systems like diamond cubic silicon, we can average the NA 
force on the projectile over a distance that is an integer 
multiple of the periodicity of the crystal to precisely 
calculate the electronic stopping power for a given 
projectile path and velocity (see Supplemental Material at 
[URL] for details on the calculation of stopping power from 
NA force). In this work, we use the latter approach based 
on the NA force because of its unambiguity for crystalline 
systems like silicon. 

 
 

B. Computational details 
 
We first discuss the observed problem of 

underestimating the electronic stopping power at high 
proton velocities via the RT-TDDFT simulations in which 
the ground–state DFT calculations are sufficiently 
converged. In our plane-wave-pseudopotential (PW-PP) 
RT-TDDFT implementation in the Qb@ll/Qbox code [36], 
the time-dependent Kohn-Sham (TDKS) equations are 
propagated as the proton penetrates through silicon. We 
consider the case of the diamond crystalline phase of 
silicon because there exists a large amount of experimental 
data. Also, various approximations, such as the semi-local 
exchange-correlation (XC) potential, in DFT are 
sufficiently accurate for ground-state properties of silicon.  
We use the Perdew-Burke-Ernzerhof (PBE) XC functional 
[37], and we use the adiabatic approximation for its time-
dependence [38,39].  

Norm-conserving pseudopotentials [40] of the 
Hamann-Schluter-Chiang-Vanderbilt type [41] were used 
for all atoms, including the projectile proton. Within this 
pseudopotential (PP) framework, the 4 valence electrons of 
each silicon target atom were treated explicitly. The PP 
cutoff radii of the 3s and 3p electrons of Silicon are 1.1 a.u. 
and 1.3 a.u., respectively. The PP cutoff radius for the 1s 
orbital of the Hydrogen projectile atom is 1.0 a.u. We used 
a large cubic simulation supercell of 216 atoms with the 
experimental lattice constant of 10.26 Bohr. Prior to 
performing the RT-TDDFT simulations, the ground state 
DFT calculation on the crystalline silicon supercell is 
carried out using the aforementioned computational 
parameters. It should be noted that no projectile ion is 
included in this ground-state DFT calculation because the 
purpose here is to acquire the unperturbed silicon electronic 
density to be used as the initial condition for the RT-

TDDFT simulations. In the RT-TDDFT simulations, the 
projectile ion, a proton, is treated classically on an equal 
footing with all of the other ions in the simulation cell, with 
the exception that it moves at a constant velocity through 
the simulation cell, all other atoms being held fixed.  We 
used only the gamma point for Brillouin zone sampling. 
The planewave (PW) cutoff is 50 Ryd.  

This “standard” computational procedure is based on 
parameters that are sufficiently converged at the ground 
state DFT level for most ground-state properties, including 
the band gap (0.60 eV). The TDKS equations are integrated 
using an enforced time reversal symmetry (ETRS) 
propagator [42], with an integration time step of 0.5 
attoseconds. The convergence for the stopping power 
calculation was confirmed by comparing to a smaller time 
step of 0.25 attoseconds (see Supplemental Material at 
[URL] for comparison of stopping power calculated with 
different time steps).  

Instead of converging a classical ensemble average of  
projectile paths, the so-called “centroid path 
approximation” for the projectile path as demonstrated for 
2D materials in [33] and validated for 3D materials in [28] 
was used in order to reduce the very large computational 

FIG. 1. Electronic stopping power as a function of the
velocity of a proton projectile in silicon. The solid black
curve represents the empirical PSTAR model [2]. The sets
of letters correspond to different experimental data sets that
can be found in Ref. [3].  The green curves represent results
from the dielectric response formalism using LR-TDDFT
for calculating the dielectric matrix [6] with the core
electron correction (dark green) and without (light green).
The solid blue curve corresponds to the values we obtained
by calculating using RT-TDDFT with the “standard”
parameters and approximations described in the Methods
section.  The error bars represent standard deviations of the
mean stopping power along the given proton trajectory,
which is calculated as an average of the instantaneous force
on the projectile proton. 
 



cost of RT-TDDFT simulations. As shown in our earlier 
work for the electronic stopping power of silicon carbide 
[28], the centroid path approximation does not introduce 
noticeable errors: The stopping power curves agree well 
between the stopping power calculations with and without 
the approximation for the computational framework 
described above.  

