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Time crystals are proposed states of matter which spontaneously break time translation symmetry.
There is no settled definition of such states. We offer a new definition which follows the traditional
recipe for Wigner symmetries and order parameters. Supplementing our definition with a few plau-
sible assumptions we find that a) systems with time independent Hamiltonians should not exhibit
time translation symmetry breaking (TTSB) while b) the recently studied π spin glass/Floquet
time crystal can be viewed as breaking a global internal symmetry and as breaking time translation
symmetry, as befits its two names.

I. INTRODUCTION

The identification of symmetries, and the categoriza-
tion of phases through the spontaneous breaking of sym-
metries, is a central unifying theme in modern physics.
This program has traditionally focused on the sponta-
neous symmetry breaking (SSB) of space-group and in-
ternal symmetries, and has provided a framework for un-
derstanding phenomena ranging from the formation of
crystals to magnetism to superfluids.

More recently, there has been much interest in the idea
of time translation symmetry breaking (TTSB) starting
with Wilczek’s proposal1 for the existence of time crystals
— states of matter which spontaneously break continu-
ous time translation symmetry down to a discrete sub-
group, in direct analogy with spatial crystals. Wilczek’s
intuition was sharpened by Watanabe and Oshikawa who
formulated a definition of TTSB in terms of space-time
correlation functions, and used this definition to prove
the absence of time crystals in thermal equilibrium2. In-
terestingly, Ref 2 left open the possibility of observing
time crystals in an out of equilibrium setting.

A parallel development3 showed that it is, in fact, pos-
sible to get non-trivial phase structure even in the intrin-
sically non-equilibrium setting of a periodically driven
(“Floquet”) and disordered interacting system4–8 via a
generalization of the notion of eigenstate order9–14 first
formulated in the context of undriven many-body local-
ized (MBL) systems15–20. Strikingly, one of the phases
found in Ref. 3 — the so-called π spin-glass phase — was
observed to display time-dependent correlations which
oscillate at integer multiples n of the driving frequency,
thereby breaking the discrete time-translation symmetry
Z of the drive to a subgroup nZ and providing a realiza-
tion of an out-of-equilibrium time crystal. This phase
(also variously known as the Floquet time crystal21/
discrete time crystal22) has been the subject of much
recent study3,21–26, and signatures of discrete TTSB
in this setting have now been observed in very recent
experiments27,28.

Three definitions of TTSB have been proffered. The
first, following Watanabe and Oshikawa, defines a time
crystal as a phase which shows time-dependence and
long-range order in unequal space-time correlation func-

tions of local operators2

lim
|i−j|→∞

lim
L→∞

〈Oi(t)Oj〉c = f(t), (1)

where 〈〉c denotes a connected correlation function, L
is the system size, Oi is a local operator with support
near position i, and f(t) is a non-constant function of
time. These correlators are measured in the Gibbs state
or the ground state of an undriven Hamiltonian system.
While one might think that the restrictions to large sys-
tem sizes and large separations are not necessary to de-
tect TTSB, in the absence of these restrictions essen-
tially any finite system (or a chain of uncoupled finite
systems) exhibits TTSB29. Ref 2 also considered the nat-
ural generalization to correlation functions of superposi-
tions of local operators O = 1

L

∑

i ciOi, in which case

TTSB requires limL→∞〈O†(t)O〉c = f(t). Generalized
to the periodically driven setting24, the correlators are
measured in the eigenstates of the Floquet unitary U(T )
which is the time-translation operator over one period
T , and the time-dependence is only probed “stroboscop-
ically”, t = nT for n ∈ Z. The second definition was
proposed for Floquet systems; it states that such sys-
tems exhibit TTSB if all eigenstates of U(T ) show long
range connected correlations for local operators measured
at equal times21. The third definition requires the pres-
ence of persistent, non-trivial time-dependence in expec-
tation values of local operators measured in late time
states starting from generic short range correlated initial
states21,24:

