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We present a method to construct number-conserving Hamiltonians whose ground states exactly
reproduce an arbitrarily chosen BCS-type mean-field state. Such parent Hamiltonians can be con-
structed not only for the usual s-wave BCS state, but also for more exotic states of this form,
including the ground states of Kitaev wires and 2D topological superconductors. This method
leads to infinite families of locally-interacting fermion models with exact topological superconduct-
ing ground states. After explaining the general technique, we apply this method to construct
two specific classes of models. The first one is a one-dimensional double wire lattice model with
Majorana-like degenerate ground states. The second one is a two-dimensional px + ipy supercon-
ducting model, where we also obtain analytic expressions for topologically degenerate ground states
in the presence of vortices. Our models may provide a deeper conceptual understanding of how
Majorana zero modes could emerge in condensed matter systems, as well as inspire novel routes to
realize them in experiment.

I. INTRODUCTION

Topological superconductors have become an active
research area in condensed matter and cold atom
physics1,2. They provide examples of topological phases
that have been classified systematically3–9. More prac-
tically, the non-Abelian statistics10–12 of Majorana zero
modes and the robustness of degenerate ground states
against local perturbations have made topological su-
perconductors components of promising architectures for
fault-tolerant quantum computation13. Experimental
signatures14–17 of Majorana zero modes and topological
superconductivity in solid state systems call for more re-
alistic theoretical descriptions of the relevant physics, for
example the effect of interactions.

Most of the theoretical research in this area has be-
gun with non-interacting mean-field Hamiltonians with
an effective p-wave pairing term, from which one ob-
tains topologically-protected degenerate ground states
and Majorana zero modes. In nature, however, sizable
interactions typically challenge the validity of mean-field
theory. It is therefore important to understand better the
criteria for the aforementioned topological phenomena to
persist in the interacting case. Moreover, the mean-field
approximation breaks the number conservation, which
obscures the connection to realistic, number-conserving
systems.

Understanding the interplay of topology, number con-
servation, and interactions is challenging because the in-
teractions usually prevent exact solution by analytic or
numerical techniques. In one dimension, special tools are
available, and progress has been made using bosoniza-
tion18–20 and numerical methods [density-matrix renor-
malization group (DMRG)]21. Exactly solvable models in
this area are still rare22, and the two number-conserving
Majorana models23,24 that have been proposed are one-

dimensional (1D). Having new families of exactly solv-
able models with realistic local interactions, especially in
higher dimensions, will therefore shed light on the charac-
terization of topological phenomena and Majorana zero
modes in intrinsically interacting and number-conserving
systems. In addition, these results provide new Hamilto-
nians that can be used to experimentally realize topolog-
ical states.

In this paper we take a bottom-up approach to these
fundamental issues: Starting from a general BCS-type
mean-field ground state |G〉, we show how to construct
number-conserving parent Hamiltonians that have |G〉 as
a ground state (with no approximation). This construc-
tion enables us to realize the physics of Majorana zero
modes in interacting number-conserving systems in an
exact manner. Following the general construction, we
build specific models including a 1D Majorana double
wire and a 2D px + ipy topological superconductor, and
obtain analytic expressions for the degenerate ground
states in the presence of edges and vortices.

II. GENERAL CONSTRUCTION

Suppose we have an effective mean-field Hamiltonian in
some BCS-like theory in any dimension with or without
spin

Kmf =
∑
p

[ξpa
†
pap +

1

2
(∆∗pap̄ap + H.c.)]

=
∑
p

Epα
†
pαp + const, (1)

where Ep =
√
ξ2
p + |∆p|2, p indexes the single-particle

states (including momentum, spin, or any other quanti-
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ties necessary), p̄ denotes the time reversed state of p, and

αp = upap−vpa†p̄ are Bogoliubov quasi-particle operators

with |up|2 + |vp|2 = 1 and vp/up = −(Ep − ξp)/∆∗p. The
BCS-like ground state of Kmf is (up to normalization)

|GBCS〉 =
∏′

p

αpαp̄|0〉, (2)

where the prime means each pair pp̄ appears exactly once.
Our goal is to construct a number-conserving Hamil-

tonian whose ground state is |GBCS〉. To do this, we
first separate each αp into creation and annihilation parts

αp ≡ Cp−S†p with Cp = upap and S†p = vpa
†
p̄, and define

Âpp′ = S†pαp′ + S†p′αp. (3)

From αp|GBCS〉 = 0, we know that Âpp′ |GBCS〉 = 0, thus
a parent Hamiltonian for |GBCS〉 can be constructed by