In Figure 1, the stopping power results from the RT-
TDDFT simulations are shown in comparison to the 
PSTAR empirical model [2], a wide array of 
experimentally reported values from the IAEA Nuclear 
Data Services database [3], and the LR-TDDFT results by 
Shukri, et al [6]. Exact details of each experimental data set 
can be found in Ref. [3] and the references therein. This 
figure and all of the following figures are presented in 
atomic units. The calculated RT-TDDFT values are in good 
agreement with the PSTAR model in the velocity regime at 
and below the Bragg peak (v ≤ ~1.5 a.u.).  However, 
continuing into the high velocity regime, the RT-TDDFT 
simulation results significantly underestimate the electronic 
stopping power (52.5% difference at v = 6.0 a.u.) We can 
be confident that this underestimation does not indicate 
inaccuracy of the PSTAR model since all reported 
experimental data agree among them, showing a higher 
stopping power than our RT-TDDFT result.  We note here 
that this underestimation is not unique to the target material 
of crystalline silicon, nor is it unique to the proton 
projectile ion. Previous RT-TDDFT studies indeed have 
shown similar degrees of disagreement with experiment for 
electronic stopping power for high-velocity protons and α 
particles in water [30], aluminum [24], and silicon carbide 
[28]. We also note that the relativistic Bethe formula [43] 
shows that taking the relativistic effect into account 
changes the stopping power only by +0.005% at v = 6.0 a.u. 
since the proton velocity is still only a small fraction of the 
speed of light even at such a large velocity. In Figure 1, we 
also include the corresponding stopping power curve from 

the linear response theory calculations in which the 
dielectric matrix was obtained from TDDFT [6]. While this 
result by Shukri et al. also showed the underestimation at 
high velocities, accounting for the semi-core electrons (2s 
and 2p electrons of silicon atoms) using an extrapolation 
scheme largely corrected the underestimation. Motivated by 
this work using linear response theory, we systematically 
revisit our non-equilibrium dynamics simulation approach 
based on RT-TDDFT and examine computational 
parameters and physical approximations in the following 
sections.  

 
IV. RESULTS AND DISCUSSION 

 
A. Convergence of computational parameters 

 
1. Basis set 

       In order to examine the influence of the basis set in the 
plane-wave expansion, we used a higher plane-wave (PW) 
kinetic energy cutoff of 80 Rydberg, which is much larger 
than that which is required for converging ground-state 
properties, including the band structure. Due to the 
increased computational cost, we examined stopping power 
for only three velocities: v = 6.0 a.u. (high velocity), v = 3.0 
a.u. (mid-range velocity)  and v = 1.5 a.u. (near the Bragg 
peak).  As can be seen in Figure 2, the 80 Rydberg 
simulation result shows no significant difference from the 
50 Rydberg simulation (+2.5%) for v = 6.0 a.u.  For v = 1.5 
a.u., there is a slightly larger difference (+4.5%). The 
underestimation of electronic stopping power at high 
velocities cannot be attributed to incompleteness of the 
basis size.   
 

2. Brillouin zone sampling 
Another possible contributor to the stopping power 

high velocity underestimation problem is insufficient 
sampling of the Brillouin zone with the single Gamma 

FIG. 2. Electronic stopping power as a function of the velocity of a proton projectile in silicon. The black curve represents
the empirically fitted PSTAR model [2]. Convergence of the electronic stopping power curves with respect to various
parameters are shown: (left) Calculations with 80 Rydberg planewave kinetic cutoff energy and 50 Rydberg planewave
kinetic cutoff energy.  (center)  Calculations with 4 k-points in the Brillouin zone and only the gamma point in the Brillouin
zone.  (right) Calculations with  at 512-atom supercell and a 216-atom supercell. 



point approximation. We performed RT-TDDFT 
simulations for three proton velocities (v = 1.5 a.u., v = 3.0 
a.u., and v = 6.0 a.u.) using 4 Monkhorst-Pack k-points. As 
can be seen in Figure 2, increasing the k-point sampling in 
the Brillouin zone has no significant effect on the calculated 
electronic stopping power values. Considering that a large 
supercell containing 216 silicon atoms is used, it is not 
surprising that the gamma point is sufficient to sample the 
Brillouin zone. 
 