lim
t→∞

lim
L→∞

〈ψ0|Oi(t)|ψ0〉 = f(t),

where f(t) is a non-constant function of continu-
ous/stroboscopic time for Hamiltonian/Floquet systems.
This last definition is appealing from an experimental
viewpoint since neither the operator nor the initial state
require fine-tuning; indeed recent experiments27,28 have
detected signatures of Floquet time-crystal states via an
observation of multiple period oscillations in generic ob-
servables at late times.
In this work we consider a fourth definition of TTSB,

which has the appeal of being a straightforward exten-
sion of standard definitions of SSB. We begin in Sec II
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with a formal restatement of the definition of sponta-
neous symmetry breaking in the more conventional case
of a system with a global internal symmetry which acts
as a tensor product of onsite symmetries, wherein SSB is
defined in terms of long range order in correlation func-
tions of local order parameters. We then discuss TTS
much like any other symmetry in terms of its unitary
implementation on Hilbert space and its action on the
algebra of local observables. This leads us to generalize
the notion of an order parameter to TTS, where it be-
comes an observable which is fixed — up to a non-trivial
phase — under the action of TTS (Sec III) . While the
existence of local order parameters is guaranteed for on-
site global symmetries, it is not at all guaranteed for
TTS; the crucial difference is that TTS is typically not
on-site, and typically spreads local operators (Sec IV).
Indeed, in ergodic/ETH systems, no such order parame-
ter exists because all local operators spread, precluding
the existence of time crystals in such systems (Sec IVA).
Similarly, such order parameters do not exist in undriven
MBL systems in which all local operators that transform
non-trivially under TTS also spread – albeit only loga-
rithmically – in time (Sec IVB). Barring the presence of
new dynamical phases, and some pathological unstable
cases which we discuss, the only remaining possibility is
Floquet-MBL phases (Sec IVC) where indeed examples
of time-crystals have recently been found in theory3,21–24,
and possibly in experiments27,28. Finally, in Sec VI, we
show how the previous three definitions of TTSB can be
derived from the present one. We emphasize that the
conceptual advantage of the present framework is that
it treats time-translation just like any other symmetry,
and thus enables the considerable intellectual framework
of SSB to be brought to bear on the problem of time-
crystals. This allows for a natural definition of TTSB
without appealing to any seemingly ad hoc restrictions
or conditions. Further, the discussion of order parame-
ters for TTS is physically illuminating and allows us to
consider both the equilibrium and non-equilibrium set-
tings within a single unified framework.

II. STANDARD LORE ON SPONTANEOUS
SYMMETRY BREAKING

Consider a symmetry group G = {g} represented
by unitary operators W (g) in the Hilbert space of our
system30. For a Hamiltonian system H invariant under
G, [H,W (g)] = 0 ∀ g, the eigenstates |n〉 of H trans-
form according to irreducible representations of G (for
finite systems of any size). As we later focus on situ-
ations where G implements time translations, we limit
our analysis to abelian groups G. For such groups, all
irreducible representations (irreps) are one-dimensional,
and eigenstates simply pick up phases when acted upon
by the symmetry group elements: W (g)|n〉 = eiφg |n〉.
Traditionally, one considers two kinds of symmetry

groups: (i) global internal onsite symmetries and (ii)

space group symmetries like translation and rotation.
The unitary representations of the former are local i.e.
they are depth one quantum circuits which act as prod-
ucts of onsite unitary transformations. On the other
hand, the unitary representations of spatial symmetries
are non-local in that they cannot be represented as finite-
depth circuits of local unitaries31. Relatedly, order pa-
rameters for detecting SSB (defined below) can always be
chosen to be strictly local for internal symmetries, while
they are forced to be extensive superpositions of local
operators for spatial symmetries like translation.
The case of time-translation symmetry is intermediate