Ĥ =
∑

p1p2p3p4

Hp1p2;p3p4Â
†
p1p2Âp3p4 , (4)

where the matrix Hp1p2;p3p4 is required to be Hermitian.
This construction suffices for |GBCS〉 to be a zero-energy

eigenstate of Ĥ. To ensure it is a ground state, we require
that the matrix Hp1p2;p3p4 is positive-definite. Notice

that Ĥ conserves total particle number N̂ =
∑
p a
†
pap

since Âpp′ can be rewritten as Âpp′ = S†pCp′ + S†p′Cp,

which follows because S†pS
†
p′+S

†
p′S
†
p vanishes by fermionic

antisymmetry. Then the ground state of Ĥ with a defi-
nite particle number N is simply given by the projection
of |GBCS〉 to the N -particle subspace |GN 〉 = P̂N |GBCS〉.

III. THE DOUBLE WIRE MODEL

As a first specific example of this construction, we con-
struct one-dimensional models that reproduce the ground

states of Kitaev’s 1D wire1, ĤKitaev =
∑
j(−tc

†
jcj+1 +

∆cjcj+1 +H.c.)−µN̂ , where t, µ, and ∆ denote the hop-
ping amplitude, the chemical potential and the supercon-
ducting gap, respectively. Kitaev’s model has a special
point at µ = 0, ∆ = t where the Hamiltonian can be
rewritten as a sum of mutually commuting local opera-
tors and the spectrum is non-dispersing1. To simplify our
calculation, we focus on this special point (though our
construction protocol is general and could be applied to
other points as well25) where the Hamiltonian has doubly
degenerate ground states given by (up to normalization)

|Ge〉 = exp

∑
i<j

c†i c
†
j

 |0〉, |Go〉 = c̃†k=0|G
e〉, (5)

where c̃†k = 1√
L

∑L
j=1 e

ikjc†j
25. The superscripts e, o de-

note even and odd fermion parity, respectively.

We consider a double wire geometry that has two par-
allel one-dimensional chains, with fermion creation op-

erators on each chain given by a†j ≡ c†j,1, b
†
j ≡ c†j,2, re-

spectively. Our aim is to construct a number-conserving
lattice model on these two wires whose ground states
are direct products of the Kitaev ground states on each
wire, projected to fixed total particle number |GN 〉 =

P̂N (|GA〉⊗|GB〉). We will show that the resulting Hamil-
tonian also leads to Majorana-like edge modes and robust
ground state degeneracy.

The direct product of Kitaev ground states |GA〉⊗|GB〉
is annihilated by Bogoliubov operators25

αkσ =
ei

k
2

√
2

(
− sin

k

2
c̃kσ + i cos

k

2
c̃†−kσ

)
−(k → −k), (6)

where σ = 1, 2, and the quasimomentum k is quantized
with open boundary condition k = mπ

L , m = 1 . . . (L −
1)37.

Having identified the αkσ, and therefore the Ckσ and

S†kσ, Eq. (4) gives a family of parent Hamiltonians. There
are in principle infinite number of choices for Hp1p2;p3p4 .
However, most of these choices will lead to complicated
long-range interactions. To facilitate experimental real-
ization in cold atom systems, we are particularly inter-
ested in Hp1p2;p3p4 that lead only to spatially local inter-
action terms. We find one such example given by38:

Hp1p2;p3p4 =
1

L

∑
ξj=±1

ξ1ξ2ξ3ξ4δξ1k1+ξ2k2+ξ3k3+ξ4k4

×[pδσ1σ2σ3σ4 + qδσ1σ2δσ3σ4 − r(δσ1σ3δσ2σ4 + δσ1σ4δσ2σ3)],
(7)

where pj = (kj , σj) and p, q, r are arbitrary real coef-

ficients, one obtains Hamiltonians Ĥ with interactions
that are local in real space25,

Ĥ =

L−1∑
j=1

{
−t
[
(a†jaj+1 + b†jbj+1 + H.c.)− 1

+2(naj −
1

2
)(naj+1 −

1

2
) + 2(nbj −

1

2
)(nbj+1 −

1

2
)

]
−(αJ†||,jJ||,j + βJ†=,jJ=,j + γJ†×,jJ×,j)

}
, (8)

where J||,j = bjaj − bj+1aj+1, J=,j = aj+1aj −
bj+1bj , J×,j = bj+1aj − bjaj+1 and α, β, γ are real num-
bers determined by p, q, r25 with constraint α+β+γ = 0.
In order for the matrix Eq. (7) to be positive-definite,
the α, β, γ should satisfy α < 0, β < t, γ < t, which,
combined with α + β + γ = 0, gives the triangle re-
gion that is shown in Fig. 1. The center of the triangle
α = −t, β = γ = t/2 reproduces the model in Ref. [23].
One possible experimental realization is for γ = 0, where
the proposal in Ref. [21] can be used to realize each term.