3. Finite-size effect 
Finite size errors could possibly be responsible for the 

stopping power underestimation at high velocities. While 
the convergence of the calculation with respect to the k-
point sampling in the Brillouin zone is not a problem as 
discussed above, non-physical interactions among periodic 
images need to be examined in the calculations with the  
periodic boundary conditions (PBC). Note that a constant 
shift in the total energy as in the Makov-Payne correction 
[44] does not change the stopping power values. Figure 2 
shows the stopping power using a large 512-atom supercell 
with 2048 electrons. As can be seen, finite size errors are 
negligible, and they do not explain the underestimation of 
our electronic stopping power curve for the high velocity 
region.   

 
4. Exchange-correlation approximation 

In the “standard” simulations, we employed the non-
empirical generalized gradient approximation (GGA) 

functional, PBE [37], for our studies because of its 
balanced accuracy and efficiency, and the GGA XC 
approximation is particularly convenient for planewave 
(PW) implementations. At the same time, there exist other 
more advanced XC approximations such as PBE0 [45]. 
However, the computational cost of hybrid XC functionals 

FIG. 3. Electronic stopping power as a function of the
velocity of a proton projectile in Si. The solid black curve
represents the empirical PSTAR model [2]. The colored
curves correspond to the values we obtained by calculati
using mixed Gaussian planewave (GPW) RT-TDDFT
using the PBE XC functional (dashed blue) and the PBE0
hybrid XC functional (red).  The error bars represent
standard deviations of the mean stopping power along the
given proton trajectory, which is calculated as an average
of the instantaneous force on the projectile proton. 
 

FIG. 4. Electronic stopping power as a function of the
velocity of a proton projectile in Si. The solid black curve
represents the empirical PSTAR model [2]. The colored
curves correspond to the values we obtained by calculating
using mixed Gaussian planewave (GPW) RT-TDDFT in
which core electrons are treated using pseudopotentials
(blue) and treated explicitly using the all-electron approach
(green).  The error bars represent standard deviations of the
mean stopping power along the given proton trajectory,
which is calculated as an average of the instantaneous
force on the projectile proton. 

FIG. 5. Population analysis based on projections of the
time-dependent Kohn Sham (TDKS) states onto the ground
eigenstates of the silicon system. Percentages of population
loss relative to the initial, fully occupied condition for the
3s and 3p atomic orbitals (red), the 2p orbitals (light blue),
the 2s atomic orbitals (blue), and the 1s atomic orbitals
(black) of the silicon atoms.   



like PBE0 is prohibitively large in PW-PP implementations 
because of the calculation of the Hartree-Fock (HF) 
integral. The majority of approximations/techniques that 
are used in the PW-PP framework for hybrid XC 
functionals do not translate well to an RT-TDDFT 
implementation. For this reason, we used the RT-TDDFT 
implementation in the CP2K code based on the mixed 
Gaussian and planewave approach (GPW) [46] to examine 
the influence of the XC approximation. In this approach, 
KS wavefunctions are represented using Gaussian 
functions, while the electron density is represented using 
plane-waves (i.e. GPW/GAPW formalism). We used the 
ETRS integrator with a time step of 0.5 attoseconds. The 
DZV3P Gaussian basis set was used for the KS 
wavefunctions, with Goedecker-Teter-Hutter (GTH) 
pseudopotentials for core electrons [47]. The electron 
density is represented in planewaves with an energy cutoff 
of 250 Ryd. The HF exchange in PBE0 was computed 
using the auxiliary density matrix method with the cFIT3 
auxiliary basis set [48]. Our test with different basis sets 
show that DZV3P basis set is sufficiently large for 
describing the electronic stopping for this material (see 
Supplemental Material at [URL] for basis set convergence 
data).  

We compare the RT-TDDFT electronic stopping power 
using the PBE and PBE0 functionals as implemented in the 
Libxc library [49]. Because of the high computational cost 
of the PBE0 approximation, we performed simulations only 
for a few selected proton velocities of interest: v=0.5, 1.5, 
3.0, and 6.0 a.u. Figure 3 shows no significant difference 
between the PBE and the PBE0 approximations, especially 
at the high velocities.  While the electronic stopping power 
at these velocities show no significant difference between 

the PBE and PBE0 XC functionals, the same may not be 
true for the threshold velocity at which the stopping power 
diminishes at low kinetic energies: This is due to the fact 
that the threshold velocity is directly related to the energy 
gap of the material [29], which can be quite sensitive to the 
choice of XC approximation. 
 