between these two cases. Time translations generated by
local bounded Hamiltonians acting for finite times are
represented by local finite-depth circuits, but these are
typically not product circuits of on-site operators32. Cor-
respondingly, as we will show, one can get order parame-
ters for TTS which are either local operators (LOPs), or
global superpositions of local operators (SLOPs). Fur-
thermore, there are systems where no local (or SLOP)
order parameter for TTS can be defined at all, which in
turn precludes the existence of TTSB in such systems.
For concreteness, let us start by defining SSB for the

case of global internal symmetries. We apologize in ad-
vance for our pedantry in the interests of a self-contained
discussion. Consider a group G represented by a product
of onsite unitary operatorsW (g) ≡ ⊗iWi(g) ∀ g ∈ G. To
define SSB from G to a subgroup H = {h}, we construct
a family of local operators {Φi,α} labelled by position i,
which transform according to irreps labelled α of G

W †(g)Φi,αW (g) = eiθg,αΦi,α . (2)

It is always possible to construct a local onsite basis of op-
erators which transform in this way, due to the assump-
tion that the symmetry acts as a product of single-site
terms. For α non-trivial, the transformation of Φi,α un-
der G implies that one-point functions such as 〈n|Φi,α|n〉
must vanish in all eigenstates |n〉. Given any α there is
a unique irrep α (the complex conjugate irrep) such that
products Φi,αΦj,α transform trivially under G. For the
symmetry G to be spontaneously broken to a subgroup
H in eigenstate |n〉, two conditions need to hold. (i) We
must have

lim
|i−j|→∞

lim
L→∞

|〈n|Φi,αΦj,α|n〉c| 6= 0 (3)

for all Φα which transform trivially under H but non-
trivially under G, and (ii) the same quantity Eq. (3) dis-
appears for any Φα which transforms non-trivially under
H .
Ising symmetry: Let us consider a spin-1/2 system

with a global Ising symmetry G = Z2. The degrees of
freedom on each site i can be represented by Pauli ma-

trices σ
x/y/z/0
i and the Ising symmetry is represented

by G = {1, Px} where Px =
∏

i σ
x
i . The transverse

field Ising model H = J
∑

〈ij〉 σ
z
i σ

z
j + h

∑

i σ
x
i is an ex-

ample of such a system. The choice Φi = σz
i satisfies
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PxΦiPx = −Φi so there exist local operators which trans-
form under a non-trivial irrep of G. As before, all eigen-
states can be chosen to be eigenstates of Px. We say
that Ising symmetry is spontaneously broken to H = {1}
in eigenstate |n〉 if lim|i−j|→∞ limL→∞〈n|σz

i σ
z
j |n〉c 6= 0,

where 〈〉c denotes a connected correlation function.
In the following, we will largely frame our discussion of

TTSB in terms of local order parameters. We will return
to the case of SLOP(py) order parameters in Section V,
where we also provide a comparison between the action
of spatial and time translation symmetries.

III. SPONTANEOUS TIME TRANSLATION
SYMMETRY BREAKING (TTSB)

A. States, Operators and TTS

Before defining spontaneous symmetry breaking for
time translation, let us set up some notation for the two
possible time translation groups R,Z corresponding to
continuous and discrete time translation symmetry re-
spectively, and consider the action of TTS on states and
operators of Hamiltonian and Floquet systems.

1. Time independent Hamiltonian systems

The group of time translations is the non-compact,
abelian, Lie group R generated by the Hamiltonian itself.
We note that TTS is therefore a dynamical or Hamil-
tonian dependent symmetry rather than a kinematical
symmetry which would be the same for the entire set of
Hamiltonians at issue33. The group elements are transla-
tions of the system by time t with unitary representations
U(t) = eiHt, and clearly [H, U(t)] = 0 for all t. We set
~ = 1 throughout. Because the group is abelian, all irre-
ducible representations of TTS are one dimensional and
eigenstates |n〉 of H transform in these irreps

U(t)|n〉 = e−iEnt|n〉.