Since Ĥ preserves total particle number N = NA+NB
and single wire fermion parity PA,B = (−1)N̂A,B , ground
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FIG. 1: Parameter region of the double wire system. The con-
straint α+ β + γ = 0 restricts the parameter space to the 2D
plane drawn in this figure, where the coordinate (α, β, γ) of
an arbitrary point P is given by the projections from P to the
α, β, γ axes. The conditions α < 0, β < t, γ < t, which guar-
antee Ĥ to be positive definite, give a triangle region (shaded
area) in this plane.

states in each N -particle sector are doubly degenerate.
For example, if N is even, we have (up to normalization)

|GeeN 〉 =

∑
i<j

(a†ia
†
j + b†i b

†
j)

N
2

|0〉, |GooN 〉 = ã†0b̃
†
0|GeeN−2〉.

(9)
This degeneracy is topologically protected in the sense
that all local perturbations in the bulk, even includ-
ing the ones that violate single wire parity, take the
form of an identity matrix when projected to the ground
state subspace. For example, using the same arguments
as in Refs. [23,24], we explicitly find that the energy

splitting ∆E due to perturbation a†jbj + H.c. scales as

∆E ∼ e−j/l0 (assuming j < L/2) for some finite length
scale l0.

IV. THE 2D px + ipy MODEL

Majorana zero modes are expected to appear at cer-
tain boundaries and in the cores of vortices in px + ipy
superconductors. We now show that Eq. (4) can be used
to construct number-conserving parent Hamiltonians for
px+ ipy topological superconductors that share the same
ground state as the mean-field model

K̂ =

∫
S

[
∇ψ†z · ∇ψz

2m
− (∆ψz∂z̄ψz + H.c.) + µψzψ

†
z

]
d2z,

(10)
where S denotes an arbitrary region in the 2D plane with
complex coordinates z = x+ iy, ∂z = (∂x − i∂y)/2, ∂z̄ =
(∂x+ i∂y)/2, d2z = dxdy, and ψz is the fermionic annihi-
lation operator at position z. The term ∆ψz∂z̄ψz + H.c.
characterizes chiral p-wave pairing, and µψzψ

†
z is the

chemical potential term (which differs from the usual con-
vention by a constant). Although in principle we can con-
struct number-conserving parent Hamiltonians for all val-
ues of (m,∆, µ), in the following we only consider a spe-

cial point µ = m∆2

2 and use natural units 2m = m∆ = 1

for simplicity. With an integration by parts, K̂ can be
separated into a bulk Hamiltonian and a boundary term
K̂ = K̂bulk + K̂bound, with

K̂bulk =

∫
S

(2∂zψ
†
z − ψz)(2∂z̄ψz − ψ†z)d2z,

K̂bound = −i
∮
∂S

(ψ†z∂zψzdz + ψ†z∂z̄ψzdz̄), (11)

where ∂S denotes the boundary of S. Since K̂bulk is
by construction positive-definite, the ground states of K̂
should be annihilated by the operator αz ≡ 2∂z̄ψz − ψ†z
for all z ∈ S in order to minimize K̂bulk (we will account
for the boundary term momentarily). The ground states
with even fermion parity can in general be constructed
as

|Ge〉 = exp

[
1

2

∫
S

g(z, z′)ψ†zψ
†
z′d

2zd2z′
]
|0〉, (12)

where the two-particle wave function g(z, z′) satisfies
g(z, z′) = −g(z′, z) and

2∂z̄g(z, z′) = δ2(z − z′), (13)

which guarantees that αz|Ge〉 = 0. To simultaneously

minimize the boundary term K̂bound, the function g(z, z′)
should satisfy certain boundary conditions that depend
on the geometry of the region S, which we will discuss
later.

A. Constructing a number-conserving parent
Hamiltonian

To find a parent Hamiltonian for the mean-field ground
state |Ge〉, we again follow our general construction given
in Eqs. (3) and (4) where we identify Cz = 2∂z̄ψz and
S†z = ψ†z, leading to

Ĥbulk =

∫
S

W (z1, z2; z3, z4)A†z1,z2Az3,z4

4∏
j=1

d2zj , (14)

where W (z1, z2; z3, z4) is a positive-definite Hermitian
matrix. We further restrict ourselves to Hamiltonians
describing short-ranged interactions, i.e. W (z1, z2; z3, z4)
tends to zero sufficiently fast when the distance between
any two points |zi− zj | becomes large. Furthermore, the

boundary term K̂bound in Eq. (11) should be added into

Ĥbulk to uniquely pick out the same set of ground states
as K̂

Ĥ = Ĥbulk + K̂bound. (15)

The new interacting Hamiltonian Ĥ harbors the topo-
logical px + ipy ground state. It is number-conserving

because both Ĥbulk and K̂bound preserve total particle
number.
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FIG. 2: Topological superconducting phase in an unbounded
2D plane with 2M vortices located at η1, η2, . . . , η2M . Here
we show the 2M = 4 case. In our gauge convention fermion
fields acquire a minus sign on going around each vortex.