5. Pseudopotential approximation 
Using linear-response TDDFT and the random-phase 

approximation (RPA) to calculate the dielectric matrix 
within the framework of Lindhard’s linear response model, 
Shukri, et al. reported the electronic stopping for silicon [6]. 
The linear response approach is generally considered to be 
reliable for large velocities. However, Shukri, et al. showed 
that the stopping power was significantly underestimated at 
large velocities, similar to our predictions based on RT-
TDDFT. In this case of underestimation, however, semi-
core electrons were not taken into account when calculating 
the electronic stopping power (see Figure 1). In the same 
work, Shukri, et al. proposed an extrapolation scheme to 
obtain the stopping power curve because converging 
numerical parameters such as the number of empty bands, 
number of k-points, and cutoff energy is currently 
challenging, especially for semi-core electrons (2s and 2p 
electrons of silicon atoms). Using the extrapolation scheme, 
and incorporating semi-core electrons, they showed that the 
electronic stopping power increased by 41% at v = 4.0 a.u. 
(see Figure 1). They did not consider the contribution to the 
stopping power from 1s electron in silicon atoms.  

Within our “standard” RT-TDDFT simulations in the 
PW-PP framework, there are two notable deficiencies. One 
deficiency is that core electrons (i.e. 1s, 2s, and 2p electrons 
of silicon atoms) are not treated explicitly in the 

FIG. 6. Total energy as a function of projectile proton (v=6.0 a.u.) displacement in the simulation cell acquired from the RT-
TDDFT simulations using the mixed GPW/GAPW approaches.  In each plot, the results from three different treatments for
the core (1s, 2s, 2p) electrons are shown: The black curve represents the simulation results in which the core electrons are
represented by pseudopotentials (PP).  The blue curve represents the all-electron (AE) results from using the GAPW method
in which the core electrons are treated explicitly and allowed to be excited.  The red curve represents the frozen-core (FC)
results in which the AE wavefunctions are used but the core electrons are not propagated in time.  (left) The results from the
simulations for the centroid path trajectory. (right) The results from the simulations for a path parallel to the centroid path
trajectory but 33% closer to the channel of target Si atoms. 



simulations, and therefore the calculated stopping power 
does not take into account any electronic excitations from 
core electrons. Second, using norm-conserving PPs, the 
wavefunctions for valence electrons do not behave properly 
within the PP cutoff radius. The total volume taken up by 
the PP volume amounts only to 5% (rcut=1.1 a.u.) ~ 7% 
(rcut=1.3 a.u.) of the total simulation cell volume, but the 
excitations from the core electrons likely become more 
dominant in electronic stopping at large velocities and 
during close ion-atom collisions. Unfortunately, it is 
prohibitively computationally expensive to represent all 
core electrons using plane-waves due to the fact that cutoff 
energies of hundreds of Rydbergs are required for 
convergence. Thus, we again used the RT-TDDFT 
simulations based on the Gaussian and augmented plane-
wave method (GAPW) as implemented in the CP2K code 
for all-electron (AE) calculations to examine this aspect 
[46,47]. For AE calculations, the 6-311G**3P basis set was 
used, in which the 6-311G** basis set [50] was combined 
with 3 additional polarization basis functions taken from 
the DZV3P basis sets. Our test shows that DZV3P and the 
6-311 G**3P basis sets yield the same stopping power (see 
Supplemental Material at [URL] for basis set convergence 
data). With the AE simulations, the integration step size 
needed to be reduced by approximately 50% for numerical 
stability for the time integration. F 

Figure 4 shows the comparison between the all-
electron (AE) simulation results and the pseudopotential 
(PP) simulation results. At the high velocity of v = 6.0 a.u., 
there is a noticeable difference between the AE and PP 
simulation results. The stopping power is approximately 
30% higher with the AE calculation compared to the PP 
calculation. In order to analyze the contribution from core 
electrons to the underlying electronic excitations, we 
projected the time-dependent Kohn-Sham (TDKS) 
wavefunctions onto the eigenstates of the system (see 
Supplemental Material at [URL] for more information on 
the TDKS projections results). The eigenstates that derived 
from 1s, 2s, and 2p orbitals of silicon atoms are at –1776 
eV, -134 eV, -91 eV below the valence band maximum 
(VBM), which is mainly composed of the 3s and 3p orbitals 
of silicon atoms. The projection of the TDKS 
wavefunctions onto these eigenfunctions shows that the 
occupations of the valence band (VB) eigenstates decrease 
due to the electronic excitations that take place in the 
electronic stopping process, as expected. The time-
dependent changes of the occupation for the eigenstates for 
the 1s, 2s, 2p, and valence electrons at the proton velocity 
of 6 a.u. are represented in Figure 5. For the 1s state, the 
occupation decreases only slightly. For the 2s, and 2p 
states, the decreasing occupations are more substantial. 
Using the KS eigen-energies and the changes in the 
occupations, we estimate the extent to which the electronic 
stopping power is due to the single-particle excitations of 
these core electrons. The relative contributions of 1s, 2s, 
and 2p excitations to the stopping power are estimated to be 