We now turn to transformation of operators under con-
jugation with the group elements with a view towards
defining an order parameter for TTSB. First, observe
that it is certainly possible to find operators that trans-
form according to the irreps of TTS. The operators
Onm = |n〉〈m| where |n〉, |m〉 are eigenstates of H with
eigenvalues En, Em respectively, transform as

U †(t)OnmU(t) = ei(En−Em)tOnm ≡ ei∆mntOnm (4)

and form a basis for the linear space of all operators.
While these operators certainly transform according to
non-trivial irreps for En 6= Em, they are highly non-
local and cannot, in general, serve as order parameters
(which must be LOPs or SLOPs). Specifically, at issue is
whether a subset of linear combinations of operatorsOmn

are sufficiently local to serve as order parameters. Since

we will require this order parameter to transform under
a non-trivial irrep, we are only allowed to make linear
combinations of basis-operators with the same ∆mn. In
a generic many-body system with no additional symme-
tries, we do not expect degeneracies in the eigenvalue
spacings so constructing such a local order parameter
will, in general, not be possible. Below we return to the
issue of when such local order parameters exist.

2. Periodic in time Floquet systems

For our purposes Floquet systems are characterized by
local unitaries U(T ) which govern the evolution over a
single period T . For such systems, the group of time
translations is the infinite, abelian, discrete group Z gen-
erated by U(T ) itself. We note that this is again a dy-
namical rather than a kinematical symmetry. All irreps
of this discrete TTS are one dimensional and eigenstates
of U(T ) transform in these irreps

U(T )|n〉 = e−iǫnT |n〉.

The ǫn are called “quasienergies” since they are only
defined modulo 2π/T . Again, the non-local, operators
Onm = |n〉〈m| transform as

U(T )†OnmU(T ) = ei(ǫn−ǫm)TOnm ≡ ei∆mnTOnm (5)

and form a basis for the linear space of all operators. We
defer again the question of the existence of local operators
that transform via the irreps and note that we will not
find cases where all do.

B. Defining TTSB via Local Order Parameters

Let us adapt the previously discussed diagnostic of
SSB to the case of TTSB. We require the existence
of a family of local order parameters Φi,α that trans-
form under non-trivial irreps of the TTS (R or Z) such
that U †(t)Φi,αU(t) = ei∆αtΦi,α. Then, it follows that
〈n|Φi,α|n〉 = 0 in every eigenstate (where |n〉 is an eigen-
state of either H or U(T ) depending on the context, and
correspondingly t ∈ R,ZT respectively). A system breaks
TTS to a discrete subgroupH (of R or Z), if the following
two conditions hold. (i) We have

lim
|i−j|→∞

lim
L→∞

|〈n|Φi,αΦj,α|n〉c| = c0 6= 0. (6)

for Φα which transform trivially under H and non-
trivially under G. (ii) The same correlator disappears
for Φα which transform non-trivially under H .

IV. WHEN DOES TTSB OCCUR?

Having defined TTSB, we consider the scenarios un-
der which TTSB could potentially occur in the infinite
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volume limit. For the purpose of this discussion, we will
only consider generically interacting, non-integrable sys-
tems, although non-interacting and integrable systems
can certainly display a host of interesting dynamical
phenomena34–45 including synchronization to a periodic
generalized Gibbs ensemble in the driven setting46,47. We
will see that thermalizing systems and undriven MBL
phases are precluded from showing TTSB because, on
general grounds, they do not posses a local TTS or-
der parameter, as pre-empted in the discussion below
Eq. (4). Saving the possibility of exotic phases which
are neither localized nor thermalizing, the only remain-
ing known phases of matter are Floquet MBL phases;
hence if TTSB phases arise, they must do so in such sys-
tems.