As a specific example, we choose W (z1, z2; z3, z4) =
e−λ|z1−z3|δ2(z1−z2)δ2(z3−z4)/4 in Eq. (14) where λ > 0,
after rearranging terms we get

Ĥ =

∫
S

∇ψ†z · ∇ψzd2z (16)

+ 4

∫
S

e−λ|z−z
′|ψ†z(∂z′ψ

†
z′)ψz′∂z̄ψzd

2zd2z′.

It is also interesting to point out that with a differ-
ent choice of the coefficient matrix W (z1, z2; z3, z4)25 we
are able to reproduce the Richardson-Gaudin px + ipy
model26–29 at the “Moore-Read” line, where the model
is known to be exactly solvable and exhibits a gapped
spectrum in a fixed particle number sector.

B. Degenerate ground states with vortices

It is known that vortices in the mean-field model
Eq. (10) have localized Majorana zero-modes12,30 giving
rise to topologically-protected ground state degeneracy
and non-Abelian statistics. It would be interesting to
see whether these important properties survive in our
number-conserving model, as these properties are crucial
for the realization of topological quantum computation13.
One remarkable feature of our model is that the analytic
expressions of the degenerate ground states could be ex-
actly obtained even though the vortices break translation
invariance. These explicit expressions give us deeper in-
sight into the topological properties of the ground states
and manifest the non-Abelian statistics of vortices.

We consider the geometry shown in Fig. 2, with 2M
vortices lying in an unbounded 2D plane located at
η1, η2, . . . , η2M , respectively. We assume that the core of
each vortex is localized inside a radius r0 much smaller
than the minimal distance between any two vortices. We
use the gauge convention in which the superconduct-
ing order parameter is the same everywhere [i.e. still
consider the same Hamiltonians in Eqs. (10) and (14)]
while fermion fields are anti-periodic around each vortex

ψ†θ+2π = −ψ†θ.
In the mean-field model Eq. (10) there is a Majo-

rana zero-mode γj with γ†j = γj and [γj , K̂] = 0 lo-

calized at the jth vortex. In total we have 2M lo-
calized Majorana modes γ1, γ2, . . . , γ2M which could be
combined to M independent fermion operators aj =

(γ2j−1 + iγ2j)/2, leading to 2M degenerate mean-field
ground states |n1, n2, . . . , nM 〉 with nj = 0, 1, 1 ≤ j ≤
M . In our number-conserving model defined in Eq. (15),
the ground states with N particles are obtained by pro-
jecting the mean-field ground states to the N -particles
sector. Only those mean-field states with fermion parity
equal to (−1)N survive this projection, therefore we are
left with 2M−1 fold degeneracy in each sector.

As an example, we consider the 2M = 4 case and as-
sume N to be even. One of the mean-field ground states
|G12,34〉 could be constructed by Eq. (12) with

g12,34(z, z′) =
1

4π(z − z′)

[
f12

34 (z)

f12
34 (z′)

+ (z ↔ z′)

]
, (17)

where f12
34 (z) =

√
(z−η1)(z−η2)
(z−η3)(z−η4) is introduced to guarantee

that g12,34(z, z′) is anti-periodic around each vortex, in
accordance with our gauge convention. From the identity
2∂z̄

1
z−z′ = 2πδ2(z − z′) it is easy to see that g12,34(z, z′)

satisfies Eq. (13), and it can be checked that the state

|G12,34〉 also minimizes K̂bound up to some small cor-

rections31. Applying the projection operator P̂N , we
get an N -particle ground state with multiparticle wave
function (up to normalization) ψ12,34(z1, z2 . . . zN ) =
Pf{g12,34(zi, zj)}, where Pf denotes the Pfaffian of the
anti-symmetric N × N matrix g12,34(zi, zj). The wave
function ψ12,34 is very similar (but not identical) to one of
the Moore-Read Pfaffian states with four quasiholes10,11,
which were constructed to describe the excitations in the
ν = 5/2 fractional quantum hall effect (FQHE). By per-
muting the indices 1, 2, 3, 4 we get two other degenerate
ground states with wave functions ψ13,24(z1 . . . zN ) and
ψ14,23(z1 . . . zN ). However, using the same method in
Ref. [11] we can prove that these three states are linearly
dependent and the space spanned by them is actually two
dimensional, consistent with our previous argument.