approximately 0.3%, 1.5%, and 7.9% of the contribution 
from valence electron excitations. The result clearly shows 
that the PP approximation can be problematic in 
simulations of electronic stopping at high velocities. 
Importantly, this finding also calls for a reexamination of 
the validity of the centroid path approximation [28,33] for 
the large velocities because along this path, the proton 
projectile does not come near the target silicon atoms.   

 
B. Analysis of core electron effects 

 
      In addition to the AE and PP calculations, we also 
performed AE simulations in which the core electrons are 
not propagated in time. In these “frozen core (FC)” 
simulations, core electrons are restricted but the valence-
electron wavefunctions correctly behave near the nuclei 
(except at the cusp). Figure 6 shows the comparison among 
the all-electron (AE) calculation, the frozen-core (FC) 
calculation, and the pseudopotential (PP) calculation 
results. In each of these simulations, we used the centroid 
path approximation (CPA) in which the closest distance 
from the projectile proton to a silicon atom is 1.9 a.u. Fig 6 
(a) shows that the FC result is much closer to the AE result 
than to the PP result. Thus, for the CPA trajectory, the 
difference between the AE and PP calculations does not 
arise mainly as a result of core electron excitations, but 
rather it is the valence-electron wavefunction behavior 
close to the nuclei that is responsible. Fig 6 (b) shows the 
same set of simulations, but now the proton projectile path 
is closer to silicon atoms such that the minimum projectile-
target distance is ~1.3 a.u (instead of the 1.9 a.u. in the 
CPA). In this case, the AE-vs-PP difference primarily 
derives from core electron excitations. The analysis based 
on the KS eigen-energies shows that the relative 
contributions of 1s, 2s, and 2p excitations to the stopping 
power are approximately 0.6%, 6.6%, and 22.9% of the 
contribution from valence electron excitations, being much 
larger than the centroid path trajectory. Although the 
centroid path approximation has been found to be 
satisfactory for calculating the electronic stopping power of 
various materials using simulations with pseudopotentials, 
this approximation becomes less satisfactory when core 
electron effects are important as shown in the all-electron 
RT-TDDFT calculations. At high velocities, semi-core 
electron excitations contribute significantly to the electronic 
stopping. Unfortunately, converging the stopping power 
with respect to the ensemble average of proton trajectories 
in all-electron RT-TDDFT simulations (3024 electrons) 
comes at a prohibitive computational expense. This is due 
to two factors: Small regions of the total simulation cell (< 
10%) dominate the excitations at high velocities, implying 
that a large number of random trajectories would be 
required to converge the ensemble average. Additionally, 
stable numerical integration of the TD-KS equations 
becomes highly difficult during close collisions between 
the projectile ion and target atom nuclei, requiring a very 



small discrete time step, and this is also coupled with the 
fact that very high planewave kinetic cutoff energy is 
required if the PW-PP formalism is used.  

 
 

C. Proposed correction scheme 
 
Here we propose a simple and efficient correction 

scheme to account for the missing “core electron” effects. 
We consider obtaining the corrected electronic stopping 
power  for silicon by scaling the stopping power that is 
obtained from the RT-TDDFT simulations by a velocity-
dependent correction factor , that takes into 
account the core-electron effects, 

 

  (1) 

 
where SCP+PP is the stopping power acquired in the 
“standard” simulations using the centroid path 
approximation and the PP approximation. The scaling 
factor is given in terms of the ratio between the core and 
valence electron contributions to the electronic stopping for 
a single silicon atom such that  

 