A. Absence of TTSB for thermalizing systems

For generic, thermalizing interacting systems, it is
generally believed that any local operator spreads bal-
listically under time evolution at a characteristic Lieb-
Robinson velocity vLR

48. This spreading can also gener-
ically be sub-ballistic, such as in thermalizing disordered
systems with Griffiths effects49. Hence, thermalizing sys-
tems lack any candidates for TTS order parameters which
are local (or SLOPs) and thus they cannot exhibit TTSB.
As a consequence of this operator spreading, we expect
all time dependent correlations of the form 〈n|Oi(t)Oj |n〉
for generic local operators Oi to asymptote to constants
at long times. This is true of both Hamiltonian systems
and Floquet systems. In the latter, the ergodic phase is
the infinite temperature phase since it is believed that a
generic, interacting driven system absorbs energy indefi-
nitely from the drive in the absence of localization, and
thus all late-time correlations are trivial in the Floquet-
ergodic setting5,7,8,50.

B. Absence of TTSB for Hamiltonian MBL
systems

Hamiltonian systems which are localized (either MBL
or Anderson localized) have an extensive set of mutu-
ally commuting local operators — called “l-bits”51–55—
which commute with each other and with H . These local
l-bit operators certainly transform according to an irrep
of TTS, but it is the trivial irrep because of their com-
muting with H. As a result, they cannot serve as order
parameters for diagnosing TTS. On the other hand, local
operators which do not commute with H grow logarith-
mically in time51–53,56–59 and again cannot serve as order
parameters for TTS. Hence TTSB is not possible for such
systems either.

C. Presence of TTSB for Floquet MBL systems

Having excluded the possibility of TTSB in thermal-
izing and undriven MBL systems, we now turn to the
category of systems that do exhibit TTSB. We will show
that one can define local order parameters for TTSB
in Floquet MBL systems and, in such systems, time-
translation symmetry breaking is accompanied by the
breaking of a global (kinematical or dynamical) internal
symmetry. Our primary example is the one dimensional
perturbed π spin-glass phase described by the family of
model unitaries3,21,23,24

U(T ) = Px exp



i
∑

j

Jjσ
z
jσ

z
j+1 + hxj σ

x
j + hyjσ

y
j + hzjσ

z
j





(7)

where Px =
∏

j σ
x
j is the Ising parity operator. For suffi-

ciently disordered fields hαj and couplings Jj , the system
is many-body localized. We direct the reader to Ref 24
for more technical details on this model. We consider
several cases below.

1. hx
i = h

y
i = hz

i = 0

Let us start with the special choice hxi = hyi = hzi = 0.

For this case, U0(T ) = Pxe
i
∑

j
Jjσ

z
j σ

z
j+1 has a global Z2

Ising symmetry, [U0(T ), Px] = 0. Note that

U †
0 (T )σ

z
i U0(T ) = −σz

i ,

U †
0 (2T )σ

z
i U0(2T ) = σz

i (8)

whence σz
i is a local operator which transforms under a

non-trivial irrep of TTS and can serve as an order pa-
rameter for diagnosing discrete TTSB from G = Z to
the subgroup H = 2Z (2). It is, of course, also an order
parameter for the Z2 Ising symmetry generated by Px.
The eigenstates of U0(T ) look like Ising

symmetric/antisymmetric global superposition
states (cat states) of frozen σz spins3,23,24 ,
|±〉 = 1√