The non-Abelian statistics of the mean-field ground
states of the px + ipy model have been well-studied in
Ref. [12]. Braiding the jth and the (j + 1)th vortices

adiabatically gives rise to a unitary rotation B̂jj+1 =
exp(π4 γj+1γj) on the ground state subspace. It should
be expected that the particle number projected ground
states of our number-conserving model have the same
non-Abelian statistics as the unprojected mean-field
states, since the particle number fluctuations of the
mean-field states are negligible in the thermodynamic
limit, and the Berry’s matrices of the braiding process
should be the same. The rigorous proof of this argument
will be the subject of future work.

V. PHASE DIAGRAM AND EXCITATION
SPECTRUM

We now briefly discuss to what extent does our con-
struction gives gapped phases of matter and comment on
the low energy excitations of our models.
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All models constructed by Eq. (4) sit on a critical point
between a phase separated state (upon adding attractive
density-density interactions) and, potentially, a topologi-
cal superconducting state (repulsive interactions). In the
double wire model for example, right at the critical point,

the phase separation state |EPS
N=L〉 =

∏
j≤L/2 a

†
jb
†
j |0〉 has

a finite excitation energy ∆ (the energy of the domain
wall, independent of system size L), if a small nearest-
neighbor interaction −v

∑
j(n

a
jn

a
j+1 + nbjn

b
j+1) is added,

the energy of |EPS
N=L〉 would be ∆−v(L−2), while the en-

ergy of the homogeneous superconducting ground state is
approximately −v(L−1)/2. Thus when L→∞, with an
infinitesimal attraction v > 0 the phase separation state
would be favored, while for repulsive interaction v ≤ 0
the topological superconducting state has lower energy.
This was also numerically verified for a special case of
the double wire model in Refs. [23,32].

There are gapless Goldstone excitations in the dou-
ble wire model Eq. (8) and the px + ipy model Eq. (16)
provided that w(z−z′) is sufficiently short-ranged, while
the exponential decay of the one-particle correlation func-
tion indicates that single particle excitation is gapped in
both models23,25. The presence of Goldstone excitation
is a universal feature of neutral topological superconduc-
tor13, which belongs to the gapless symmetry-protected
topological phase33,34. In charged superconductors how-
ever, the Anderson-Higgs mechanism would lift the Gold-
stone mode way up to the plasma frequency and the
system would have a gapped excitation spectrum. This
means that we can gap the Goldstone mode in our cur-
rent construction by either coupling our system to quan-
tized electromagnetic gauge field or allowing long-range
interactions, an extreme example is that a special case of
Eq. (14) reproduce the Richardson-Gaudin models26–29

at the “Moore-Read” line, whose exact solution shows a
gapped spectrum.

VI. CONCLUSION

We have constructed infinite families of number-
conserving, interacting Hamiltonians with exact BCS-like
ground states, with specific models including a 1D Ma-
jorana double wire and a 2D px + ipy topological super-
conductor. In the px + ipy model we obtained analytic
expressions of degenerate ground states with four vor-
tices, and pointed out their similarity to the Moore-Read
Pfaffian states with four quasiholes constructed in the
ν = 5/2 FQHE context. Our models give us a deeper
theoretical understanding of topological phenomena in
interacting systems, set a viable framework for building
more realistic models of topological superconductors, and
may provide useful guidelines for experimental realiza-
tion of Majorana zero modes.
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Appendix A: The Double wire model

In this section we first present the detailed derivations
of Eqs. (5-8) in the main text, and then we discuss some
alternative derivations of the parent Hamiltonian.

1. Diagonalization of Kitaev’s Hamiltonian in
momentum space with open boundary

To obtain the Bogoliubov operators in Eq. (6) and the
form of ground states in Eq. (5) in our main text, here we
present the momentum space diagonalization of Kitaev’s
Hamiltonian with ∆ = t

HKitaev =
∑
j

t(−c†jcj+1 + cjcj+1 + H.c.)− µN̂. (A1)

To this end we search for Bogoliubov eigenmodes defined
as

αk =

L∑
j=1

(ukj cj + vkj c
†
j). (A2)

Being the eigenmodes of HKitaev with energy Ek > 0,
they satisfy [αk, HKitaev] = Ekαk, which gives difference
equations on ukj , v

k
j

(Ek + µ)ukj = −t(ukj−1 + ukj+1) + t(vkj−1 − vkj+1),

(Ek − µ)vkj = t(vkj−1 + vkj+1) + t(ukj+1 − ukj−1), (A3)

with boundary conditions

uk0 = vk0 , u
k
L+1 = −vkL+1. (A4)

