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We study perturbative and global anomalies at the boundaries of bosonic analogues of integer quantum Hall
(BIQH) and topological insulator (BTI) phases using a description of the boundaries of these phases in terms of
a nonlinear sigma model (NLSM) with Wess-Zumino term. One of the main results of the paper is that these
anomalies are robust against arbitrary smooth deformations of the target space of the NLSM which describes
the phase, provided that the deformations also respect the symmetry of the phase. In the first part of the paper
we discuss the perturbative U(1) anomaly at the boundary of BIQH states in all odd (spacetime) dimensions. In
the second part we study global anomalies at the boundary of BTI states in even dimensions. In a previous work
[Phys. Rev. B 95, 035149 (2017)] we argued that the boundary of the BTI phase exhibits a global anomaly which
is an analogue of the parity anomaly of Dirac fermions in three dimensions. Here we elevate this argument to
a proof for the boundary of the two-dimensional BTI state by explicitly computing the partition function of
the gauged NLSM describing the boundary. We then use the powerful equivariant localization technique to
show that this global anomaly is robust against all smooth deformations of the target space of the NLSM which
preserve the U(1) o Z2 symmetry of the BTI state. We also comment on the difficulties of generalizing this
latter proof to higher dimensions. Finally, we discuss the expected low energy behavior of the boundary theories
studied in this paper when the coupling constants are allowed to flow under the renormalization group.

I. INTRODUCTION

In the past few years it was realized that a powerful way
to understand symmetry-protected topological (SPT) phases
with symmetry group G in d (spacetime) dimensions is to
study ‘t Hooft anomalies of (d−1)-dimensional theories with
globalG-symmetry1–4. A theory with globalG-symmetry has
a ‘t Hooft anomaly if it cannot be consistently coupled to a
background gauge field A for the symmetry group G5. It is
often the case that an anomalous (d − 1)-dimensional theory
can be realized in a gauge invariant manner at the boundary of
a d-dimensional SPT phase. In that case, the anomaly of the
boundary theory is canceled by the gauge variation of the bulk
effective action for the SPT phase. This cancellation mecha-
nism is known as anomaly inflow6. It is likely that all bulk-
boundary correspondences in SPT phases can be understood
through some version of the anomaly inflow mechanism, but
perhaps involving global anomalies instead of the perturbative
anomalies originally studied in Ref. 6.

It is clear from the discussion above that characterizing
boundary anomalies offers a precise way to understand the
bulk-boundary correspondence in SPT phases, topological in-
sulators, and related systems. For example, the presence of a
single chiral fermion at the edge of the ν = 1 integer quan-
tum Hall state in 2 + 1 dimensions (and also the single chiral
boson at the edge of the Laughlin states) can be understood
very simply using anomaly inflow arguments7,8. This chiral
fermion is needed to cancel the gauge variation of the bulk
Chern-Simons term?

SCS [A] =
1

4π

∫
X

A ∧ dA , (1.1)

which describes the response of the integer quantum Hall state
to an external electromagnetic field A = Aµdx

µ. We also
note that anomaly inflow has been discussed for analogs of the
integer quantum Hall state in all odd spacetime dimensions9.

A related, but much more subtle, example of anomaly in-
flow occurs in time-reversal invariant, free-fermion topolog-
ical insulators in 3 + 1 dimensions10,11. In Ref. 12 Wit-
ten has shown (among other results) that the bulk-boundary
correspondence in this system can be understood very pre-
cisely in terms of the parity anomaly of a Dirac fermion with
U(1) and time-reversal symmetry in 2 + 1 dimensions13–16.
The parity anomaly is intimately related to the Atiyah-Potodi-
Singer index theorem17–19 for the Dirac operator on an even-
dimensional manifold with boundary (see Ref. 15 for the rela-
tion), and this connection was a central theme in Ref. 12. The
connection between the parity anomaly and the boundary the-
ory of the topological insulator, and in particular the fact that
the bulk and boundary together are gauge invariant, was also
previously discussed in Ref. 20.

In a separate series of developments, bosonic analogues of
the integer quantum Hall and topological insulator states were
introduced and studied in detail in the SPT literature. The
bosonic integer quantum Hall (BIQH) state is an SPT phase
of bosons with U(1) symmetry in 2 + 1 dimensions21–31. It
is characterized by a Hall conductance which is an even in-
teger (in units of e2

h ). On the other hand, the bosonic topo-
logical insulator (BTI) state is an SPT phase of bosons with
U(1) symmetry and Z2 time-reversal symmetry in 3 + 1 di-
mensions32–35. It is characterized by a bulk electromagnetic
response of the “Chern character” type

SCC [A] =
Θ

8π2

∫
X

F ∧ F , (1.2)

with coefficient Θ = 2π. In a recent work, the present authors
computed the electromagnetic response of generalizations of
the BIQH and BTI states to all odd and even spacetime di-
mensions, respectively36.

Given these separate developments, a natural next step
would be to give a precise characterization of the anomalies at
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the boundaries of the BIQH and BTI states. In Ref. 36 we ini-
tiated such a program. There we used a nonlinear sigma model
(NLSM) description37–47 of the boundary of the BIQH state in
odd dimensions to compute the perturbative U(1) anomaly of
the boundary theory. Our result implied that the electromag-
netic response of the bulk of a BIQH state in 2m − 1 dimen-
sions is characterized by a Chern-Simons term? with level
N2m−1 = (m!)k, k ∈ Z, where the value k = 1 represents
the fundamental BIQH state.

In Ref. 36 we also argued that the boundary theory of the
2m-dimensional BTI state exhibits a bosonic analogue of the
well-known parity? anomaly of Dirac fermions in three di-
mensions. Our argument was based on a demonstration (again
using a NLSM description) that the boundary of the BTI state
can exhibit a Z2 symmetry-breaking electromagnetic response
described by a Chern-Simons term with level N2m−1 = m!

2
for the external field A. Since this boundary response is half
the response of the fundamental BIQH state in 2m − 1 di-
mensions, we argued, by analogy with the case of a massless
Dirac fermion (with Hall conductance = Chern-Simons level
= 1

2 ) on the surface of the (3 + 1)-dimensional topological
insulator10,11, that the boundary theory of the BTI displays a
bosonic analogue of the parity anomaly.

In this paper we continue this program of characterizing
anomalies at the boundary of BIQH and BTI states. In the
first part of the paper we revisit the perturbativeU(1) anomaly
at the boundary of (2m − 1)-dimensional BIQH states. In
Ref. 36 we computed this anomaly by gauging the Wess-
Zumino (WZ) term in an O(2m) NLSM description of the
boundary of the BIQH state. In any NLSM, the field is a map
from spacetime to a manifoldM, known as the target space
of the NLSM. In the O(2m) NLSM the target space is just
the (2m− 1)-dimensional unit sphere S2m−1, and the NLSM
field n is a 2m-component unit vector. This particular NLSM
description possesses a SO(2m) global symmetry, which is
much larger than the U(1) symmetry required to protect the
BIQH state. One might then wonder if (perhaps) more real-
istic models of the BIQH boundary can be found which still
possess the correct perturbative U(1) anomaly, but have only
the U(1) global symmetry of the BIQH state. In this paper
we show that a large family of such models do indeed exist by
proving the following result.

LetM be any (2m − 1)-dimensional manifold which
can be reached from S2m−1 by smooth deformations
which preserve the U(1) symmetry of the BIQH phase
(i.e., we have a diffeomorphism f :M→ S2m−1 which
is equivariant with respect to the U(1) symmetry). Then
a description of the boundary of the BIQH state using a
NLSM with target space M has the same perturbative
U(1) anomaly as the O(2m) NLSM description.

In the second part of the paper we revisit the bosonic ana-
logue of the parity anomaly at the boundary of the BTI states.
In the simplest case of the BTI state in two spacetime di-
mensions we are able to compute the partition function of the
gauged boundary theory exactly. The BTI state in two dimen-

sions has the symmetry group G = U(1) o Z2, where Z2

represents a unitary charge-conjugation symmetry. Our exact
computation of the boundary partition function shows that the
boundary of the BTI does indeed exhibit a bosonic analogue
of the global anomaly of Dirac fermions in 0 + 1 dimensions
which also have U(1) symmetry and Z2 charge-conjugation
symmetry48. We first compute this anomaly within the O(3)
NLSM description (with target space S2) of the BTI bound-
ary which we previously used in Ref. 36. Based on this cal-
culation, one might again wonder if a more realistic model
of the BTI boundary can be found which has the same global
anomaly, but which possesses only the G = U(1) o Z2 sym-
metry of the BTI state and not the full SO(3) symmetry of
the O(3) NLSM. We again show that such models do exist by
proving the following result.

Let M be any two-dimensional manifold which can
be reached from S2 by smooth deformations which pre-
serve the full G = U(1) o Z2 symmetry of the BTI state
(i.e., we have a diffeomorphism f : M → S2 which is
equivariant with respect to the action of the group G).
Then a description of the boundary of the BTI state us-
ing a NLSM with target space M has the same global
anomaly as the O(3) NLSM description.

To prove this result we use the powerful equivariant local-
ization technique originally developed for the exact compu-
tation of certain phase space path integrals49–53. Whereas for
the perturbative anomaly we are able to extend our proof to
any spacetime dimension, the calculation for global anomalies
becomes challenging in higher dimensions and is not easily
extendable. We comment on this difficulty later, and discuss
possible alternative approaches.

As in our previous work36, gauged WZ actions play a cen-
tral role in the calculations in this paper. Gauging WZ actions,
and also obstructions to gauging these actions (i.e., anoma-
lies), have been discussed previously in Refs. 54–61. Since
we consider two kinds of anomalies in this paper (perturba-
tive and global), it is important for us to explain at the outset
how exactly our anomalies are related to obstructions to gaug-
ing a WZ action. For the perturbative U(1) anomalies that we
study, the anomaly that we find is a direct result of the exis-
tence of an obstruction to gauging the WZ action. Therefore,
these anomalies are already present at the level of the classi-
cal action for these theories. On the other hand, for the global
anomalies that we study there is no obstruction to gauging the
U(1) symmetry of the WZ action. Instead, the anomaly is a
completely quantum effect which stems from an inability to
regulate the theory in such a way as to preserve both large
U(1) gauge invariance, and the additional discrete Z2 sym-
metry of the theory.

This paper is organized as follows. In Sec. II we analyze
perturbative U(1) anomalies at the even-dimensional bound-
ary of BIQH states in generic odd spacetime dimensions.
In Sec. III we analyze the global anomaly at the (0 + 1)-
dimensional boundary of the (1+1)-dimensional BTI state. In
Sec. IV we comment on the expected behavior of the bound-
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ary theories studied in this paper under renormalization group
flows. In Sec. V we present our conclusions. In Appendix A
we review the form of the phase space path integral for Hamil-
tonian systems on a general phase space M equipped with
symplectic form ω. In Appendix B we give a brief introduc-
tion to the equivariant localization technique for phase space
path integrals. Finally, in Appendix C we present the de-
tailed calculations of the regularized determinants which ap-
pear in the expression (obtained from the equivariant localiza-
tion technique) for the partition function of the BTI boundary.

II. PERTURBATIVE ANOMALIES IN BOSONIC INTEGER
QUANTUM HALL STATES

In this section we study perturbative U(1) anomalies at the
boundary of a class of bosonic SPT phases in odd spacetime
dimensions which are protected by the symmetry of the group
G = U(1). We refer to these phases as bosonic integer quan-
tum Hall (BIQH) states. They are all higher-dimensional gen-
eralizations of the (2+1)-dimensional BIQH state introduced
in Ref. 21. Upon coupling to a background U(1) gauge field
A = Aµdx

µ, the boundary of these states exhibits a perturba-
tiveU(1) anomaly. For the BIQH phase in 2m−1 dimensions,
the anomaly of the boundary is such that it can be compen-
sated by a bulk Chern-Simons (CS) term

SCS [A] =
N2m−1

(2π)m−1m!

∫
X

A ∧ (dA)m−1 (2.1)

with the level N2m−1 of the CS term quantized in integer
multiples of m! (factorial). Here X denotes the (2m − 1)-
dimensional bulk spacetime. We computed this anomaly in
Ref. 36 using a NLSM description of the boundary theory
of the BIQH state. Specifically, we modeled the bound-
ary using an O(2m) NLSM with Wess-Zumino (WZ) term,
with a particular action of the group U(1) on the NLSM
field. The field in this model is a 2m-component unit vec-
tor n = (n1, . . . , n2m), and so the target space of the O(2m)
NLSM is the (2m− 1)-dimensional unit sphere S2m−1.

In this section we first recall the result of Ref. 36, and we
also show that the anomaly computed there is well-defined in
the sense that it is independent of a certain freedom in the
specific form of the terms appearing in the gauged WZ ac-
tion for the boundary theory. We then consider alternative
descriptions of the BIQH state using NLSMs with a gen-
eral target space M, and we prove that if M can be ob-
tained from S2m−1 by smooth deformations which preserve
the U(1) symmetry of the BIQH state, then the anomaly of the
NLSM theory with target spaceM is identical to the anomaly
of the O(2m) NLSM theory. Later in the paper, in Sec. IV,
we discuss the expected low energy behavior of the NLSMs
discussed in this section.