     (2) 
 
where the integrand is the ratio between the core and 
valence electron contributions, which are functions of the 
distance between the projectile proton and the target silicon 
atom (in addition to the velocity dependence). The volume 
integral contains all of the projectile proton position in the 
simulation cell, and the variable  is the distance to all N 
silicon atoms in the simulation cell. In practice, it is not 

necessary to consider the atoms that are beyond a small 
radius (~5 a.u.) of the projectile ion since  becomes 
zero at large distances. The distance-dependent are 
related to the total energy transfer that depends on the 
impact parameter, h, as (see Figure 8)  

  (3) 
 

We observed from the single-atom RT-TDDFT simulations 
that, for a given projectile ion velocity, the energy transfer 
function follow closely a Gaussian function 

 

 (4) 
 
By expressing  also as 

 

  (5) 
 
for numerical convenience. Geometric relationships 
between r, h, and l of Figure 7 then yield 

 

    (6) 
 
and 

.    (7) 
 

S (v) = SCP+PP (v) ⋅ 1+ Fcore(v)( )

Fcore(v) = dV Score
Atm (v, ri )

Sval
Atm (v, ri )

∫
i=1

N

∑

Sval/core
Atm (v, r)dl

−∞

∞

∫ = ΔEval/core(v, h)

ΔEval /core(v, h) = Aval/core(v)e−Bval/core (v)h2

Sval/core
Atm (v, r) = Cval/core(v)eDval/core (v)r2

D(v) = B(v)

C(v) = A(v) B(v)
π

FIG. 7. Scheme for the single-atom collision simulations,
where the red arrow indicates the trajectory of the proton
(H+). The simulation is carried out over a range of impact
parameters h. The distance between the proton and the
Silicon target atom is given by r. The displacement of the
proton is given by l.   FIG. 8.  Energy transferred in single-atom collision

simulations as a function of impact parameter h for the
simulations using pseudopotentials (black), all electrons
(blue), and frozen core (red) schemes. See the text for
details.    



We can thus determine these coefficients D(v) and C(v) via 
Eq. 6 and Eq. 7 by finding the parameters A and B in Eq. 4 
by obtaining ΔEval/core from “single-atom simulations” in 
which the impact parameter between the projectile proton 
and a single target silicon atom is varied. ܧ߂ is obtained 
from the AE RT-TDDFT and with the PP approximation as 

 

. (8) 
 

 
       Figure 8 shows the energy transferred versus impact 
parameter for the single collision simulations for v=6.0 a.u. 
For impact parameters below ~0.75 a.u., the all-electron 
simulations show significantly higher energy transfer than 
the PP simulations. The results are fit to the Gaussian 
function (Eq. 4) to determine the parameters A and B. 
Having determined the shape of ܵ௩/௧  functions, the 
velocity-dependent scaling factor is determined to correct 
for the missing core effects as in Eq. 2.  

This correction scheme can be also applied using PW 
simulations using semi-core PPs, in addition to the all-
electron simulations with the GAPW approach. In the 
semicore PPs, only the 1s electrons are pseudized, and the 
2s, 2p, 3s, and 3p electrons of silicon atoms are treated 

explicitly. In the expressions given above, the energy 
transfers in the semi-core PP simulations are used in place 
of the all-electron single-atom energy transfers. This 
alternative approach is possible due to the fact that 1s 
electron excitations contribute less than 1% to the total 
electronic stopping power. For these single-atom collision 
simulations, we generated semicore pseudopotentials for 
Silicon with cutoff radii of 0.40, 0.35, and 0.40 Bohr for the 
2s, 2p, and 3p orbitals, respectively, in keeping with the 
parameters used by Tiago et al. [51]. Due to the very small 
cutoff radii, a very large planewave cutoff energy of 400 
Rydberg was required to converge the energy gap.  While 
this high cutoff energy would make RT-TDDFT 
simulations with the Silicon supercell prohibitively 
expensive, the computational cost is manageable for the 
single-atom collision simulations.  