2
(| ↑↓↓ · · · ↑〉 ± | ↓↑↑ · · · ↓〉). Two point

functions of the order parameter show long-range
order, 〈±|σz

i σ
z
j |±〉c = ±1 in all eigenstates. Thus, all

eigenstates spontaneously break both the discrete TTS
Z down to 2Z and the global Ising Z2 symmetry; both
of these breakings are diagnosed by the same order
parameter—whence the original designation of this
spatiotemporally ordered24 phase as a“π spin-glass”3.
Furthermore, it is easy to check that the |+〉, |−〉 eigen-

state pairs for a fixed configuration of spins differ in
quasienergy by π/T . This π/T quasienergy splitting be-
tween the constituents of each feline doublet3,24 is essen-
tial for defining a local order parameter for TTS. Refer-
ring back to our general arguments around Eq. (4), we
see that this system has 2L−1 independent (non-local)
basis operators O± = |+〉〈−| labeled by the domain wall
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configurations which all transform in the same non-trivial
way as O±(T ) = −O± with ∆+− = π/T (c.f. Eq. (5)).
This degeneracy allows us to construct local operators σz

i

which themselves transform in the same way by taking
superpositions of these basis operators.

2. hx
i 6= 0, hy

i 6= 0, hz
i 6= 0

Consider the general case where all three fields h
x/y/z
i

are small but non-zero. Note that this model does not
have a global Ising symmetry Px. Moreoever, the σz

i

no longer transform according to irreps of U(T ) so they
cannot serve as order parameters for diagnosing TTSB.
However, if the couplings are sufficiently random so that
the system remains MBL, there is a finite depth unitary
circuit V which relates the eigenstates of the perturbed
unitary to those of the unperturbed model U0(T ), and
which can be used to define dressed, drive-dependent,
local l-bit operators24 ταi = V σα

i V
†. For sufficiently large

system sizes the unitary can be rewritten in a canonical
form24

U(T ) = P̃xe
iDeven(τ

z
i ) , (9)

where P̃x =
∏

i τ
x
i and Deven is an even function of the τzi

operators. Notice that this unitary has an emergent, dy-
namical global Z2 symmetry generated by P̃x. Evidently
the τzi are local order parameters for both TTSB and the

global Z2 generated by P̃x, which is now also a dynam-
ical symmetry. The eigenstates of the unitary are still
π/T -paired cat states of the dressed τz spins which are
now labeled by their eigenvalues under the dressed parity
operator. Thus, in this range of parameters, the system
spontaneously breaks both the dynamical TTS and the
dynamical Ising symmetry P̃x and both phenomena are
detected by the same order parameters. Upon exiting
the phase in a general direction, order parameters for
both symmetries can cease to exist60. This discussion
emphasizes that the spatial long-range order and time
translation symmetry breaking in this model go hand in
and hand and should be viewed on an equal footing24.
This analysis can be generalized mutatis mutandis to

drives with Zn kinematical/dynamical symmetries de-
scribed in Refs. 23, 24, and 61.

V. TTSB VS. SPATIAL TRANSLATION
SYMMETRY BREAKING

We now briefly discuss the existence of order param-
eters for TTSB which are global superpositions of local
operators, and offer a comparison between TTSB and
the spontaneous breaking of spatial translation symme-
try. Let us consider discrete spatial translation symmetry
G = Z in a 1D system with L sites. This symmetry can-
not be represented by a finite-depth circuit of local uni-
tary operators. For an operator O(r) centered at site r,

translation by x sites acts as T̂ †(x)O(r)T̂ (x) = O(r+x).
This implies that no nontrivial local operator is left fixed
by spatial translations. Thus, the closest analogue to a
local order parameter (as defined in Eq. (2)) involves a
global superposition of local operators

Ok =
1

L

∑

r

eikrO(r)

T̂ †(x)Ok T̂ (x) = e−ikOk

where the wavenumber is restricted so that eikL = 1. Lat-
tice translation symmetry can be broken down to a dis-
crete subgroup nZ (as in an antiferromagnet). Through
a direct generalization of (3), this order can be diagnosed
by non-trivial connected correlations in 〈O−GOG〉c where
G ∈ 2π

n {1, 2, . . . , n− 1}.
By contrast, time translation acts rather differently.