The results of this section prove that the anomaly com-
puted in Ref. 36 is robust against arbitrary smooth, symmetry-
preserving deformations of the NLSM used to describe the
boundary of the BIQH state. This is exactly what one hopes
for in a model of an SPT phase: smooth, symmetry-preserving
deformations of a model of an SPT phase should not affect the
ability of that model to capture the universal properties of the

SPT phase, provided that the deformations do not take one
across a phase boundary. We also note here that in Ref. 36
we gave a more general gauge invariance argument for the
quantization of the level N2m−1 of the CS term describing
the bulk response of the BIQH state. That argument also im-
plies that the boundary anomaly is robust and independent of
the specific details of any particular model of the boundary of
the BIQH state. Therefore, the results of this section could
have been anticipated from the gauge invariance argument in
Ref. 36. However, it is also instructive to have an explicit
proof of this invariance for the class of NLSM descriptions of
the boundary considered here.

A. Review of O(2m) NLSM calculation of the anomaly

We start by reviewing the calculation of the boundary
anomaly of the BIQH state using the O(2m) NLSM descrip-
tion. The boundary of the (2m − 1)-dimensional BIQH state
can be described by an O(2m) NLSM with WZ term. Let
Xbdy denote the (2m − 2)-dimensional boundary spacetime.
As we discussed above, the NLSM field n = (n1, . . . , n2m)
should be understood as a map n : Xbdy → S2m−1 from the
boundary spacetime Xbdy to the target space of the NLSM,
which is just the unit sphere S2m−1 in this case.

The WZ term for the NLSM requires the following in-
gredients for its construction. First, we need the volume
form ω2m−1 on S2m−1. In terms of the coordinates na,
a = 1, . . . , 2m, it takes the form

ω2m−1 =

2m∑
a=1

(−1)a−1nadn1 ∧ · · · ∧ dna ∧ · · · dn2m , (2.2)

where the overline means to omit that term from the wedge
product. Next, we need an extension B of the boundary space-
time Xbdy such that ∂B = Xbdy , where ∂B denotes the
boundary of B. Finally, we need an extension ñ of the NLSM
field n into the bulk of B such that ñ|∂B = n. The extended
field ñ should be viewed as a map ñ : B → S2m−1. Then the
WZ term for the O(2m) NLSM on the (2m− 2)-dimensional
boundary spacetime Xbdy takes the form

SWZ [n] =
2πk

A2m−1

∫
B
ñ∗ω2m−1 , (2.3)

where k ∈ Z is the level of the WZ term and A2m−1 =
Area[S2m−1] = 2πm

(m−1)! . Here the notation ñ∗ω2m−1 denotes
the pullback of the volume form ω2m−1 on S2m−1 to the ex-
tended boundary spacetime B via the map ñ : B → S2m−1.

The WZ term can be written in a more familiar form if we
introduce a system of local coordinates (s, x0, . . . , x2m−3) on
B, where (x0, . . . , x2m−3) are a system of local coordinates
on Xbdy , and where s ∈ [0, 1] is a coordinate for the extra di-
rection in B. We choose boundary conditions on the extended
field configuration such that ñ is equal to a trivial constant
configuration at s = 0, and ñ = n at s = 1. Hence, the phys-
ical boundary spacetime Xbdy is located at s = 1. In these
coordinates the WZ term takes the more explicit form
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SWZ [n] =
2πk

A2m−1

∫ 1

0

ds

∫
d2m−2x εa1···a2m ñ

a1∂sñ
a2∂x0 ña3 · · · ∂x2m−3 ña2m , (2.4)

where we sum over all indices which appear once as a sub-
script and once as a superscript (the standard summation no-
tation). In addition to the WZ term, the action for the O(2m)
NLSM also includes a conventional kinetic term

Skin[n] =
1

2f

∫
d2m−2x (∂µn) · (∂µn) , (2.5)

where f is a coupling constant with dimensions of
(mass)4−2m (the power is equal to two minus the boundary
spacetime dimension).

The action of the U(1) symmetry that protects the BIQH
state on the NLSM field is best described by first pairing the
components of n into m “bosons” b` = n2`−1 + in2`, ` =
1, . . . ,m. Then, for the NLSM model of the BIQH phase, the
U(1) symmetry can be defined to act on these bosons as21,36

U(1) : b` → eiξb` , ∀ ` . (2.6)

Let us briefly explain the rationale for this choice of the U(1)
action. In the NLSM description of bosonic SPT phases from
Ref. 37, the information about the symmetry group G is en-
coded in a homomorphism σ : G → SO(2m) (in the case of
unitary symmetries which have trivial action on spacetime).
The NLSM equipped with the homomorphism σ will describe
a trivial phase if there exists a vector v such that σ(g)v = v,
∀ g ∈ G. This is because in this case it is possible to add
a “Zeeman” term n · v to the NLSM action to drive the
NLSM into a trivial direct product state in which n is par-
allel or anti-parallel to v at all points in space. Therefore, we
must choose a homomorphism σ where no such vector v ex-
ists if we want our NLSM to describe a nontrivial SPT phase
with U(1) symmetry. Mathematically, the problem is to em-
bed U(1) ∼= SO(2) inside the maximal torus of SO(2m) in
such a way that no vector v is fixed under the action of σ(g)
∀ g ∈ U(1). The unique solution to this problem? , modulo
trivial permutations of the components na in the definition of
the bosons b`, is the one in Eq. (2.6).

Next, we couple the NLSM describing the boundary of the
BIQH state to a background U(1) gauge field A = Aµdx

µ,
and attempt to construct an action which is invariant under the
gauge transformation

b` → eiξb` , ∀ `
A→ A+ dξ , (2.7)

where ξ is now a function of the boundary spacetime coordi-
nates. This gauge transformation can be recast in a more geo-
metric form using the vector field v = va ∂

∂na which generates
the action of the U(1) symmetry on S2m−1. Concretely, this
means that under an infinitesimalU(1) transformation, the co-
ordinates on S2m−1 transform as

na → na + ξva . (2.8)

For the U(1) symmetry action defined in Eq. (2.6), the vector
field v takes the form

v =

m∑
`=1

(
−n2` ∂

∂n2`−1
+ n2`−1 ∂

∂n2`

)
. (2.9)

This transformation of the coordinates also induces a transfor-
mation for general p-forms β on S2m−1,

β → β + Lξvβ , (2.10)

where Lv = div + ivd is the Lie derivative (acting on differ-
ential forms) along v, and iv is the interior multiplication by
v (d is the ordinary exterior derivative).

To simplify the presentation of the gauged WZ action it is
best to work with a more compact notation. Let us define the
normalized volume form α(2m−1) = ω2m−1

A2m−1
so that the WZ

term can be written as

SWZ [n] = 2πk

∫
B
ñ∗α(2m−1) . (2.11)

The derivation of the gauged WZ action is somewhat techni-
cal, and so we refer the reader to Ref.36 for details. In Ref.36

we showed that the gauged WZ action for the O(2m) NLSM
takes the form

SWZ,gauged[n,A] =

SWZ [n] + 2πk

m−1∑
r=1

∫
Xbdy

A ∧ F r−1 ∧ n∗α(2m−1−2r) ,

(2.12)

where the α(2m−1−2r) are a set of differential forms on
S2m−1 of degree 2m − 1 − 2r, r = 1, . . . ,m − 1, which
have a form that we now discuss.

First, for each ` = 1, . . . ,m, we define one-forms J` and
two-forms K` on S2m−1 by

J` = n2`−1dn2` − n2`dn2`−1 (2.13a)
K` = dn2`−1 ∧ dn2` . (2.13b)

Then, for each r = 0, . . . ,m−1, we define the forms Ω(r) by

Ω(r) =

m∑
`1,...,`m−r=1

J`1 ∧ K`2 ∧ · · · ∧ K`m−r . (2.14)

In particular, Ω(r) is a form of degree 2m − 1 − 2r and the
volume form can be expressed in terms of Ω(0) as ω2m−1 =

1
(m−1)!Ω

(0). One can show that these forms obey the relation

ivΩ
(r) =

1

2
dΩ(r+1) , (2.15)
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and this relation allows for the construction of the gauged WZ
action. In terms of these forms, the forms α(2m−1−2r) appear-
ing in the gauged WZ action are given by

α(2m−1−2r) =
1

A2m−1

1

(m− 1)!

1

2r
Ω(r) . (2.16)

This collection of forms obeys the set of equations

ivα
(2m−1−2r) = dα(2m−1−2r−2) , r = 0, . . . ,m− 2 ,

(2.17)
and

ivα
(1) =

1

A2m−1

1

(m− 1)!

1

2m−1
. (2.18)

Since A2m−1 = 2πm

(m−1)! , we can rewrite the equations satis-
fied by the α2m−1−2r as

ivα
(2m−1−2r) = dα(2m−1−2r−2) , r = 0, . . . ,m− 2 ,

(2.19a)

ivα
(1) =

1

(2π)m
. (2.19b)

Under a U(1) gauge transformation b` → eiξb`, A→ A+
dξ, the gauged WZ action for the O(2m) NLSM transforms
as

δξSWZ,gauged[n, A] = k

∫
Xbdy

ξ

(
F

2π

)m−1

. (2.20)

In theO(2m) NLSM description of the boundary of the BIQH
state, this anomaly of the gauged WZ term implies that the
topological electromagnetic response of the bulk of the BIQH
state is described by a CS term with level N2m−1 = −(m!)k,
i.e., the level must be an integer multiple of m!. By inspect-
ing the individual terms in the gauged WZ action, one can
see that the anomaly in Eq. (2.20) is completely determined
by the value of ivα(1) as shown in Eqs. (2.19). This is be-
cause Eq. (2.19a) guarantees that the transformation of the
form α(2m−1−2r) in the rth term in Eq. (2.12) is canceled by
the transformation of the gauge field A in the (r + 1)th term.
This means that the final anomaly only depends on the trans-
formation of α(1) in the (m− 1)th term (i.e., the last term). It
turns out that the equations which define the form α(1) do not
have a unique solution, and in the computation above we have
chosen a particular solution. We now show that although there
is an ambiguity in the choice of solution for α(1), the anomaly
of the gauged action is not affected by this ambiguity.

B. Uniqueness of the anomaly

In the previous subsection we showed that the anomaly of
the O(2m) NLSM with WZ term is completely determined
by the one-form α(1) which appears in the final term of the
gauged WZ action, and we also mentioned that α(1) is not
unique. If we are to ascribe any physical meaning to the

anomaly computed in the last subsection, then we need to
make sure that the anomaly is not affected by the ambiguity in
the choice of the form α(1). In this section we prove that the
anomaly is well-defined even though the choice of α(1) is not
unique.

We start by precisely characterizing the ambiguity in the
choice of the one-form α(1). According to Eqs. (2.19), this
form should satisfy the equation

ivα
(3) = dα(1) . (2.21)

However, for a given three-form α(3), the solutions to this
equation for α(1) are not unique. To see this, let us fix a choice
of α(3) (and also α(5), . . . , α(2m−3)) and suppose that we have
two solutions α(1) and α̃(1) to Eq. (2.21). If we subtract the
equation for α(1) from the equation for α̃(1) then we find that
these two forms are related by the equation

d(α̃(1) − α(1)) = 0 , (2.22)

i.e., the difference α̃(1) − α(1) is a closed form on S2m−1.
However, on the sphere S2m−1 all closed one-forms are also
exact? , which means that we have

α̃(1) − α(1) = dγ(0) (2.23)

for some function γ(0) on S2m−1.
We now want to understand the possible dependence of the

anomaly on the function γ(0) which parametrizes the ambi-
guity in the solution for α(1). Therefore we should com-
pare the gauged WZ action constructed using α(1) with the
gauged WZ action constructed using α̃(1) (but keeping all
other terms in the action the same). Let SWZ,gauged[n, A] be
the gauged WZ action constructed using the form α(1), and let
S̃WZ,gauged[n, A] be the gauged WZ action constructed from
the form α̃(1). These actions differ by a single term

S̃WZ,gauged[n, A]−SWZ,gauged[n, A]

= 2πk

∫
Xbdy

A ∧ Fm−2 ∧ n∗dγ(0)

= 2πk

∫
Xbdy

n∗γ(0) Fm−1 , (2.24)

where we rearranged the forms and performed an integration
by parts to derive the second equality. Under a gauge trans-
formation this difference transforms as

δξS̃WZ,gauged[n, A]− δξSWZ,gauged[n, A]

= 2πk

∫
Xbdy

n∗(Lξvγ(0)) Fm−1 .

(2.25)

However, since γ(0) is a function, we have

Lξvγ(0) = d(ξivγ
(0)) + ξivdγ

(0)

= ξivdγ
(0)

= ξLvγ(0) , (2.26)
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where we used the fact that ivγ(0) = 0. Then the difference
of gauge transformations reduces to

δξS̃WZ,gauged[n, A]− δξSWZ,gauged[n, A]

= 2πk

∫
Xbdy

ξ n∗(Lvγ(0)) Fm−1 .

(2.27)

We can now make the following observation. The
gauged action SWZ,gauged[n, A] constructed using α(1) from
Eq. (2.16) still possesses global U(1) symmetry and, in par-
ticular, is invariant under the transformation b` → eiξb` for an
infinitesimal constant parameter ξ. However, the above con-
siderations show that under the same infinitesimal U(1) trans-
formation, the gauged action S̃WZ,gauged[n, A] constructed
from α̃(1) will transform as

δξS̃WZ,gauged[n, A] = 2πkξ

∫
Xbdy

n∗(Lvγ(0)) Fm−1 .

(2.28)
Now even if the gauged WZ action cannot be made to be
invariant under U(1) gauge transformations, we should still
require it to be invariant under global U(1) transformations.
Therefore we must demand that for any alternative solution
α̃(1) to Eq. (2.21), the function γ(0) relating this form to α(1)

from Eq. (2.16) should satisfy

Lvγ(0) = 0 , (2.29)

i.e., this function should be invariant under the action of the
U(1) symmetry on S2m−1. Then, since we have the relation
Lξvγ(0) = ξLvγ(0) for any function γ(0) and any spacetime-
dependent ξ, we immediately find that the anomaly of the
gauged WZ action is not sensitive to the ambiguity in the
choice of α(1). In other words, the requirement that the
gauged WZ action should still possess global U(1) symme-
try is enough to ensure that the anomaly of the gauged action
is well-defined and independent of the ambiguity in the choice
of α(1).