Figure 9 and Figure 10 show the results of applying the 
core correction factors for the GPW-based (corrected with 
all-electron single-atom calculations) simulation result and 
PW-based simulation result (corrected with semi-core PP 
single-atom calculations), respectively. When these 
corrections are applied, we observe significant 
improvement with respect to the experimental data. The 
corrected GPW and PW electronic stopping power curves 
show the average absolute % difference relative to the 

ΔEcore(v, h) = ΔEAE (v,h)− ΔEval (v, h)

FIG. 9. Electronic stopping power as a function of the
velocity of a proton projectile in Si. The solid black curve
represents the empirical PSTAR model [2].  The sets of
letters correspond to different experimental data sets that
can be found in Ref. [3].  The dark blue curve corresponds
to the values we obtained by calculating using mixed
Gaussian planewave (GPW) RT-TDDFT with the
“standard” parameters and approximations described in the
Methods section. The light blue curve corresponds to the
results after the core correction has been applied.  The
error bars represent standard deviations of the mean
stopping power for the trajectory.  

FIG. 10. Electronic stopping power as a function of the 
velocity of a proton projectile in Si. The solid black curve 
represents the empirical PSTAR model [2].  The sets of 
letters correspond to different experimental data sets that 
can be found in Ref.  [3]. The dark red curve corresponds to 
the values we obtained by calculating using planewave 
pseudopotential (PW-PP) RT-TDDFT with the “standard” 
parameters and approximations described in the Methods 
section.  The light red curve corresponds to the results after 
the core correction has been applied. The error bars 
represent standard deviations of the mean stopping power 
for the trajectory.  



PSTAR results of 5.1% and 5.2%, respectively.  Applying 
the core correction increases the stopping power by 55% 
(105%) at v = 6.0 a.u. for the GPW (PW) simulations. For v 
<= 1.0 a.u., there is negligible difference between the 
corrected and uncorrected results. At the Bragg peak (v = 
2.0 a.u.), the core correction increases the GPW (PW) 
electronic stopping power by 9.0% (7.1%). 
 

 
V. CONCLUSIONS 

 
We presented a thorough, methodical examination of 

non-equilibrium electron dynamics simulations based on 
RT-TDDFT for the calculation of electronic stopping 
power. We have shown that converging several 
computational factors, such as k-point sampling, planewave 
cutoff energy, and exchange-correlation (XC) 
approximation, with respect to the ground state DFT 
calculations is sufficient to ensure convergence of RT-
TDDFT results.  However, we have also identified several 
approximations that require special attention in these types 
of simulations. The combination of the centroid path 
approximation and the pseudopotential approximation leads 
to a neglect of core electronic effects, which are particularly 
important at high projectile ion velocities. We showed that 
core electrons affect electronic stopping in two ways: core 
electron excitations and modification of the valence 
wavefunctions near the core regions. We demonstrated that 
both of these effects contribute to an increase in electronic 
stopping and that the relative importance of these effects 
has a strong impact-parameter dependence. Unfortunately, 
performing RT-TDDFT simulations with all-electrons or 
semi-core-PPs setup for a classical ensemble of projectile 
ion trajectories is not yet practical due to the computational 
expense. As an alternative approach, we proposed a single-
atom correction scheme to approximately take into account 
the missing core electronic excitations for the electronic 
stopping power calculation.  

Another approximation in this work is the adiabatic 
approximation to the XC potential in RT-TDDFT. This 
approximation results in having the XC potential that 
depends only on the instantaneous electron density, 
neglecting any memory effects [52]. Nazarov et al. [53] 
have shown, within the linear response formalism, that 
error resulting from the adiabatic approximation is 
negligible for low-Z ions such as protons and α particles 
stopping in a homogeneous electron gas. However, for 
high-Z ions, the error can be significant. The influence of 
the adiabatic XC approximation in the RT-TDDFT 
approach on electronic stopping power needs to be 
investigated in the future. In the RT-TDDFT approach, 
having the energy functional as a constant of motion is 
essential for directly obtaining the electronic stopping 
power from the electronic energy [23,31], and the stopping 
power can be calculated equivalently from the Hellman-
Feynman force on the projectile ion, as we have done here, 

when the adiabatic approximation is used. However, the 
XC functional, in principle, depends on the electron density 
at previous times and on the initial wavefunction. As 
discussed by Ullrich in the context of the current TDDFT 
[54],  deriving an accurate XC approximation that ensures a 
constant total energy is quite complicated when the 
adiabatic XC approximation is alleviated. If this were 
accomplished, one could then also derive the corresponding 
expression for forces from the resulting action [55], which 
is unlikely to be the Hellman-Feynman force when the 
adiabatic XC approximation is not adapted. Going beyond 
the adiabatic approximation in RT-TDDFT for simulation 
of real materials is presently out of reach and remains an 
active area of current research [56,57].   
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