Generically, there is no basis of operator eigenvec-
tors for time translation which look like SLOPs. In
generic ergodic phases, for example, operators which
are eigenvectors under time translation involve highly
non-local superpositions of large strings of operators.
Even in MBL systems, most local operators grow
logarithmically51–53,56–59 in time and do not transform
as eigenoperators under time translation. Most eigenop-
erators of time-translation in MBL systems (all except
the l-bits) again involve non-local superpositions of large
strings of operators.
There are, however, examples of fine-tuned local Clif-

ford circuits called “gliders”62 for which one can con-
struct order parameters which are global SLOPs, in di-
rect analogy with spatial crystals. This is striking since
these circuits, unlike spatial translation, are local and
can be viewed as the time evolution operator generated
by a local Hamiltonian. We defer the existence of TTSB
in such glider circuits with SLOP order parameters, and
the stability of these circuits to generic perturbations, as
interesting questions for future work.

VI. RELATION WITH PRIOR DEFINITIONS

We now briefly discuss how our definition of TTSB
makes contact with the prior three definitions mentioned
in the Introduction. We will stick to the case of local
order parameters for simplicity, although the general-
ization to SLOPs is straightforward. Definition 1 re-
quires long-range order in unequal space-time correla-
tion functions of local operators2 (1). Indeed, if a sys-
tem exhibits TTSB per our definition in Section III, then
there exist local order parameter operators Φi,α such that
Φi,α(t) = ei∆αtΦi,α. Using Eq. (6), we find the existence
of oscillating spatiotemporal order as desired:

〈n|Φi,α(t)Φj,α|n〉c = ±ei∆αt|c0| for large |i − j| (10)

for either t ∈ R or t ∈ ZT 63. Moreover, replacing the
order parameters in Eq. (10) with generic local operators
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Oi will also lead to persistent oscillations at long times,
although more than one frequency can be present – this
occurs because the Oi will generically have some overlap
with Φi,α. We note that our formalism for TTSB looks
for long range order in correlations of order parameters,
so the limit |i− j| → ∞ is natural. In the absence of this
limit, unequal spacetime correlation functions of generic
operators exhibit “glassy” temporal dynamics and oscil-
late with multiple incommensurate frequencies24. More-
over, as mentioned earlier, in the absence of this limit
even “trivial” systems like uncoupled chains of Rabi os-
cillators appear to break TTSB. However, while Watan-
abe and Oshikawa had to be put this limit in “by hand”
to exclude such trivial systems2, the limit is natural in
our formalism.
Of course, our definition requires the existence of long-

range order in connected correlators of local order param-
eters in Floquet eigenstates Eq. (6). Thus, such eigen-
states fail to cluster and must be long-range correlated
in agreement with the second definition of Floquet time
crystals21.
Finally, our definition is almost equivalent to the third

definition in terms of quenches and late time states which
is the most experimentally useful one24. The non-trivial
transformation of the order parameter under TTS means
that the order parameter is also an exact spectrum gener-
ating operator. Thus, its existence implies the existence
of spectral multiplets separated in quasienergy by ∆α as
discussed for the π-spin glass. This in turn implies24 that
at late times starting from generic short range correlated
initial state, generic local observables exhibit oscillations
with a definite period 2π/∆α—provided the system is
MBL. The contributions from other frequencies dephase
away as power laws of time as can be deduced from the
l-bit formalism of localized systems24. However, if the
system lacks interactions and is Anderson localized, the
late time state can also continue to exhibit multiple—
indeed infinitely many—periods which are a consequence
of the existence of an infinite number of exact local rais-
ing operators in the non-interacting problem.