C. Deforming the target space

Now that we know that the anomaly in Eq. (2.20) is well-
defined, we can move on and study how deformations of the
target space of the NLSM might affect the anomaly. Recall
that we previously derived this anomaly using the O(2m)
NLSM with target space S2m−1. In this subsection we
show that this anomaly is not affected by arbitrary smooth,
symmetry-preserving deformations of the target space of the
NLSM. The notion of a smooth, symmetry-preserving defor-
mation of the target space can be formulated precisely in terms
of diffeomorphisms which are equivariant with respect to the
symmetry action, as we discuss below.

In the NLSM description of the BIQH state the target space
S2m−1 of the O(2m) NLSM is equipped with an action of
the group U(1). For any g ∈ U(1) let us write g · n to denote
the image of the point n ∈ S2m−1 under the action of the

group element g. As we discussed above, the U(1) action
on S2m−1 is generated by the vector field v in the sense that
na → na + ξva under an infinitesimal U(1) transformation
parametrized by ξ. Now suppose thatM is another (2m−1)-
dimensional manifold with the following properties.

(1) There is a U(1) action onM generated by a vector field
w.

(2) There exists a Riemannian metric onM for which w is a
Killing vector.

(3) There exists a diffeomorphism f :M→ S2m−1 which is
equivariant with respect to the U(1) action, i.e.,

g · f(m) = f(g ·m) , ∀m ∈M , ∀ g ∈ U(1) . (2.30)

Intuitively, these properties imply that the manifold M also
has a U(1) symmetry, and that it can be reached from S2m−1

(or vice-versa) by smooth deformations which respect the
U(1) symmetry. We now show that for any such manifold
M the NLSM with target spaceM, WZ term at level k, and
U(1) action generated by w possesses the exact same pertur-
bative U(1) anomaly as the O(2m) NLSM with WZ term at
level k.

Before presenting the proof, we first discuss some conse-
quences of the three properties of the map f . First, properties
(1) and (2) together imply that we can construct a WZ term
for the NLSM with target spaceM with the property that the
WZ term is invariant under the U(1) transformation gener-
ated by w (we construct the WZ term using the volume form
on M determined by its U(1)-symmetric Riemannian met-
ric). Next, the first part of property (3), namely the fact that
f : M → S2m−1 is a diffeomorphism, implies that the de
Rham cohomology groups ofM and S2m−1 are identical. In
addition, the fact that f is a diffeomorphism implies that the
degree of f , defined via the equation

1

A2m−1

∫
M
f∗ω2m−1 = deg[f ]

1

A2m−1

∫
S2m−1

ω2m−1

= deg[f ] , (2.31)

is equal to plus or minus one, deg[f ] = ±1 (see Ch. VI of
Ref. 62 for the definition of the degree of a smooth map). In-
tuitively this means that the map f “wraps”M around S2m−1

only once. This has to be the case since f is injective (f is in-
vertible so it is both injective and surjective). In what follows
we assume deg[f ] = 1 so that f is orientation-preserving.
This then implies that

f∗
(
ω2m−1

A2m−1

)
=
ωM
AM

, (2.32)

where ωM is the volume form onM determined by its Rie-
mannian metric, and AM =

∫
M ωM is the area ofM.

Next, properties (1) and (3) together imply that

v = f∗w , (2.33)

i.e., the vector field v which generates the U(1) action on
S2m−1 is equal to the pushforward, via the map f , of the vec-
tor field w that generates the U(1) action onM. This can be
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verified by expanding out both sides of Eq. (2.30) for an ele-
ment g ∈ U(1) which is close to the identity. This property
implies the following relation, which is central to the proof
in this section. If α is a differential form on S2m−1, then we
have

iw(f∗α) = f∗(ivα) . (2.34)

This relation implies that the action of interior multiplication
commutes with the action of taking the pullback, provided that
we use iw when acting on forms onM and iv when acting on
forms on S2m−1. Again, this relation holds because under our
assumptions the vector field v is equal to the pushforward of
w by the map f .

Now let us consider an alternative description of the bound-
ary of a BIQH state in terms of a NLSM with target spaceM,
whereM satisfies the three properties stated above. The field
in this NLSM theory, which we denote by m, is a map from
the boundary spacetime to the manifoldM, m : Xbdy →M.
We also assume that the transformation of the NLSM field
m under the U(1) symmetry of the BIQH state is deter-
mined by the U(1) action onM generated by the vector field
w. For example, under an infinitesimal U(1) transformation
parametrized by ξ we have ma → ma + ξwa, ∀ a. The WZ
term for this NLSM is constructed in the same way as for
the NLSM with target space S2m−1. We start with a vol-
ume form ωM on M which we assume is obtained from a
U(1)-symmetric Riemannian metric onM? (which exists by
our assumption (2) above). We denote the normalized volume
form onM by β(2m−1) = ωM

AM , where AM =
∫
M ωM. We

also need an extension m̃ of the NLSM field m into the ex-
tended boundary spacetime B such that m̃|∂B = m. In terms
of these quantities, the WZ term for the NLSM with target
spaceM can be written in the compact form

SWZ [m] = 2πk

∫
B
m̃∗β(2m−1) . (2.35)

We can now attempt to couple SWZ [m] to the gauge field
A and study the perturbative anomaly of the gauged action.
We find that the gauged WZ term for the NLSM with target
spaceM takes the form

SWZ,gauged[m,A] =

SWZ [m] + 2πk

m−1∑
r=1

∫
Xbdy

A ∧ F r−1 ∧m∗β(2m−1−2r) ,

(2.36)

where the forms β(2m−1−2r) on M are obtained by pulling
back the forms α(2m−1−2r) on S2m−1 which appear in the
gauged WZ action for the O(2m) NLSM,

β(2m−1−2r) = f∗α(2m−1−2r) . (2.37)

The explicit form of α(2m−1−2r) was given above in
Eq. (2.16). Using Eq. (2.34) and the fact that the pullback
operation commutes with the exterior derivative, we find that

the forms β(2m−1−2r) for r = 0, 1, . . . ,m − 1, obey the set
of equations

iwβ
(2m−1−2r) = dβ(2m−1−2r−2) , r = 0, . . . ,m− 2 ,

(2.38a)

iwβ
(1) =

1

(2π)m
. (2.38b)

These equations are identical to Eqs. (2.19) but with v re-
placed by w and α(2m−1−2r) replaced by β(2m−1−2r). The
form of these equations implies that the NLSM theory with
target spaceM has the exact same perturbative U(1) anomaly
as the O(2m) NLSM with target space S2m−1. In addition,
our argument for the uniqueness of the anomaly from the pre-
vious subsection also applies to the theory with target space
M. This follows from the fact that the de Rham cohomology
groups ofM are identical to those of S2m−1 as a consequence
of our assumption (3). Therefore we have shown that the per-
turbative U(1) anomaly at the boundary of the BIQH state is
robust against arbitrary smooth, symmetry-preserving defor-
mations of the target space of the NLSM used to describe the
BIQH state.

III. GLOBAL ANOMALIES IN BOSONIC TOPOLOGICAL
INSULATOR STATES

In this section we study global anomalies at the boundary of
a class of bosonic SPT phases which exist in even spacetime
dimensions and are protected by the symmetry of the group
G = U(1) o Z2. We refer to these phases as bosonic topo-
logical insulator (BTI) phases. They are generalizations to all
even-dimensional spacetimes of the BTI phase introduced in
Ref. 32. Note also that the system of bosons studied in Ref. 63
can be considered to be an example of a (1 + 1)-dimensional
BTI state according to our definition. In all cases the U(1)
symmetry represents a physical charge conservation symme-
try, however, the character of the Z2 symmetry depends on
the specific dimension of spacetime. Let the bulk spacetime
dimension be 2m for a positive integerm. Then form odd the
Z2 symmetry is a unitary charge-conjugation symmetry, while
for m even the Z2 symmetry is an anti-unitary time-reversal
symmetry.

In Ref. 36 we argued that the boundary theory of the 2m-
dimensional BTI state exhibits a bosonic analogue of the par-
ity anomaly of a Dirac fermion in odd dimensions. Our ar-
gument was based on the form of the gauged WZ action in
an O(2m + 1) NLSM description of the boundary of these
phases. Specifically, we showed that if the NLSM field on
the boundary of the BTI condensed in such a way as to break
the Z2 symmetry but preserve the U(1) symmetry of the BTI
phase, then the boundary would exhibit a BIQH response with
half-quantized CS coefficient N2m−1 = m!

2 . We then argued
by analogy with the free fermion topological insulator10,11 that
this half-quantized BIQH response indicated that the bound-
ary of the BTI phase displays a bosonic analogue of the parity
anomaly.
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In this section we make this reasoning precise in the spe-
cial case of the BTI state in 1 + 1 spacetime dimensions.
In this case we are able to compute the boundary partition
function exactly, and the global anomaly can be seen clearly
from our exact result. We start by reviewing the form of the
O(3) NLSM action which describes the (0 + 1)-dimensional
boundary of this BTI state, including the form of the gauged
WZ action which describes the boundary theory coupled to
the external gauge field A36. We then explicitly compute the
boundary partition function and show that it cannot retain both
the Z2 symmetry of the BTI and large U(1) gauge invari-
ance, i.e., the boundary theory possesses a global anomaly
in the Z2 symmetry of the BTI state. We then consider arbi-
trary smooth, symmetry-preserving deformations of the target
space of the NLSM used to describe the BTI, and we use the
powerful equivariant localization (EL) technique to show that
the boundary partition function and the global anomaly are
robust against such deformations of the model. We also note
here that the global anomaly computed in this section is very
similar to the global anomaly computed in Ref. 48 for a single
Dirac fermion in (0+1)-dimensions with U(1) symmetry and
unitary Z2 charge-conjugation symmetry.

A. The BTI state in 1 + 1 dimensions and its O(3) NLSM
description

The BTI state in 1+1 dimensions is an SPT phase of bosons
with symmetry groupG = U(1)oZ2, where U(1) represents
charge conservation and Z2 is a unitary charge-conjugation
(or particle-hole) symmetry. The semi-direct product “o” in-
dicates that the U(1) and Z2 symmetries do not commute with
each other. The physical signature of the BTI state is that a
fractional charge of± 1

2 (in units of the boson charge) is bound
at an interface between the BTI state and the vacuum (or a
trivial state). One possible model for the bulk of the BTI state
is an O(3) NLSM with theta term and coefficient θ = 2πk,
k ∈ Z37. The boundary of the BTI state is then described by
the same NLSM but with a WZ term at level k. In 1+1 dimen-
sions SPT phases with the symmetry group G = U(1) o Z2

have a Z2 classification, meaning that there is only a single
nontrivial phase37,64. This single nontrivial phase is the BTI
state. Within the NLSM description, the NLSM for any odd
k represents the nontrivial BTI state, while the model for any
even k represents the trivial state.

In theO(3) NLSM description the field is a unit vector field
n with components na, a = 1, 2, 3. The target space of the
O(3) NLSM is the unit two-sphere S2. As in Sec. II, the ac-
tion of the symmetry group G = U(1)oZ2 of the BTI on the
NLSM field is best expressed by first combining n1 and n2

into the “boson” field b = n1 + in2. Then for the BTI state,
the action of G on the NLSM field is given by (see Sec. IV.D

of Ref. 37)

U(1) : b→ eiξb , (3.1)

and

Z2 : b→ b∗ (3.2a)
n3 → −n3 . (3.2b)

Since the Z2 symmetry is unitary, the transformation b → b∗

is equivalent to n1 → n1, n2 → −n2. We can interpret b as
the field which annihilates a boson of charge 1, and n3 can be
interpreted as the deviation of the boson density from a non-
zero constant value.

The theta term and the WZ term for the O(3) NLSM are
both expressed in terms of the volume form ω2 on S2,

ω2 = n1dn2 ∧ dn3 − n2dn1 ∧ dn3 + n3dn1 ∧ dn2 . (3.3)

In what follows we useA2 = 4π to denote the surface area of
S2 (and

∫
S2 ω2 = A2). In this article we are only interested in

the boundary theory of the BTI, and so we focus our attention
on the WZ term. The boundary theory lives in one spacetime
dimension. To make our discussion as precise as possible, we
take the time coordinate (the only coordinate here) to lie in the
interval t ∈ [0, T ), and we impose periodic boundary condi-
tions in the time direction. This makes our one-dimensional
spacetime into a circle of circumference T . Let us denote the
one-dimensional spacetime by S1

T (the circle of circumference
T ). Constructing the WZ term requires extending the space-
time into a two-dimensional spacetime B such that ∂B = S1

T .
We use ñ to denote the extension of the NLSM field n into
the bulk of B, and we require that ñ|∂B = n. Using B and the
extension ñ of n, the WZ term takes the form

SWZ [n] =
2πk

A2

∫
B
ñ∗ω2 , (3.4)

where ñ∗ω2 denotes the pullback of ω2 to B via the map
ñ : B → S2, and k is the level of the WZ term (the same
integer k determines the coefficient θ = 2πk of the theta term
describing the bulk of the SPT phase).