To solve these equations, we notice that the ansatz solu-
tions

ukj = λ(k)ei(kj−θk) − λ(−k)e−i(kj−θk),

vkj = ei(kj−θk) − e−i(kj−θk) (A5)

with λ(k) = −i 2∆ sin k
Ek+µ+2t cos k and Ek =√

µ2 + 4tµ cos k + 4t2 satisfy Eq. (A3). The bound-
ary conditions in Eq. (A4) give constraints on the
quasi-momentum k and the real parameter θk

k(L+ 1) = 2θk +mπ, m ∈ Z,

tan θk =
2∆ sin k

Ek + µ+ 2t cos k
, (A6)
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where 0 < k < π and 0 < θk < π/2. The Bogoliubov
operators are (up to normalization)

αk = eiθk(i cos θkc
†
−k − sin θkck)− (k → −k). (A7)

As an aside, we mention that if we replace Eq. (6) in
our main text by Eq. (A7) and use the same matrix in
Eq. (7), then, still following our general construction, we
can get a bigger family of number-conserving, short-range
interacting Hamiltonians with ground states |Ge,o〉 de-
pending on µ/t, and this method can be generalized to
construct parent Hamiltonians for Kitaev’s ground states
at arbitrary points (t,∆, µ) (even including points in the
topologically trivial phase).

At the µ = 0 point we get especially simple expressions

Ek = 2t, θk =
k

2
, k =

mπ

L
, m = 1 . . . (L− 1), (A8)

which leads to the single wire version of Bogoliubov op-
erators in Eq. (6) after normalization. To verify that the
expressions given in Eq. (5) are indeed the ground states
of HKitaev, we show that |Ge〉 and |Go〉 are annihilated
by all αk. We have

ck|Ge〉 =
1√
L

L∑
j=1

e−ikjcj exp{
∑
i<j′

c†i c
†
j′}|0〉

=
1√
L

∑
j,j′

e−ikjsgn(j′ − j)c†j′ |G
e〉

= [i cot
k

2
c†−k −

1 + (−1)m

1− eik
c†k=0]|Ge〉, (A9)

where sgn(x) = x/|x| for x 6= 0 and sgn(0) = 0. It follows
that [

ei
k
2 sin

k

2
ck − (k → −k)

]
|Ge〉

=

[
ei

k
2 i cos

k

2
c†−k − (k → −k)

]
|Ge〉, (A10)

leading to αk|Ge〉 = 0. Furthermore, it can be easily

checked that {c†k=0, αk} = 0 for all k = mπ/L, 1 ≤ m ≤
L − 1, thus αk|Go〉 = αkc

†
k=0|Ge〉 = −c†k=0αk|Ge〉 = 0.

We conclude that Eq. (5) indeed gives us the ground
states of HKitaev at the point t = ∆, µ = 0.

2. Detailed derivation of Eq. (8)

To verify that the combination of Eqs. (4) and (7) in-
deed give the local form of Eq. (8), we first notice that

αkσ ≡ Ckσ − S†kσ

=
ei

k
2

√
2

(
i cos

k

2
c†−k,σ − sin

k

2
ckσ

)
− (k → −k)

=
1√
2L

L−1∑
j=1

sin kj(cj+1,σ + c†j+1,σ − cjσ + c†jσ),

(A11)
where k = mπ

L , m = 1 . . . (L−1). Using the completeness
and orthonormality of sin kj,

∑
k

sin kj sin kj′ =
L

2
δjj′ , (A12)

we have

4√
2L

∑
k

(Ckσ − S†kσ) sin kj

= cj+1,σ + c†j+1,σ − cjσ + c†jσ

≡ Cjσ − S†jσ, 1 ≤ j ≤ L− 1, (A13)

where Cjσ = cj+1,σ − cjσ, S
†
jσ = −c†j+1,σ − c†jσ. By

applying the identity

∑
ξj=±1

ξ1ξ2ξ3ξ4δξ1k1+ξ2k2+ξ3k3+ξ4k4

=
16

L

L−1∑
j=1

sin k1j sin k2j sin k3j sin k4j, (A14)

the parent Hamiltonian given in Eqs. (4) and (7) can
then be expanded in position space (we use the shorthand∑
k =

∑
k1,k2,k3,k4

and
∑
σ =

∑
σ1,σ2,σ3,σ4

)

H =
∑

p1p2p3p4

Hp1p2;p3p4Â
†
p1p2Âp3p4 =

16

L2

∑
k,σ

L−1∑
j=1

sin k1j sin k2j sin k3j sin k4j

× [pδσ1σ2σ3σ4
+ qδσ1σ2

δσ3σ4
− r(δσ1σ3

δσ2σ4
+ δσ1σ4

δσ2σ3
)] (C†k1σ1

Sk2σ2
+ C†k2σ2

Sk1σ1
)(S†k3σ3

Ck4σ4
+ S†k4σ4

Ck3σ3
)