VII. CONCLUDING REMARKS

In this work, we have presented a definition of TTSB
by treating time translation much like any other Wigner
symmetry in terms of its unitary implementation on
Hilbert space, its action on the algebra of local observ-
ables and the consequent identification of order parame-
ters, and the correlations of the order parameter in eigen-
states. We note that some related ideas stemming from
the characterization of equilibrium infinite volume states
via C∗ algebras have been presented in Ref 25, but this
work does not include our central object—an order pa-
rameter for TTSB. Local order parameters for TTS do
not generally exist. When they do, eigenstates show long-
range connected correlations with respect to the order
parameter. We further argue, with some minor assump-

tions, that the only setting for the existence of a TTS
order parameter and hence TTSB is in Floquet MBL sys-
tems. This recovers, albeit heuristically, the result of Os-
hikawa andWatanabe for the absence of TTSB in equilib-
rium systems using their definition in terms of space-time
correlators. It also provides an extension to the case of
localized systems which are out of equilibrium and which
cannot be obtained via their methods. In Floquet MBL
systems, the breaking of the dynamical time translation
symmetry is always accompanied by breaking of a (kine-
matical or dynamical) global internal symmetry, befitting
the varying descriptions of this spatiotemporally ordered
phase24 as a π spin-glass3,23/Floquet time-crystal21. Fi-
nally, we note that the extension of these ideas to the
case of clean, prethermal time-crystals25, which take a
time that is exponentially long in the driving frequency
to heat up to infinite temperature and are governed by an
effective unitary Ueff in the interim64–66, is an interesting
direction for future work.
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Appendix A: Non-local order parameters

While this paper was entirely about the experimen-
tally relevant case of a local order parameter for TTSB,
we note that it may be interesting to explore theoretically
the existence of drives which do not admit local order pa-
rameters but for which non-local operators transform as
non-trivial irreps of TTS. One example noted en passant
in Ref. 24 is that of the following drive

U(T ) = eiHTC

∏

e∈C∗

1

σz
e (A1)

HTC = −
∑

p

ǫp
∏

e∈∂p

σx
e −

∑

v

ǫv
∏

e∈s(v)

σz
e (A2)

Here HTC is the standard toric code Hamiltonian67, in-
volving a sum over plaquette p and vertex v terms. C∗

1,2

are collections of edges corresponding to closed paths on
the dual lattice; the two paths are non-contractible loops
winding around the two directions of the torus. Con-
sider the Wilson loop WC2

≡
∏

e∈C2
σx
e corresponding

to a non-contractible loop on the lattice around the y
direction on the torus. This operator transforms non-
trivially under TTS, i.e., WC2

(nT ) = (−1)nWC2
. Now

the order parameter is non-local, but formally we can ex-
amine the expectation value of the product of two such
Wilson loops at large separation. This does not vanish
and signals both the presence of Z2 topological order and
TTSB. It would be interesting to see if there are other
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more naturally symmetric examples of TTSB, once the
constraint of locality is lifted.

Appendix B: Yet another characterization of TTSB

In the ground state (GS) of the transverse field Ising
model, we usually diagnose SSB through the presence of
long range order 〈σz

rσ
z
s 〉GS,c = O(1). But there is a dual

diagnosis of this phenomenon using the disorder operator.
In this language, long range order is signaled by the fact
that the action of Ising symmetry on a subregion R obeys
a volume law

〈

∏

r∈R

σx
r

〉

GS

∼ Ce−αvol(R) .

In contrast, in the paramagnetic phase, this correlator
exhibits a boundary law ∼ e−α|∂R|. Motivated by this,
and using the form Eq. (9), suggests an alternative dual
characterization of time translation symmetry breaking
in Floquet systems with local Hamiltonians H(t). Define
the local action of time translation in region R as

Uf,R(T ) = T e−i
∫

T

0
dtHR(t) ,

where HR(t) are those terms in H(t) which have sup-
port solely in R. With the notation setup, we conjecture
the following for Floquet systems with TTSB: If a Flo-
quet system exhibits time translation symmetry breaking
Z → mZ then, for arbitrarily large regions R, the system
eigenstates | n〉 obey

〈

Up
f,R

〉

n
∼







e−αvol(R) p 6= 0 mod m

e−α|∂R| p = 0 mod m

where p ∈ Z.
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