The complete O(3) NLSM action describing the boundary
of the BTI takes the form

Sbdy[n] =

∫ T

0

dt
1

2fbdy

[
(∂tb)∗(∂tb) + (∂tn3)(∂tn

3)
]

+ SWZ [n] , (3.5)

where fbdy is a boundary coupling constant and ∂t = ∂t for
our choice of the signature of the spacetime metric (we use
a “mostly minus” Minkowski metric). We can now consider
coupling the boundary theory to an external U(1) gauge field
A = Atdt. In Ref. 36, we showed that the properly gauged
boundary action has the form

Sbdy,gauged[n, A] =

∫ T

0

dt
1

2fbdy

[
(Dtb)∗(Dtb) + (∂tn3)(∂tn

3)
]

+ SWZ,gauged[n, A] , (3.6)



9

where

SWZ,gauged[n, A] = SWZ [n] +
2πk

A2

∫ T

0

dt n3At , (3.7)

and Dt = ∂t − iAt (∂t = ∂t, At = At, etc., for our choice of
signature). The action for the fully gauged boundary theory is
invariant under U(1) gauge transformations

b→ eiξb (3.8a)
A→ A+ dξ , (3.8b)

and Z2 transformations

b→ b∗ (3.9a)
n3 → −n3 (3.9b)
A→ −A . (3.9c)

B. Boundary partition function and global anomaly

We now study the partition function for the gauged bound-
ary theory of the BTI in the topological limit fbdy → ∞. In
this limit we keep only the low energy information about the
boundary theory, including possible anomalies. The partition
function

Z[A] =

∫
[dn] eiSbdy,gauged[n,A] (3.10)

of the gauged boundary theory can be evaluated very simply
in this limit, as we now discuss. First, in the limit fbdy → ∞
the path integral we need to evaluate is

Z[A] =

∫
[dn] eiSWZ,gauged[n,A] , (3.11)

where SWZ,gauged[n, A] is the gauged WZ action from
Eq. (3.7). The path integral measure appearing here has the
precise definition

[dn] =
∏

t∈[0,T )

ω2(t) , (3.12)

where ω2(t) denotes the volume form for a copy of S2 located
at the point t in spacetime, and we integrate over all field con-
figurations with periodic boundary conditions in time.

We can also use a gauge transformation to simplify the form
of the coupling to the gauge field A. In one spacetime dimen-
sion the gauge field one-form A = Atdt has only one compo-
nent. Since our spacetime is a circle, which has first cohomol-
ogy group H1(S1,R) = R, we can decompose a generic At
as

At = At + ∂tλ , (3.13)

where

At :=
1

T

∫ T

0

dt At (3.14)

represents the nontrivial part of A, and ∂tλ represents the
exact part of A (here λ is some function of t). The exact
part of A can be removed from the action via a small U(1)
gauge transformation, which are those gauge transformations
A → A + ∂tξ with the function ξ satisfying ξ(0) = ξ(T ).
Large U(1) gauge transformations are those transformations
which send At → At + 2πn

T , for any n ∈ Z, and they will
play an important role in the discussion of the global anomaly
in this theory later in this section. The upshot of all of this
is that we can replace the coupling to At in the gauged WZ
action with a coupling to the constant gauge field At.

We now move on to the calculation of the partition function
Z[A]. We compute the partition function by observing that it
is identical to the phase space path integral for a spin of magni-
tude J = k

2 (or |k|2 for negative k) in a constant magnetic field
B pointing in the 3-direction, with the magnitude of the mag-
netic field given in terms of the gauge fieldA byB = −At. To
prove this we now briefly review the form of the phase space
path integral for spin. At this point we recommend that the
reader skim through Appendix A where we review the phase
space path integral expression for the partition function of a
quantum mechanical system obtained by quantizing a general
classical system defined on a phase spaceM equipped with a
symplectic form ω and Hamiltonian function H .

The classical mechanics of a spin J = 1
2 , 1,

3
2 , . . . , is de-

scribed by a phase spaceM = S2 equipped with the symplec-
tic form ω = Jω2, where ω2 is the volume form on S2 from
Eq. (3.3). It is convenient to work in spherical coordinates
(φ, θ) on S2. In this system of coordinates the components of
the NLSM field n take the form

n1 = sin(θ) cos(φ) (3.15a)
n2 = sin(θ) sin(φ) (3.15b)
n3 = cos(θ) , (3.15c)

and we have

ω = J sin(θ)dθ ∧ dφ . (3.16)

Using the definition Eq. (A4) for the Poisson bracket one can
check that

{na, nb} =
1

J

∑
c

εabcnc , (3.17)

so that the spin components Sa are given in terms of na by

Sa = Jna . (3.18)

The spin components then obey the Poisson algebra

{Sa, Sb} =
∑
c

εabcSc . (3.19)

We can now see that replacing the Poisson bracket with a com-
mutator according to the rule {·, ·} → −i[·, ·] will give the
usual commutation relations for spin in quantum mechanics.

Now let us assume that the dynamics of the spin system
are specified by a Hamiltonian H . Then the phase space path
integral representing the partition function trJ [e−iHT ], where
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the trace is taken in the spin J representation of SU(2), takes
the form

trJ [e−iHT ] =

∫
[dφdθ]

 ∏
t∈[0,T )

J sin(θ(t))

 eiS[φ,θ] .

(3.20)
where

S[φ, θ] =

∫ T

0

dt [ϑφ∂tφ+ ϑθ∂tθ −H(θ, φ)] . (3.21)

Here ϑφ and ϑθ are the components of the symplectic poten-
tial ϑ, which is defined locally on the phase space by the rela-
tion ω = dϑ (Eq. (A8) in Appendix A). Then, since

(ϑφ∂tφ+ ϑθ∂tθ)dt = n∗ϑ , (3.22)

we can rewrite the first term in this action using an extension
B of the spacetime S1

T and an extension ñ of the field config-
uration (satisfying ñ|∂B = n). We have∫

S1
T

n∗ϑ =

∫
B
ñ∗ω

= J

∫
B
ñ∗ω2 , (3.23)

where the first line follows from Stokes’ theorem. If we
choose the Hamiltonian to be

H = BS3 = BJn3 , (3.24)

which is the Hamiltonian for a spin in a constant magnetic
field of magnitude B and pointing in the 3-direction, then the
action becomes

S[φ, θ] = J

∫
B
ñ∗ω2 − J

∫
S1
T

n3B . (3.25)

We can now compare the path integral for a spin in a mag-
netic field to our path integral in Eq. (3.11) for the partition
function of the boundary of the BTI state. Using the fact that
A2 = 4π, we find that these path integrals are identical if we
make the identifications

J =
k

2
(3.26a)

B = −At . (3.26b)

More precisely, the path integrals are not identical but differ
by the infinite constant factor∏

t∈[0,T )

J , (3.27)

but we can give a more careful definition of the path integral
measure for the partition function of the gauged boundary the-
ory for the BTI by including this factor. Using all of this in-

formation we then find that

Z[A] = tr k
2
[eiS

3AtT ]

=

k
2∑

j=− k2

eijAtT

=
sin
[
AtT

2 (k + 1)
]

sin
[
AtT

2

] . (3.28)

Note that in deriving this formula we assumed that k > 0. For
k < 0 one just needs to replace k with |k|. For the discussion
below it is useful to decompose the gauge field asAt = 2π`

T +

at for some ` ∈ Z and at ∈ (0, 2π
T ), and to then rewrite Z[A]

in terms of ` and at,

Z[A] = (−1)k`
sin
[
atT

2 (k + 1)
]

sin
[
atT

2

] . (3.29)

It is important to observe that the factor (−1)k` is nontrivial
for odd k. This minus sign is related to the global anomaly in
this theory for odd k, as we now discuss.

For any level k the partition function Z[A] respects the Z2

symmetry of the BTI state, i.e., we have

Z[−A] = Z[A] . (3.30)

However, for odd k the partition function is not invariant under
a large U(1) gauge transformation,

At → At +
2π

T
, (3.31)

which is equivalent to the transformation `→ `+ 1 if we de-
compose the gauge field as At = 2π`

T + at. Instead, for odd k
the partition function Z[A] changes sign under this transfor-
mation. We can try to fix this large gauge invariance issue by
modifying the partition function to

Z̃[A] = Z[A]e±
i
2AtT . (3.32)

This is equivalent to adding the local counterterm
± 1

2

∫ T
0
dt At to the original boundary action, which is

a (0 + 1)-dimensional Chern-Simons term with fractional
level ± 1

2 . Note, however, that adding this counterterm spoils
the invariance of the partition function under the action
of the Z2 symmetry. Therefore we find that although the
gauged action SWZ,gauged[n, A] for the BTI boundary has
large U(1) gauge invariance and Z2 symmetry, the partition
function Z[A] for the boundary theory only has both of these
symmetries when k is even.

This is a classic sign of a global anomaly in the Z2 symme-
try: for odd k we can quantize the theory in such a way as to
keep either the Z2 symmetry or large U(1) gauge invariance,
but not both. Physically, this anomaly is related to the fact that
for odd k the boundary of the BTI has states with half-integer
(i.e., fractional) charge. In addition, the fact that the pres-
ence or absence of the anomaly depends only on the parity of
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k (even or odd) is due to the aforementioned Z2 classification
of bosonic SPT phases withG = U(1)oZ2 symmetry in 1+1
dimensions (the theories with odd k all represent the nontriv-
ial BTI state, while the theories with even k all represent the
trivial phase). As we discussed above, the anomaly here is
very similar to the global anomaly computed in Ref. 48 for a
Dirac fermion in 0 + 1 dimensions with U(1) and Z2 sym-
metry. In addition, a similar anomaly in the (purely bosonic)
(0 + 1)-dimensional theory of a particle on a ring was dis-
cussed recently in Appendix D of Ref. 65.

C. Deforming the target space

In the previous subsection we showed that, at least within
the O(3) NLSM description, the boundary of the (1 + 1)-
dimensional BTI phase exhibits a global anomaly in the Z2

symmetry of the BTI phase. However, our derivation of the
anomaly seemed to rely on the specific geometry of the tar-
get space S2 of the O(3) NLSM. Specifically, our derivation
used the fact that the partition function for the BTI boundary
was equivalent to a phase space path integral for a spin in a
magnetic field. In addition, since U(1) o Z2 is a subgroup
of SO(3), the anomaly we derived is closely related to the
global SO(3) anomaly of the O(3) NLSM with WZ term in
0 + 1 dimensions (see, for example, the discussion in Sec. 1.2
of Ref. 66). Our calculation then shows that the U(1) o Z2

subgroup of SO(3) is also anomalous in this theory.
In the rest of this section we show that the boundary

anomaly of the BTI state is not affected by any smooth defor-
mation of the target space S2 of the O(3) NLSM which also
preserves the U(1)oZ2 symmetry of the BTI phase. In other
words, we break the SO(3) symmetry of the model down to
U(1) o Z2, and we show that the anomaly still exists in these
less symmetric theories.

In this subsection we describe the geometry of such de-
formed target spaces, and then we construct models of the BTI
boundary using WZ terms for NLSMs with these deformed
target spaces. We also show how to properly gauge these WZ
actions. In the next subsection we use the equivariant localiza-
tion (EL) technique to compute the partition function for these
models, and we show that all such models have a partition
function which is identical to Eq. (3.28). Thus, we find that
the boundary anomaly is completely unaffected by smooth,
symmetry-preserving deformations of the target space of the
NLSM.

As stated above, we consider descriptions of the BTI us-
ing NLSMs with a target spaceM that can be obtained from
the target space S2 of the O(3) NLSM by smooth deforma-
tions which preserve the G = U(1) o Z2 symmetry of the
BTI phase. As in Sec. II, we can characterize such spaces
M precisely through the notion of a diffeomorphism which
is equivariant with respect to the symmetry of the BTI phase.
The target space of the O(3) NLSM is S2, and the NLSM
description of the BTI phase includes an action of the group
G = U(1) o Z2 on S2. This action was shown explicitly in
Eq. (3.1) and Eqs. (3.2). Let us assume that the manifoldM
is also equipped with an action of the group G. Then a dif-

feomorphism f : M → S2 is equivariant with respect to G
if

f(g ·m) = g · f(m), ∀g ∈ G , ∀m ∈M . (3.33)

This is the correct mathematical notion corresponding to the
intuitive idea of a manifold which can be obtained from S2 by
smooth, symmetry-preserving deformations.