=
64

L2

∑
k,σ

L−1∑
j=1

(C†k1σ1
sin k1j)(Sk2σ2

sin k2j)(S
†
k3σ3

sin k3j)(Ck4σ4
sin k4j)

× [pδσ1σ2σ3σ4
+ qδσ1σ2

δσ3σ4
− r(δσ1σ3

δσ2σ4
+ δσ1σ4

δσ2σ3
)]
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=
∑
σ

L−1∑
j=1

C†jσ1
Sjσ2S

†
jσ3
Cjσ4 [pδσ1σ2σ3σ4 + qδσ1σ2δσ3σ4 − r(δσ1σ3δσ2σ4 + δσ1σ4δσ2σ3)]

= (2t− β − γ)

L−1∑
j=1

[C†ajSajS
†
ajCaj + (a→ b)] + (γ − β)

L−1∑
j=1

[C†ajSajS
†
bjCbj + (a↔ b)]

+(β + γ)

L−1∑
j=1

(C†ajSbj + C†bjSaj)(S
†
ajCbj + S†bjCaj), (A15)

where β = −(q+r)/2, γ = (q−r)/2 and t = (p+q−3r)/2.
By expanding the last line of Eq. (A15) we get the form
of Eq. (8) in the main text (with α = r = −β − γ).

3. Positive region of Ĥ

We now prove that the matrix Hp1p2;p3p4 given in
Eq. (7) is positive-definite in the triangle region shown
in Fig. 1 in the main text. Notice that Hp1p2;p3p4 =
Hk1k2;k3k4 · λσ1σ2;σ3σ4 with orbital part Hk1k2;k3k4 =
16
L2

∑L
j=1 sin k1j sin k2j sin k3j sin k4j [see Eq. (A14)] and

spin part λσ1σ2;σ3σ4
= pδσ1σ2σ3σ4

+ qδσ1σ2
δσ3σ4

−
r(δσ1σ3

δσ2σ4
+ δσ1σ4

δσ2σ3
). The orbital part is always

positive, since for any vector fkk′ we have∑
k1k2k3k4

f∗k1k2Hk1k2;k3k4fk3k4

=
16

L2

∑
k1k2k3k4

L∑
j=1

f∗k1k2 sin k1j sin k2j sin k3j sin k4j fk3k4

=
16

L2

L∑
j=1

f∗j fj ≥ 0, (A16)

where fj =
∑
kk′ fkk′ sin kj sin k′j. For the spin part

λσ1σ2;σ3σ4 , we write it in the matrix form (assume the
order aa, ab, ba, bb)

λ =

p+ q − 2r 0 0 q
0 −r −r 0
0 −r −r 0
q 0 0 p+ q − 2r



=

2t− γ − β 0 0 γ − β
0 −α −α 0
0 −α −α 0

γ − β 0 0 2t− γ − β


= λ1 ⊕ λ2, (A17)

with λ1 =

[
−α −α
−α −α

]
acting on (ab, ba) and λ2 =[

2t− γ − β γ − β
−γ − β 2t− γ − β

]
acting on (aa, bb). Thus λ is

positive-definite if and only if both λ1 and λ2 are positive-
definite. The condition that λ1 is positive-definite gives

−α > 0, while λ2 is positive-definite gives |γ − β| <
2t − γ − β, which simplifies to α < 0, β < t, γ < t,
leading to the triangle region in the main text.

4. Alternative derivations of the parent
Hamiltonian

The derivation of Ĥ presented above enables us to see
how the double wire model follows from our general con-
struction and can be generalized to arbitrary points of Ki-
taev’s model. However, for the double wire parent Hamil-
tonian constructed in our main text, simpler derivations
exist. Actually, Eq. (A13) gives us annihilators of the
double wire ground state |GA〉 ⊗ |GB〉 in position space.

Thus we can directly build the parent Hamiltonian Ĥ
using the real space version of Eqs. (3) and (4) with

Cjσ = cj+1,σ − cjσ, S
†
jσ = −c†j+1,σ − c†jσ (or equiva-

lently, directly go to the last line of Eq. (A15) without
working in momentum space at all), leading to the same
Hamiltonian Eq. (8) in our main text. This derivation is
a direct generalization of the one given in Ref. [23].