The spacesMwhich are related to S2 in this way can be re-
alized as surfaces of revolution in R3 which are symmetric un-
der rotation about the z-axis (this guaranteesU(1) symmetry),
and which are also invariant under reflection z → −z through
the x-y plane? . The latter condition guarantees thatM pos-
sesses the Z2 symmetry of the BTI phase. These spaces M
are completely specified by a parametric curve (r(σ), z(σ)),
where r(σ) is the distance of the surface from the z-axis in R3

at the height z(σ), and σ ∈ [a, b] is a parameter used to spec-
ify the curve. If we think of (r(σ), z(σ)) as, say, a curve in the
x-z plane (replace r with x), then we can imagine construct-
ing the full surfaceM by rotating the curve about the z-axis
in R3. We can then choose coordinates on M to be (σ, φ),
where φ is the usual azimuthal angle in spherical or cylindri-
cal coordinates in R3. Finally, in order for this construction
to produce a smooth manifold (with no conical singularities
at the top and bottom), we require that dzdr = 0 at the top and
bottom of the curve. This is equivalent to the condition

∂σz(σ)|σ=a,b

∂σr(σ)|σ=a,b
= 0 , (3.34)

or just

∂σz(σ)|σ=a,b = 0 , (3.35)

assuming that ∂σr(σ) does not vanish at σ = a, b.
In principle we can use any parametrization of the sur-

face, but the most convenient choice is a parametrization
(r(s), z(s)) in terms of the arc length s along the curve, where

s(σ) =

∫ σ

a

dσ′
√

(∂σ′r(σ′))
2

+ (∂σ′z(σ′))
2
. (3.36)

We define L = s(b) to be the total length of the curve. In the
coordinate system (s, φ), the metric onM takes the form

g = ds⊗ ds+ [r(s)]2dφ⊗ dφ , (3.37)

and the volume form is

ωM = r(s)ds ∧ dφ . (3.38)

The total area of the target space is then AM =

2π
∫ L

0
ds r(s). In addition, the “unit speed” property

(∂sr(s))
2 + (∂sz(s))

2 = 1 of the arc length parametrization,
combined with the restriction ∂sz(s)|s=0,L = 0, implies that
∂sr(s)|s=0 = 1 and ∂sr(s)|s=L = −1. The signs here follow
from the fact that the width of the surfaceM increases from
zero near s = 0 and decreases back to zero at s = L. We also
assume that z(s) = −z(L− s) so thatM is symmetric under
reflection through the z = 0 plane in R3.
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We can now construct a model for the boundary of the BTI
using the NLSM with target spaceM. We denote the NLSM
field by m = (m1,m2), with components m1 = s and m2 =
φ. In the low energy (topological) limit the boundary action
contains only a WZ term for m. As usual, to construct this
term we require an extension B of the boundary spacetime
S1
T , and an extension m̃ of the NLSM field m into the bulk of
B. Then the WZ action describing the low energy physics of
the boundary is

SWZ [m] =
2πk

AM

∫
B
m̃∗ωM , (3.39)

where k ∈ Z is the level of the WZ term. We choose the U(1)
and Z2 symmetries of the BTI state to act on the components
of the field m as

U(1) : φ→ φ+ ξ , (3.40)

and

Z2 : φ→ −φ (3.41a)
s→ L− s . (3.41b)

This action of the Z2 symmetry is the generalization to the
target spaceM of the Z2 action on S2 from Eqs. (3.2).

The next step is to gauge the U(1) symmetry by coupling
the boundary WZ action to the gauge field A = Atdt. One
can check that the action

SWZ,gauged[m, A] = SWZ [m]− 2πk

AM

∫ T

0

dt f(s(t))At

(3.42)
will be invariant under the gauge transformation φ → φ + ξ,
A → A + dξ, if the function f(s) satisfies the first order
differential equation

∂sf(s) = r(s) . (3.43)

This equation has the simple solution f(s) = C+
∫ s

0
ds′ r(s′),

where C is an as yet undetermined constant. However, since
we require the gauged action to be invariant under the charge-
conjugation operation

Z2 : φ→ −φ (3.44a)
s→ L− s (3.44b)
A→ −A , (3.44c)

we find that this constant is fixed to take the valueC = −AM4π .
Therefore the function f(s) appearing in the gauged boundary
action is given by

f(s) =

∫ s

0

ds′ r(s′)− AM
4π

. (3.45)

In particular we have

f(L) = −f(0) =
AM
4π

, (3.46)

which will be needed for the calculation of the partition func-
tion in the next subsection.

D. Boundary partition function and global anomaly for all
target spaces

We now turn to the evaluation of the partition function
Z[A] for the NLSM with target space M and action given
by Eq. (3.42) using the equivariant localization (EL) tech-
nique. We give a brief introduction to the EL technique in
Appendix B, and in Appendix C we show how to calculate
the Pfaffians which appear in the final expression for Z[A].
Therefore, in this section we only outline the calculation and
present the result. The final result for the partition function
turns out to be completely identical to the partition function
of Eq. (3.28) which we derived for the special case of the
O(3) NLSM with target space S2. The mechanism which
underlies the EL technique allows us to understand why this
is the case. First, the EL technique applied to our particular
problem yields the result that the partition function depends
only on field configurations m near the points on M which
are fixed by the U(1) action. These are just the two points
s = 0 and s = L at the bottom and the top ofM. The value
of the gauged WZ action at these two points is actually in-
dependent of the specific choice of the target space M (see
Eqs. (3.52) below). Therefore we find that since the partition
function only receives contributions from field configurations
near s = 0 and s = L, and since the action at those two points
is independent of the details ofM, the partition function Z[A]
is independent of the specific details of the target space M.
The discussion here is meant to be heuristic, and so we now
move on to a more detailed presentation of the calculation.

We start by rewriting the gauged WZ action for the NLSM
in a way which makes the problem of computing the partition
function of this theory look like a phase space path integral for
a dynamical system with phase spaceM. The reason for this
is that the EL technique, in its original formulation, applies to
phase space path integrals. To achieve this goal we first recall
that we can use a small U(1) gauge transformation to replace
the gauge field At with its time average At in the gauged WZ
action. Next, we rewrite the gauged WZ action as

SWZ,gauged[m, A] =

∫
B
m̃∗ω −

∫ T

0

dt H(m) , (3.47)

where we defined

ω =
2πk

AM
ωM (3.48a)

H(m) =
2πk

AM
f(s)At . (3.48b)

We can now see that the path integral for Z[A] is equiv-
alent to a phase space path integral (see our Appendix A
for a review) for a dynamical system described by the triple
(M, ω,H), with the symplectic form ω and Hamiltonian H
defined by Eqs. (3.48). The Hamiltonian H and the symplec-
tic form ω are related via the equation dH = −ivω, where the
vector field v is given by

v = At∂φ . (3.49)

This vector field is clearly proportional to the vector field ∂φ
which generates the action of the U(1) part of the symmetry
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group G = U(1) o Z2 of the BTI on the target spaceM of
the NLSM. The classical equations of motion for this system
are

ṡ = 0 (3.50a)
φ̇ = At . (3.50b)

These equations say that (classically) each point on M re-
volves around the z-axis in R3 with a period 2π

At
. In the nota-

tion of Appendix B the classical equations of motion can be
rewritten as V aS [m(t); t] = 0, a = 1, 2, where V aS [m(t); t] =
ṁa(t) − va(m(t)) and va are the components of the vector
field v from Eq. (3.49).

We are now almost ready to to apply the EL results from
Appendix B to compute the partition function. First, let us
assume that T 6= 2πn

At
for any n ∈ Z. This means that the

only T -periodic solutions to the classical equations of motion
for the dynamical system defined by (M, ω,H) are the con-
stant solutions s = 0 and s = L. Therefore, the set LMS of
T -periodic solutions to the classical equations of motion (de-
fined in Eq. (B18)) has only these two elements, and the final
result for the partition function Z[A] only involves contribu-
tions from field configurations close to these solutions. Using
the EL technique we find that the partition function can be ex-
pressed only in terms of contributions from s = 0 and s = L
as

Z[A] ∼ eiSWZ,gauged[m,A]s=0

Pf[O]s=0
+
eiSWZ,gauged[m,A]s=L

Pf[O]s=L
,

(3.51)

where the operator O is defined in Eq. (B21) of Appendix B.
The value of the gauged WZ action at these two solutions is

SWZ,gauged[m, A]s=0 =
k

2
AtT (3.52a)

SWZ,gauged[m, A]s=L = −k
2
AtT . (3.52b)

Remarkably, these expressions do not depend on the area
AM, or any other details, of the target space M. We now
turn to the evaluation of the Pfaffians appearing in the denom-
inators in Eq. (3.51).

To calculate the Pfaffians (which by Eq. (B21) depend on
the derivatives of the vector field v), we first need to express
v in a system of local coordinates (x, y) near the points s = 0
and s = L of the space M. The coordinate system (s, φ)
is singular at these two points (φ is undefined there) and so
it cannot be used for an analysis of the space near these two
points. Near s = 0 we choose coordinates x = 2πk

AM s cos(φ),
y = 2πk

AM s sin(φ), and near s = L we choose coordinates
x = − 2πk

AM (L − s) cos(φ), y = 2πk
AM (L − s) sin(φ). This

choice of coordinates has the virtue that the symplectic form
ω takes the Darboux form ω = dx∧ dy at both s = 0 and s =
L. To derive this result we had to use the important property
that ∂sr(s)|s=0 = −∂sr(s)|s=L = 1. For these choices of
coordinates the vector field v takes the form

v = At(x∂y − y∂x) (3.53)

near s = 0, and the form

v = −At(x∂y − y∂x) (3.54)

near s = L.
Using the definition of Pf[O] in terms of a fermion path in-

tegral from Eq. (B23) of Appendix B, we find that Pf[O] at
the points s = 0 and s = L is given formally by the deter-
minant of a one-dimensional Dirac operator. More precisely,
after expanding the path integral in Fourier modes we find that

Pf[O]s=0 = −At
∏
m>0

(
2πm

T
+At

)(
−2πm

T
+At

)
= −det[−i∂t +At] , (3.55)

and

Pf[O]s=L = −det[−i∂t −At] . (3.56)

The operators

D± := −i∂t ±At (3.57)

are equivalent to one-dimensional Dirac operators for a
fermion in one spacetime dimension coupled to the external
field A = Atdt

48. As we discussed in Appendix B, the over-
all sign of these Pfaffians is ambiguous, since we are free to
alter the order of factors in the definition of the path integral
measure. Therefore at this point we are free to choose a par-
ticular definition of the path integral measure such that

Pf[O]s=0 = det[D+] (3.58)
Pf[O]s=L = det[D−] . (3.59)

These determinants still require proper regularization, and we
now turn to a discussion of this issue.

We choose to regularize these determinants using zeta and
eta function methods (see Appendix C for details). To moti-
vate the definition of the regularized determinants in terms of
zeta and eta functions, we first consider the following (non-
rigorous) manipulations of a definition of these determinants
in terms of an infinite product of their eigenvalues. We are also
careful to point out any ambiguities which arise in defining the
determinants in this way. Let λ(±)

m = 2πm
T ± At, m ∈ Z, be

the eigenvalues of the operator D±. Formally, we have

det[D±] =
∏
m∈Z

λ(±)
m

=
∏
m∈Z
|λ(±)
m |sgn(λ(±)

m ) . (3.60)

So far we encounter no difficulties. However, the next step is
to express the sign of the eigenvalues as

sgn(λ(±)
m ) = ei

π
2 (1−sgn(λ(±)

m )) . (3.61)

But this step is ambiguous because we could just as well have
written

sgn(λ(±)
m ) = ei

(2p+1)π
2 (1−sgn(λ(±)

m )) (3.62)
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for any integer p. For now we work with the most general
expression for sgn(λ

(±)
m ), which involves an arbitrary integer

p. Later in this section we show how the value of p can be
fixed by a minimal number of physical assumptions on the
properties of the partition function Z[A].

Continuing with our manipulations, we find that the deter-
minant can be expressed formally as

det[D±] =

(∏
m∈Z
|λ(±)
m |

)
ei

(2p+1)π
2

∑
m∈Z(1−sgn(λ(±)

m )) .

(3.63)

We now use zeta and eta function methods to make sense of
the different terms in this expression. Before we start, we
again decompose At as At = 2π`

T + at, for some ` ∈ Z and
at ∈ (0, 2π

T ). To start with the regularization, we first use zeta
function regularization to define the product over the magni-
tude of all the eigenvalues λ(±)

m . We carry out this calculation
in Appendix C and we find that(∏

m∈Z
|λm|

)
reg

= 2 sin

(
atT

2

)
. (3.64)

Next, we define the sum
∑
m∈Z 1 as(∑

m∈Z
1

)
reg

= 1 + 2ζ(0) = 0 , (3.65)

where ζ(s) =
∑∞
n=1

1
ns is the Riemann zeta function and we

used ζ(0) = − 1
2 . Finally, we define(∑
m∈Z

sgn(λ(±)
m )

)
reg

= η±(0) , (3.66)

where η±(0) is the analytic continuation to s = 0 of the eta
function η±(s) of the operator D± (see Appendix C for de-
tails). We calculate η±(0) in Appendix C and we find that

η±(0) = ±1∓ atT

π
. (3.67)

Putting this all together, we find that the regularized deter-
minants of D± are given by

det[D±]reg = 2 sin

(
atT

2

)
e−i

(2p+1)π
2 (±1∓ atTπ )

= 2(∓i)2p+1 sin

(
atT

2

)
e±i

(2p+1)
2 atT , (3.68)

where p was the arbitrary integer which appeared when we
tried to rewrite sgn(λ

(±)
m ) as an exponential. We then find

that the partition function for our quantum mechanical system
coupled to the external field A = Atdt evaluates to

Z[A] = (−1)k`+p+1 sin
[
atT

2 (k − 2p− 1)
]

sin
(
atT

2

) . (3.69)

The next step is to determine which choice of p gives the
correct partition function. To do this, we will impose the fol-
lowing two conditions on the value of Z[A = 0] (the parti-
tion function in zero external field). Physically, the value of
Z[A = 0] is the dimension of the Hilbert space of our quan-
tum mechanical system. Therefore it makes sense to impose
the following two conditions on Z[A = 0].

1. For k = 0, we require Z[A = 0] = 1, since k = 0 gives
a trivial theory with action equal to zero. The dimension
of the Hilbert space of this theory should be equal to
one.

2. For k 6= 0, Z[A = 0] should be a positive number.

In terms of ` and at, the limit At → 0 is taken by first setting
` = 0, and then taking at → 0. In this limit we find

Z[A = 0] = (−1)p+1(k − 2p− 1) . (3.70)

The first condition implies that p satisfies the equation

1 = (−1)p(2p+ 1) . (3.71)

This equation has the two solutions p = 0 and p = −1. For
these two solutions for p, we find that Z[A = 0] at any k takes
the form

Z[A = 0] =

{
−k + 1 , p = 0

k + 1 , p = −1
. (3.72)

We see that in order to satisfy condition two, we must pick
p = −1 for k > 0 and p = 0 for k < 0. In this way we find
that for all k, the partition function is given by

Z[A] = (−1)k`
sin
[
atT

2 (|k|+ 1)
]

sin
(
atT

2

) , (3.73)

which is identical to the answer we computed for the O(3)
NLSM. Therefore we find that for any two-dimensional target
space M which respects the symmetries of the BTI phase,
the NLSM description of the BTI using the target space M
has the same global anomaly as the O(3) NLSM description.
This result also implies that a large class of bosonic theories
in 0+1 dimensions with U(1)oZ2 symmetry share the same
global anomaly as a Dirac fermion in 0 + 1 dimensions with
the same symmetry48.

IV. RENORMALIZATION GROUP FLOWS AND THE
FATE OF OUR MODELS AT LOW ENERGIES

In this section we briefly comment on the expected low en-
ergy behavior of the boundary theories discussed in this ar-
ticle. Recall that the basic models we consider are NLSMs
with a WZ term. On a d-dimensional spacetime Xbdy (which
we imagine to lie at the boundary of an SPT phase), we can
construct a WZ term for a NLSM with target space M if
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dim[M] = d + 1. In addition to the WZ term, the NLSM
action will also contain an ordinary kinetic term

Skin[m] =
1

2f

∫
Xbdy

ddx Gab(m)∂µm
a∂µmb , (4.1)

where m : Xbdy → M is the NLSM field, and Gab(m) is
the Riemannian metric onM (compare with Eq. (2.5) for the
case of a spherical target space). If we assume that the NLSM
field m is dimensionless, then the coupling constant f has
dimensions of (mass)2−d. Equivalently, the inverse 1

f of the
coupling constant has dimensions of (mass)d−2. We now con-
sider the consequences of this fact for the low energy behavior
of the theories discussed in this paper. We focus on the case
where d ≥ 2 since for d = 1 our theory is not a quantum field
theory but just an ordinary quantum mechanical system.

For simplicity, we first consider the case where the tar-
get space M is the sphere Sd+1 and so the NLSM field is
a (d+ 2)-component unit vector n. In the absence of the WZ
term (i.e., for a WZ term with level k = 0) then for d = 2
the renormalization group (RG) flow is towards the disordered
(f → ∞) phase at all scales67–70. In this limit the theory is
massive and the ground state (or vacuum state) possesses the
full O(d + 2) = O(4) symmetry of the action (the ground
state transforms as a singlet under the action of theO(4) sym-
metry). When the WZ term is turned on, a stable fixed point
appears at a finite value of the coupling f 71, and this fixed
point is actually the SU(2)k Wess-Zumino-Witten conformal
field theory. To see this we note that the four-component unit
vector field of the O(4) NLSM is equivalent to a 2× 2 SU(2)
matrix field. Explicitly, if n = (n1, . . . , n4), then one possi-
ble mapping to the matrix field U is U = n4I+ i

∑3
a=1 n

aσa,
where σa for a = 1, 2, 3, are the Pauli matrices. In addition,
the U(1) symmetry that we are interested in in this paper is re-
alized as a right (or left, depending on the mapping from n to
U ) U(1) symmetry of the SU(2)k theory, and this symmetry
is well-known to be anomalous56,57.

For the case of d > 2 the coupling constant f is dimension-
ful and one expects (by a simple power-counting argument)
that the theory flows towards the ordered phase f → 0 and so
the O(d+ 2) symmetry of the theory is spontaneously broken
at low energies. In fact, for the theory without a topological
term, a double perturbation expansion in f and ε = d − 2 re-
veals the existence of an unstable fixed point at a finite value
f1 of the (suitably rescaled) coupling f 68,69. If this computa-
tion can be trusted, then below this fixed point the theory flows
to f → 0 and the symmetry is spontaneously broken, while
above the fixed point the theory flows to a (presumably) disor-
dered strong-coupling (f →∞) phase in which the O(d+ 2)
symmetry is restored? . Since in the d = 2 case turning on
the WZ term introduces a stable fixed point at a finite value
of the coupling, some authors have recently proposed a sce-
nario for d > 2 in which the introduction of the WZ term
introduces a stable fixed point at a finite value f = f2 of the
coupling constant, with f2 > f1, where f1 is the location of
the unstable fixed point (see Figure 2a of Ref. 73). This pos-
sibility was first raised in Ref. 73, and it has been pursued re-
cently in Ref. 74 using a combination of several perturbation

expansions. Both of these works consider the case of d = 3
spacetime dimensions? .

What can we deduce about our boundary theories from this
discussion? Let us first consider the case for BIQH states. Re-
call that these boundary theories were O(2m) NLSMs with
WZ term in spacetime dimension 2m − 2, and also NLSMs
with deformed target spacesM which still possessed a U(1)
symmetry. We first discuss the casem > 2, so that the bound-
ary spacetime dimension is larger than two. In this case, the
conclusion which is supported by the most evidence is that the
U(1) symmetry of these theories is spontaneously broken in
the ground state. In this case the symmetry-broken theory will
possess a gapless Goldstone mode. Interestingly, this gapless
mode will still couple to the external field A = Aµdx

µ and
it is this Goldstone mode which exhibits the anomaly in the
symmetry-broken theory. For example, if we consider a gen-
eral target space M with U(1) symmetry, and we add a po-
tential to the action which is minimized along the U(1) orbit
of a particular point on M, then the low energy theory will
possess a gapless Goldstone mode corresponding to motion
around this orbit? .

It is helpful to see an explicit example of this kind in or-
der to appreciate the fact that the Goldstone mode really does
exhibit the anomaly. Let us take the O(2m) NLSM with
WZ term at level k and introduce a potential into the action
which is minimized when |b1|2 = 1 and all other b` = 0
(` = 2, . . . ,m). In the symmetry-broken vacuum we then
have b1 = eiϕvac for some constant ϕvac. If we expand
around this vacuum by setting b1 = eiϕvac+iϕ then the gauged
NLSM action with WZ term reduces to an action for the gap-
less Goldstone mode ϕ coupled to A. This action takes the
explicit form

S[ϕ] =
1

2f

∫
d2m−2x (∂µϕ−Aµ)(∂µϕ−Aµ)

− k

(2π)m−1

∫
Xbdy

dϕ ∧A ∧ Fm−2 . (4.2)

It is now easy to see that under a U(1) gauge transformation
ϕ → ϕ + χ, A → A + dχ, the action for the Goldstone
mode ϕ has the same anomaly as the original O(2m) NLSM.
From this analysis we can conclude that even when the U(1)
symmetry of the BIQH state is spontaneously broken in the
boundary theory, the boundary theory will still possess the
same perturbative U(1) anomaly as the original NLSM that
we started with.

In the case of m = 2 (boundary spacetime dimension equal
to two) the situation is more interesting. As we noted above,
if we preserve the full O(4) symmetry of the theory, then our
theory flows at low energies to the SU(2)k Wess-Zumino-
Witten conformal field theory. On the other hand, we can in-
troduce some O(4)-breaking but U(1)-preserving anisotropy
into the theory to set |b1|2 = 1 and b2 = 0 (or vice-versa). In
this case we end up with a free boson theory of the form

S[ϕ] =
1

2f

∫
d2x (∂µϕ−Aµ)(∂µϕ−Aµ)

− k

2π

∫
Xbdy

dϕ ∧A , (4.3)
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where we have b1 = eiϕ. In this case, however, ϕ should not
be interpreted as a Goldstone boson as we do not have spon-
taneous symmetry breaking in this dimension. The SU(2)k
theory has a central charge of c = 3k

k+2 ≥ 1 (see, for exam-
ple, Ref. 75) so it can and will flow to the free boson theory
with central charge c = 1 when perturbations which break the
O(4) symmetry down toU(1) are introduced (this flow is con-
sistent with Zamolodchikov’s c-theorem76). Note that if we
preserve the U(1) symmetry, then the boundary theory cannot
be gapped out since we always need some gapless degrees of
freedom to saturate the anomaly. Finally, we remark that in
the k = 1 case, the free boson theory is actually equivalant
to the SU(2)1 theory for a particular value of the coupling f .
However, marginal perturbations which break the O(4) sym-
metry down to U(1) will in general tune f away from this
special value.

We close this section with a few words about the boundary
theories of BTI states. These boundary theories occur in odd
spacetime dimensions 2m− 1, and they lie at the boundary of
a BTI state in 2m dimensions. We have already analyzed the
case m = 1 in detail in Sec. III. In this case the boundary is
just a quantum mechanical system and there are no subtleties
involved in assessing the fate of the system at low energies.
For the case of m > 1, the most likely scenario is that these
boundary theories spontaneously break the U(1) o Z2 sym-
metry of the BTI state. As we noted in Ref. 36, because of
the way the U(1) symmetry in our models acts on S2m (the
target space of the NLSM in this case), in the BTI case it is
possible to break the Z2 symmetry while preserving the U(1)
symmetry. In this way we were able to show that the boundary
of the BTI state can exhibit a Z2 symmetry-breaking electro-
magnetic response, and we found that this response is given
by a CS term for Aµ with level m!

2 . We then argued, based
on this evidence, that the boundary theories of the BTI state
exhibit a bosonic analogue of the parity anomaly.

Form > 1 it is still an open problem to exhibit this bosonic
analogue of the parity anomaly in a concrete way (e.g., at the
level of the partition function). The most interesting case is
m = 2 in which the boundary spacetime dimension is d = 3.
Here we can list three possibilities for the fate of the bound-
ary theory at low energies. First, as noted above, the boundary
could break part or all of the symmetry groupU(1)oZ2 of the
BTI state. Second, the results of Refs. 73 and 74 indicate that
a gapless conformal field theory preserving the full U(1)oZ2

symmetry may be possible. Finally, since the anomaly in this
case is global and not perturbative, there is the possibility that
the boundary theory can flow to a topological quantum field
theory whose partition function (in the presence of the exter-
nal field Aµ) exhibits the anomaly. In this last case all other
degrees of freedom at the boundary become gapped and de-
couple from the topological quantum field theory which de-
scribes only the ground state sector of the boundary theory.
We comment more on this last possibility in Sec. V.

V. DISCUSSION AND CONCLUSION

In this paper we continued the program, initiated in Ref. 36,
of characterizing the anomalies at the boundary of BIQH and
BTI states in all odd and even dimensions, respectively. In
Sec. II we revisited the perturbative U(1) anomaly at the
boundary of BIQH states. There we proved that the target
space M of the NLSM describing the boundary theory of
these states can be subjected to arbitrary smooth, symmetry-
preserving deformations without affecting the anomaly. In
Sec. III we revisited the global anomaly at the boundary of
BTI states. In Ref. 36 we gave an argument that the bound-
ary of the BTI state exhibits a bosonic analogue of the parity
anomaly of Dirac fermions in odd dimensions. In this paper
we elevated this argument to a proof for the case of the (0+1)-
dimensional boundary of the (1+1)-dimensional BTI state. In
that case we also used the equivariant localization technique
to prove that the global anomaly of the BTI boundary is robust
against arbitrary smooth, symmetry-preserving deformations
of the target space of the NLSM used to describe this state.

From a fundamental point of view, perhaps the most im-
portant result in this paper is our concrete demonstration, at
the level of the partition function, of an analogue of the par-
ity anomaly in a purely bosonic system. Indeed, our result in
Sec. III is a direct bosonic analogue of the results of Ref. 48
on global anomalies of fermions in 0 + 1 dimensions. In the
context of SPT phases, our results in this paper also imply that
the universal properties of an SPT phase can be captured by a
much wider range of models than the NLSMs with spherical
target space originally considered in Refs. 37 and 38. The re-
sults of this paper lead us to conjecture that an SPT phase in
D + 1 dimensions with symmetry group G, which would be
described by an O(D+ 2) NLSM in the approach of Refs. 37
and 38, can be modeled using an NLSM with any target space
M related to SD+1 by a diffeomorphism which is equivari-
ant with respect to the action of the group G. Note that this
conjecture only applies to SPT phases for which an NLSM
description exists. This does not seem to be the case for all
SPT (or short-range entangled) phases, for example the “E8”
state in 2 + 1 dimensions and the “beyond cohomology” state
with time-reversal symmetry in 3 + 1 dimensions22,32.

An ambitious goal for future work would be to present
a concrete demonstration, again at the level of the partition
function, of an analogue of the parity anomaly in a (2 + 1)-
dimensional bosonic model with U(1) and Z2 symmetry,
where Z2 now represents time-reversal. A precise understand-
ing of global anomalies in (2 + 1)-dimensional bosonic sys-
tems would also be extremely useful in the search for new
dualities in quantum field theory in 2 + 1 dimensions77–83. A
crucial check on any proposed duality is that the two theo-
ries which are conjectured to be dual to each other must have
the same ‘t Hooft anomalies when coupled to various external
fields.

An interesting candidate for a (2 + 1)-dimensional bosonic
model displaying a bosonic analogue of the parity anomaly
is the O(5) NLSM with WZ term, and with the U(1) o Z2

symmetry of the BTI state acting in the manner described in
Ref. 36. In Ref. 36 we already gave several pieces of evidence
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which suggest that this model displays a bosonic analogue
of the parity anomaly. The first piece of evidence was our
computation of the time-reversal breaking electromagnetic re-
sponse of this model, which we already mentioned above.
However, we also gave a second argument which was based
on the demonstration that there is a certain composite vortex
excitation in this model with fermionic statistics (an observa-
tion which goes back to Refs. 32 and 84), and such an excita-
tion should not exist in a purely bosonic model which is not
anomalous.

The O(5) NLSM with WZ term may be tractable analyti-
cally in the topological limit in which the coupling constant
fbdy of the NLSM is sent to infinity (i.e., if one considers the
model with only the topological term). This would correspond
to the third possibility that we raised at the end of Sec. IV:
the boundary theory could flow to a topological quantum field
theory whose partition function exhibits the anomaly. It may
even be the case that a more sophisticated version of the equiv-
ariant localization technique can be used to calculate the par-
tition function of the O(5) NLSM with WZ term in the topo-
logical limit and properly coupled to an external U(1) gauge
field as described in Sec. VI of Ref. 36. However, there are
several difficulties which must be surmounted before one can
apply any kind of equivariant localization technique to this
problem. The main problem is that one needs to find a hid-
den supersymmetry in this problem which can be exploited in
order to establish the localization of the path integral. In the
(0+1)-dimensional case this supersymmetry followed, at least
partially? , from the fact that the path integral measure could
be exponentiated by introducing a set of real Grassmann-
valued (i.e., fermionic) fields ηa(t) into the problem. This
could only be done with real fermionic fields because the tar-
get spaces of the (0 + 1)-dimensional NLSMs that we studied
were all symplectic manifolds. On the other hand, the target
space S4 of the O(5) NLSM is not symplectic. Therefore one
can only exponentiate the path integral measure by introduc-
ing complex fermionic fields. Currently, we are not aware of
a generalization of the equivariant localization techniques of
Refs. 49–52 which starts by exponentiating the path integral
measure by introducing complex fermions, but such a general-
ization may still be possible. We leave a detailed investigation
of this to future work.
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Appendix A: Classical mechanics and phase space path integral
for general Hamiltonian systems

In this appendix we review the symplectic geometry formu-
lation of classical Hamiltonian mechanics, closely following
the discussion in Ch. 11 of Ref. 85. We use this formalism
in Sec. III of the paper to aid in the evaluation of the parti-
tion function for a gauged NLSM with WZ term which de-
scribes the (0 + 1)-dimensional boundary of the BTI state in
1 + 1 dimensions. The symplectic geometry formulation of
Hamiltonian mechanics is a geometric formulation in terms
of a phase space M (a closed, orientable, smooth manifold)
equipped with a symplectic form ω. We takeM to have di-
mension 2n, where n is an integer greater than or equal to
one. The symplectic form ω is a closed, non-degenerate two-
form on M. In a system of local coordinates ma on M, in
which ω = 1

2ωab(m)dma ∧ dmb, the non-degeneracy condi-
tion is equivalent to the condition that the components ωab(m)
are the elements of an invertible matrix. We use the notation
m = (m1, . . . ,m2n) to refer to the entire collection of phase
space coordinates, and we use Latin indices near the begin-
ning of the alphabet to label the components of general ten-
sor fields on M. We also use the notation ∂a ≡ ∂

∂ma and
ṁa ≡ dma

dt in what follows.
To start, for any function f on phase space we define an

associated vector field vf by the equation

df = −ivfω , (A1)

where ivω = vaωabdm
b denotes interior multiplication of the

form ω by the vector field v. The components of vf then take
the form

vaf = ωab∂bf , (A2)

where ωab are the elements of a matrix which is the inverse of
the matrix with elements ωab, i.e.,

ωabωbc = δac . (A3)

We see that the symplectic two-form ω must be non-
degenerate for this to work.

The Poisson bracket of two functions f and g on phase
space is then defined by?

{f, g} = ivg ivfω . (A4)

In a system of local coordinates the Poisson bracket has the
form

{f, g} = ωab∂bf∂ag . (A5)

For a given Hamiltonian functionH , Hamilton’s equations are
equivalent to the single equation

dH = −ivHω , (A6)

where vH is the vector field whose components are the time
derivatives of the phase space coordinates,

vH = ṁa∂a . (A7)
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Finally, in each coordinate patch onM we can write

ω = dϑ , (A8)

where the one-form ϑ = ϑa(m)dma is known as the sym-
plectic potential.

Next, we review the form of the phase space path integral
for the partition function Z(T ) = tr[e−iHT ] of the quantum
mechanical system obtained via quantization of the classical
system defined by the triple (M, ω,H). Here the trace is over
the Hilbert space of the quantum mechanical system. As is
reviewed in Sec. 4.1 of Ref. 53, the phase space path integral
for Z(T ) takes the form

Z(T ) =

∫
LM

[d2nm]

 ∏
t∈[0,T )

Pf[ωab(m(t))]

 eiS[m] ,

(A9)
where the action appearing in the exponential is

S[m] =

∫ T

0

dt [ϑa(m)ṁa −H(m)] . (A10)

The path integral is taken over all field configurations ma(t)
with periodic boundary conditions ma(0) = ma(T ) on the
interval [0, T ). The space of all such configurations is known
as the loop space LM of the phase space manifold M. In
addition, [d2nm] denotes a flat measure on phase space at all
points in time. The nontrivial geometry of the phase space is
taken into account by the insertion of∏

t∈[0,T )

Pf[ωab(m(t))] (A11)

into the path integral. This factor can be understood by not-
ing that the 2n-form ωn

n! provides a natural volume form (the
Liouville measure) onM, and also by making use of the for-
mula ωn

n! = Pf[ωab]dm1 ∧ · · · ∧ dm2n.
The first term in the action can also be recast into a form

which is very similar to a WZ term. Let us denote the interval
[0, T ) with periodic boundary conditions by S1

T , the circle of
circumference T . This circle is the spacetime that our quan-
tum mechanical system evolves on. To write the first term in
the action in a WZ form, we first introduce a two-dimensional
manifold B which has S1

T as its boundary, ∂B = S1
T . Then

we choose an extension m̃ of the field configuration m into
the bulk of B such that m̃|∂B = m. We can now use Stokes’
theorem to rewrite the first term in S[m] as∫ T

0

dt ϑa(m)ṁa =

∫
S1
T

m∗ϑ

=

∫
B
m̃∗dϑ

=

∫
B
m̃∗ω . (A12)

In this form the term
∫ T

0
dt ϑa(m)ṁa appearing in the action

looks very similar to a WZ term, in the sense that it involves
(i) an extended spacetime B, (ii) an extension m̃ of the field
configuration m into B, and (iii) the integral over B of the
pullback of a closed form onM.

Appendix B: A brief introduction to equivariant localization for
phase space path integrals

In this appendix we give a brief review of the equivariant
localization (EL) technique for the evaluation of certain phase
space path integrals of the form of Eq. (A9) from Appendix A.
We use the EL technique in Sec. III to evaluate the partition
function for a gauged NLSM with WZ term which describes
the (0 + 1)-dimensional boundary of a BTI state in 1 + 1 di-
mensions. Our presentation in this appendix is based on the
discussion in Sec. 4 of Ref. 53. We also give a brief discussion
on how one can define the Pfaffians of infinite-dimensional
operators which appear in the formulas obtained by applying
the EL technique.

The EL technique for phase space path integrals can be
thought of as an infinite-dimensional generalization of the
finite-dimensional integration formulas derived in Refs. 86–
88. In this paper we only use the simplest version of the EL
technique. The path integral formula which follows from this
particular version of the EL technique is sometimes referred
to as the “WKB” localization formula. This basic version of
the EL method and several generalizations of it (in particular
the “Niemi-Tirkkonen” formula) were developed in Refs. 49–
52. Stone’s paper89 on a hidden supersymmetry in the quan-
tum mechanics of spin can be seen as a herald for the devel-
opments on the EL technique for phase space path integrals
which followed soon after. The application of the EL tech-
nique to systems with a two-dimensional phase space, which
is the case of interest in this paper, was considered in detail in
Ref. 90. Finally, some issues related to the regularization of
determinants and Pfaffians appearing in the EL formulas were
greatly clarified by Miettinen in Ref. 91.

In the context of the EL technique, the word “localization”
refers to the fact that although the path integral in question
ostensibly gets contributions from all possible field configu-
rations, the final result only depends on contributions from a
very small subset of these configurations. Thus, the integral
“localizes” to a sum or, in some cases, a finite-dimensional
integral over this subset of all field configurations. The word
“equivariant” refers to the fact that the mechanism responsible
for the localization of the integral is best understood in terms
of the equivariant cohomology of the manifold that one is in-
tegrating over88. In the case of the phase space path integrals
considered here this turns out to be the U(1)-equivariant co-
homology of the infinite-dimensional loop space LM of the
classical phase spaceM.

The basic idea of the EL technique is as follows. First, to
apply the EL technique we need to start with a classical sys-
tem possessing a U(1) symmetry. It turns out that this U(1)
symmetry “lifts” to a supersymmetry of the phase space path
integral. This supersymmetry is then used to construct a one
parameter family of equivalent path integrals parametrized by
λ ∈ [0,∞), with the original path integral of interest cor-
responding to λ = 0. The supersymmetry guarantees that
the path integral at any value of λ is equivalent to the origi-
nal path integral. Therefore, the original path integral can be
computed by taking the opposite limit λ → ∞. In this limit
the path integral simplifies dramatically, getting contributions
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only (in the cases considered here) from the field configura-
tions which correspond to time-independent solutions to the
classical equations of motion. One says that the path integral
localizes onto these configurations. We now outline the main
ideas behind the EL technique in more detail, closely follow-
ing Sec. 4 of Ref. 53.

To start, we assume that it is possible to define an action
of the group U(1) on the phase spaceM. Let v = va(m)∂a
be the vector field which generates the U(1) action, in the
sense that under a U(1) transformation by the small angle ξ
the phase space coordinates transform asma → ma+ξva. On
M there is a Hamiltonian function H(m) which is naturally
associated with this vector field, and which is determined by
v and ω via the equation

dH = −ivω . (B1)

Note that this is just Eq. (A1) with the function f taken to be
the Hamiltonian. We choose this specific Hamiltonian to de-
scribe the dynamics of the system that we consider in what
follows. With this choice of Hamiltonian, the action for our
dynamical system will also have a U(1) symmetry. Finally,
we will need a Riemannian metric gab(m) onM which is in-
variant under the U(1) action generated by v. This is equiva-
lent to the requirement that v is a Killing vector for the metric,
i.e., gab and va should satisfy the Killing equation

vc∂cgab + gac∂bv
c + gbc∂av

c = 0,∀ a, b . (B2)

The path integral in Eq. (A9) involves an integration over
the loop space LM ofM, which is spanned by the T -periodic
functions ma(t) which, for each t, represent a point on M.
We now introduce an additional set of Grassmann-valued
fields ηa(t) which also obey periodic boundary conditions.
The space of these new fields is equivalent to the loop space
of Λ1M, the vector space of one-forms onM, and this space
is denoted by LΛ1M. The interpretation in terms of Λ1M
is due to the fact that at each time t the anticommuting fields
ηa(t) can be regarded as a basis of one-forms onM. Using
the rules for integration over real Grassmann variables, the
new fields ηa(t) can be used to rewrite Z(T ) in the form

Z(T ) =

∫
LM⊗LΛ1M

[d2nm][d2nη] ei(S[m]+Ω[m,η]) , (B3)

where we defined

Ω[m,η] =
1

2

∫ T

0

dt ωab(m(t))ηa(t)ηb(t) , (B4)

and where the integration is now over the “super loop space”
LM⊗ LΛ1M. One should compare Eq. (B3) with the origi-
nal expression Eq. (A9) for Z(T ).

Using the Grassmann-valued fields we can define the oper-
ators

dL =

∫ T

0

dt ηa(t)
δ

δma(t)
, (B5)

and

iS =

∫ T

0

dt V aS [m(t); t]
δ

δηa(t)
, (B6)

where

V aS [m(t); t] = ṁa(t)− va(m(t)) . (B7)

The quantities V aS [m(t); t] can be interpreted as the compo-
nents of a vector field

V S =

∫ T

0

dt V aS [m(t); t]
δ

δma(t)
(B8)

on the loop space. To understand the physical significance of
the components V aS [m(t); t], note that the classical equations
of motion for the system under consideration are

δS[m]

δma(t)
= ωab(m(t))V bS [m(t); t] = 0 , ∀ a . (B9)

Since ω is non-degenerate, the classical equations of motion
are equivalent to the equations V aS [m(t); t] = 0, ∀ a. The op-
erator dL can be interpreted as an exterior derivative on LM,
and iS has the interpretation of interior multiplication by the
loop space vector field V S .

In terms of these operators we now define the loop space
equivariant exterior derivative

QS = dL + iS . (B10)

The square of this operator can be interpreted as a loop space
Lie derivative (acting on loop space differential forms) along
the loop space vector field V S ,

LS ≡ Q2
S = dLiS + iSdL . (B11)

Some algebra shows that

QS(S[m] + Ω[m,η]) = 0 , (B12)

which means that the integrand in the path integral is equiv-
ariantly closed (i.e., closed under the action of the equivariant
exterior derivative). To prove this relation one needs to use the
fact that ω is closed as an ordinary two-form onM, and also
Eq. (B9) relating V S to the classical equations of motion.

The closure of the integrand can be interpreted in terms of
a supersymmetry (SUSY) of this system which is generated
by the “supercharge” QS . In particular, Eq. (B12) implies
that the path integral for Z(T ) is invariant under the SUSY
transformation

δεm
a(t) = εQSm

a(t) (B13a)
δεη

a(t) = εQSη
a(t) , (B13b)

where ε is a constant Grassmann parameter. An explicit calcu-
lation gives QSma(t) = ηa(t) and QSηa(t) = V aS [m(t); t],
so we know the exact form that this SUSY transformation
takes. The next step towards establishing localization of the
path integral is to use the supersymmetry to deform the path
integral by adding a suitably chosen SUSY-exact term to the
integrand. To this end, we modify Z(T ) to

Z(T,λ)

=

∫
LM⊗LΛ1M

[d2nm][d2nη]ei(S[m]+Ω[m,η])−λQSΨ[m,η] ,

(B14)
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where Ψ[m,η] is some functional of m and η which will be
required to satisfy

Q2
SΨ[m,η] = 0 . (B15)

If we can find such a functional Ψ[m,η], then we can show
that Z(T, λ) is actually independent of λ by the following ma-
nipulations. We compute (we suppress the arguments of the
different terms for brevity)

dZ(T, λ)

dλ
= −

∫
[d2nm][d2nη] QSΨ ei(S+Ω)−λQSΨ

= −
∫

[d2nm][d2nη] QS

[
Ψ ei(S+Ω)−λQSΨ

]
= 0 . (B16)

The second line follows from the first since the argument of
the exponential is annihilated by QS (and this requires that
Q2
SΨ = 0). Finally, the third line follows from the second

due to an infinite-dimensional version of the statement that the
integral of a total derivative is zero. In the infinite-dimensional
case this is only true if the path integral measure is invariant
under the action ofQS , but that is the case here. An alternative
explanation of the λ-independence of this integral, which uses
a Ward identity associated with the symmetry generated by
QS , can be found in Ref. 53.

The arguments from the last paragraph show that the orig-
inal partition function Z(T ) is equal to the deformed parti-
tion function Z(T, λ) for any value of λ. The final step in
establishing the localization of Z(T ) is to pick a particular
functional Ψ[m,η] such that the λ→∞ limit of Z(T, λ) be-
comes easy to evaluate. There are various choices for such a
Ψ[m,η], but the choice which leads to the WKB localization
formula is

Ψ[m,η] =

∫ T

0

dt gab(m(t))V aS [m(t); t]ηb(t) . (B17)

One can check that this functional satisfies Q2
SΨ[m,η] = 0,

but the derivation relies on the fact that v is a Killing vector
for the metric gab.

Using this particular choice of Ψ[m,η], one can now show
that the path integral Z(T ) localizes to a sum over contribu-
tions from the field configurations in the set

LMS = {m(t) ∈ LM | V aS [m(t); t] = 0, ∀ a} , (B18)

which is the set of all T -periodic solutions to the classical
equations of motion. To motivate this, we simply note that the
bosonic term in QSΨ[m,η] is∫ T

0

dt gab(m(t))V aS [m(t); t]V bS [m(t); t] . (B19)

Now QSΨ[m,η] appears in the exponential of the path inte-
gral multiplied by a factor of −λ, which means that in the
limit λ → ∞, this term becomes a delta function which
restricts the path integral to only those field configurations
where V aS [m(t); t] = 0.

The final result of the EL calculation is the formula

Z(T ) = lim
λ→∞

Z(T, λ)

∼
∑

m(t)∈LMS

eiS[m]

Pf[O]m(t)=m(t)
, (B20)

where the infinite-dimensional operator O has matrix ele-
ments

Oab(t, t′) =
δV cS [m(t′); t′]

δma(t)
δcb

= δab∂t′δ(t− t′)− ∂avc(m(t))δcbδ(t− t′) ,
(B21)

and where the notation “∼” indicates equivalence up to infi-
nite products of constant (but λ-independent) factors. The fi-
nal formula Eq. (B20) is famously equivalent to the stationary-
phase approximation to Z(T ), but where the sum is taken
over all T -periodic solutions of the classical equations of
motion, and not just the solution which minimizes the ac-
tion. In favorable cases there are a finite number of solutions
m(t) ∈ LMS , and the partition function reduces to a sum
of finitely many terms. In addition, the Pfaffians appearing
in this expression can be computed using standard regulariza-
tion techniques (see, for example, Ref. 91), as we discuss in
Appendix C for the examples considered in this paper.

We note here that there is a typo in the presentation of this
formula in several original references on the EL technique.
The formula presented here is the correct one and it can be
found in this form in Eq. 3.13 of Ref. 50 and Eq. 13 of Ref. 91,
for example. Note, however, that we present this formula in
terms of an operatorO which has all indices down,Oab(t, t′).
We find that this presentation makes more sense since typi-
cally one considers the Pfaffian of an antisymmetric bilinear
form Oab and not a linear operator Oab which happens to be
antisymmetric. In addition, in the infinite-dimensional case
one needs to also properly define the Pfaffian, and with the
index structure that we have chosen it is possible to define this
Pfaffian in terms of a fermion path integral as we now discuss.

The Pfaffian of a 2n × 2n antisymmetric matrix Oab is a
well-defined object, in the sense that there is an explicit for-
mula for it. One way of computing the Pfaffian is by Grass-
mann integration. If ηa, a = 1, . . . , 2n, are a set of 2n real
Grassmann variables, then we have

Pf[O] =

∫
d2nη e−

1
2η
aOabηb , (B22)

provided that we define the measure as d2nη = dη1 · · · dη2n.
We therefore propose that in the infinite-dimensional case one
should define the Pfaffian of the operator O via the fermionic
path integral

Pf[O] =

∫
[d2nη]e−

1
2

∫ T
0
dt

∫ T
0
dt′ηa(t)Oab(t,t′)ηb(t′) , (B23)

where ηa(t) are the Grassmann-valued fields with periodic
boundary conditions that we considered earlier in this section.
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We can then evaluate the integral by expanding the fields in
Fourier modes as

ηa(t) =
∑
m∈Z

ηam
ei

2πmt
T

√
T

, (B24)

where the Fourier coefficients ηam are ordinary Grassmann
numbers. We also need to define the path integral measure.
One possible definition is (we specialize to n = 1 here)

[d2η] = dη1
0dη

2
0

∏
m>0

dη1
−mdη

1
mdη

2
−mdη

2
m , (B25)

however, the definition of the measure is ambiguous because
different orderings of the terms will lead to answers which dif-
fer by an overall sign. This ambiguity is not important at this
stage however, because we will eventually need to regulate
the result of the path integral in order to make sense of it. We
consider the careful regularization of this integral for specific
examples in Sec. III of the main text and in Appendix C.

Appendix C: Evaluation of Determinants

In this appendix we compute the amplitude and phase of
the regularized determinants det[D±]reg which are needed for
the calculation of the partition function Z[A] for the gauged
boundary theory of the BTI state in Sec. III of this paper. We
use zeta and eta functions (to be defined below) to regularize
the magnitude and phase, respectively, of these determinants.
The application of zeta and eta function methods to the regu-
larization of determinants appearing in the context of EL cal-
culations was discussed in detail by Miettinen in Ref. 91. In
particular, Miettinen showed that by defining the phase of the
regularized determinant using the eta invariant of the opera-
tor in question, the character formula for SU(2) (equivalent to
the partition function for a spin in a constant magnetic field)
could be obtained directly from an EL path integral calcula-
tion, without the need to correct the final answer by hand using
a so-called “Weyl shift”? .

In Sec. III we showed that the expression for the determi-
nant of D± could be manipulated into the form

det[D±] =

(∏
m∈Z
|λ(±)
m |

)
ei

(2p+1)π
2

∑
m∈Z(1−sgn(λ(±)

m )) ,

(C1)
where p was an arbitrary integer. We remind the reader that
D± = −i∂t ± At, and the eigenvalues of D± are λ(±)

m =
2πm
T ± At, m ∈ Z. In Sec. III we also showed that a regu-

larization of the infinite sum
∑
m∈Z 1 using the Riemann zeta

function allowed us to reduce this expression to

det[D±] =

(∏
m∈Z
|λ(±)
m |

)
e−i

(2p+1)π
2

∑
m∈Z sgn(λ(±)

m ) . (C2)

In this appendix we show how zeta and eta function methods
can be used to carefully define the amplitude and phase in this
formal expression for the determinant of D±.

We start with the calculation of the amplitude
∏
m∈Z |λ

(±)
m |.

To be concrete, we first assume that At ∈ (0, 2π
T ). In this case

we have∏
m∈Z
|λ(±)
m | = At

∏
m>0

[(
2πm

T

)2

− (At)
2

]
. (C3)

To regularize the product on the right-hand side of this equa-
tion we first note that the ratio

∏
m>0

[(
2πm
T

)2 − (At)
2(

2πm
T

)2
]

=
sin
(
AtT

2

)
AtT

2

, (C4)

is a completely well-defined quantity. To compute this ratio
we used the infinite product formula for the sine function,

sin(x) = x

∞∏
m=1

(
1− x2

π2m2

)
. (C5)

The product
∏
m>0

(
2πm
T

)2
in the denominator on the left-

hand side of Eq. (C4) can be interpreted as det′[−i∂t], where
the prime indicates the determinant without the contribution
from the zero mode. We can use zeta function regularization92

to assign a finite value to this determinant.
To apply zeta function regularization we first define a dif-

ferential operator P with eigenvalues
(

2πm
T

)2
, m > 0. We

then define the spectral zeta function for this operator as

ζP(s) =
∑
m>0

(
2πm

T

)−2s

, (C6)

which is well-defined for Re[s] > 1
2 . Then the regularized

version of the determinant of P is defined as

det[P]reg = e−ζ
′
P(0) , (C7)

where ζ ′P(0) is the analytic continuation of ζ ′P(s) to s = 0
(and the prime denotes a derivative with respect to s). In this
case the spectral zeta function ζP(s) is related to the ordinary
Riemann zeta function ζ(s) by

ζP(s) =

(
T

2π

)2s

ζ(2s) , (C8)

which means that

ζ ′P(0) = 2 ln

(
T

2π

)
ζ(0) + 2ζ ′(0) . (C9)

Using the well-known values ζ(0) = − 1
2 and ζ ′(0) =

− 1
2 ln(2π), we find that ζ ′P(0) = − ln(T ), so that

det[P]reg = T . (C10)

Then, in view of the ratio Eq. (C4), we define(∏
m∈Z
|λ(±)
m |

)
reg

= At det[P]reg
sin
(
AtT

2

)
AtT

2

= 2 sin

(
AtT

2

)
. (C11)



22

More generally, suppose that At lies in the open interval
( 2π`
T , 2π`+2π

T ) for some ` ∈ Z. In this case it is convenient
to decompose At as

At =
2π`

T
+ at , (C12)

where at ∈ (0, 2π
T ). If we now repeat the amplitude calcula-

tion above for this case then we find that(∏
m∈Z
|λ(±)
m |

)
reg

= (−1)`2 sin

(
AtT

2

)

= (−1)`2 sin

(
π`+

atT

2

)
= 2 sin

(
atT

2

)
. (C13)

We now move on to the computation of the phase of the
regularized determinants. First, for a complex number s with
sufficiently large and positive real part, the eta function η±(s)
of the Dirac operator D± is defined by17

η±(s) =
∑
m∈Z

sgn(λ(±)
m )|λ(±)

m |−s , (C14)

where we use the convention that sgn(0) = 1. This expres-
sion has a well-defined analytic continuation to s = 0, known
as the eta invariant, and we use this analytic continuation to
define the regularized phase of the determinant in question via
the formula (∑

m∈Z
sgn(λ(±)

m )

)
reg

= η±(0) . (C15)

We focus our attention on the calculation of the eta invariant
for D+. The calculation for D− is very similar.

First, recall that we are assuming that At lies in an open
interval between two eigenvalues of −i∂t. This guarantees
that the operators D± do not possess any zero modes. In this
case each term in η±(s) can be differentiated with respect to
At, since the value of sgn(λ

(±)
m ) does not vary as we move At

within this open interval. After taking the derivative, we find
that (focusing on the case of D+)

dη+(s)

dAt
= −sζD2

+
( s+1

2 ) , (C16)

where ζD2
+

(s) is the spectral zeta function for D2
+, the square

of the Dirac operatorD+. This formula is in fact just a special
case of the general formula in Proposition 2.10 of Ref. 19.
Taking the s→ 0 limit then gives

dη+(0)

dAt
= − lim

s→0
sζD2

+
( s+1

2 ) . (C17)

The spectral zeta function ζD2
+

(s) has a first order pole at
s = 1

2 , which is due to the fact that the leading part of D2
+

is −∂2
t (i.e., the dominant part of the eigenvalues of D2

+ for
large m is the piece

(
2πm
T

)2
). It then follows from Eq. (C17)

that dη+(0)

dAt
is equal to minus the residue of ζD2

+
(s) at s = 1

2 .
This residue can be computed using the heat kernel expansion
for D2

+, and the residue turns out to be equal to the residue of
the spectral zeta function for −∂2

t at s = 1
2 , which is easier to

compute. From these considerations we find that

dη+(0)

dAt
= −T

π
, (C18)

and then an integration with respect to At gives

η+(0) = C+ −
AtT

π
, (C19)

where C+ is an as yet undetermined constant.

The value of the constant C+ can be fixed uniquely by re-
quiring the eta invariant to vanish when At lies halfway be-
tween two eigenvalues of −i∂t (symmetry dictates that η+(s)
for any s should vanish in this case). Let us assume that
At ∈ ( 2π`

T , 2π`+2π
T ) for some ` ∈ Z. Then we require η+(0)

to vanish when At = 2π
T (` + 1

2 ), which fixes C+ = 2` + 1.
Therefore the eta invariant is given in this case by

η+(0) = 2`+ 1− AtT

π
. (C20)

For the Dirac operator D−, and still assuming that At ∈
( 2π`
T , 2π`+2π

T ), all of the signs are reversed. We then find that
forAt ∈ ( 2π`

T , 2π`+2π
T ), the eta invariants of the operatorsD±

are

η±(0) = ±(2`+ 1)∓ AtT

π
. (C21)

As in Eq. (C12), it is convenient to again write At = 2π`
T + at

with at ∈ (0, 2π
T ). Then in terms of at, the eta invariants for

D± take the form

η±(0) = ±1∓ atT

π
. (C22)

We see that the eta invariant only depends on the value of At
modulo 2π

T .
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