Another simple derivation is based on using an alterna-
tive basis of single wire ground states (at ∆ = t, µ = 0)35

|Gη〉 = (1+ηc†1)(1+ηc†2) · · · (1+ηc†L)|0〉, η = ±1, (A18)

and observing the following properties

c†i c
†
i+1|G

η〉 = nini+1|Gη〉,
ci+1ci|Gη〉 = n̄in̄i+1|Gη〉,
c†i ci+1|Gη〉 = nin̄i+1|Gη〉,
c†i+1ci|G

η〉 = n̄ini+1|Gη〉, (A19)

where n̄i ≡ 1−ni. With this, it is easy to check that the

number-conserving single wire operator [(c†jcj+1 +H.c.)+

2(nj − 1
2 )(nj+1 − 1

2 ) − 1
2 ] annihilates |Gη〉. To include

interwire couplings, we notice that

J†||,jJ||,j |G
ηA,ηB 〉 = J†=,jJ=,j |GηA,ηB 〉 =

J†×,jJ×,j |G
ηA,ηB 〉 = (U�

j − U
(3p)
j )|GηA,ηB 〉, (A20)

where Û�
j = najn

a
j+1n

b
jn
b
j+1, Û

(3p)
j = [najn

a
j+1(nbj +

nbj+1) + (a ↔ b)], and |GηA,ηB 〉 = |GηAA 〉 ⊗ |G
ηB
B 〉 is the
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FIG. 3: Diagrammatic representation of interaction terms in
the double wire parent Hamiltonian in Eq. (8). Double arrows
represent pair hopping while wavy lines represent interactions.

double wire ground state constructed by direct product
of single wire ground states. Therefore

(αJ†||,jJ||,j+βJ†=,jJ=,j+γJ†×,jJ×,j)|G
ηA,ηB 〉 = 0, (A21)

for α + β + γ = 0. It then follows that the Hamilto-
nian constructed in Eq. (8) in the main text satisfies

Ĥ|GηA,ηB 〉 = 0, i.e. |GηA,ηB 〉 is an eigenstate of Ĥ with
zero energy. This method can only tell us that |GηA,ηB 〉
is an eigenstate of Ĥ. To find the positive region of
Ĥ (where |GηA,ηB 〉 become its ground states), we still
have to turn to other means.

In Fig. 3 we draw a pictorial representation of the inter-
action terms of the parent Hamiltonian Eq. (8), including
two types of nonlinear terms: interactions and correlated
pair tunnelings.

Appendix B: Relation of our construction to the
Richardson-Gaudin models

As mentioned in our main text, by suitably choosing
the coefficient matrix in Eq. (14) we are able to repro-
duce the Richardson-Gaudin px + ipy model26–28 at the
“Moore-Read line”. In this section we present this rela-
tion in detail.

The Richardson-Gaudin px + ipy model is defined by
the Hamiltonian

ĤRG = Ĥ0 −Gb†b, (B1)

where G > 0 is a coupling constant and

Ĥ0 =
∑
k

|k|2

2
ψ†kψk, N̂ =

∑
k

ψ†kψk,

b† =
1

2

∑
k

(kx − iky)ψ†kψ
†
−k, (B2)

where we use complex coordinates k = kx + iky, k̄ =
kx−iky to denote momentum (for simplicity we use anti-
periodic boundary condition in this section to avoid sub-
tleties with the k = 0 mode). At the “Moore-Read line”

1/G = L+1−M [where M is a positive integer, and L is
the total number of (k,−k) levels], it has been found26–28

that the ground state is exactly the Moore-Read Pfaffian
state with M Cooper pairs

|ψM 〉 =

(
1

2

∑
k

1

kx + iky
ψ†kψ

†
−k

)M
|0〉. (B3)

The state |ψM 〉 turns out to coincide with the projected

mean-field ground state |ψM 〉 = P̂N=2M |Ge〉, where |Ge〉
is the mean-field ground state given in Eq. (12) in our
main text, and gk = 1/(kx+iky) is exactly the solution to
Eq. (13) in momentum space with anti-periodic boundary
condition. By our construction we know that |ψM 〉 is the
exact 2M -particle ground state of the number-conserving
Hamiltonian Eq. (14) and it should therefore be expected

that Eq. (14) includes ĤRG as a special case. To prove
this, we rewrite Eq. (14) in momentum space where the

annihilators are Akk′ = ψ†−kk
′ψk′ +ψ

†
−k′kψk and the par-

ent Hamiltonian is

Ĥ =
∑

k1k2k3k4

W (k1, k2; k3, k4)(k̄1ψ
†
k1
ψ−k2 + k̄2ψ

†
k2
ψ−k1)

× (ψ†−k3k4ψk4 + ψ†−k4k3ψk3). (B4)

We choose W (k1, k2; k3, k4) = δk1k3δk2k4/8, and after
normal-ordering, we get

Ĥ = Ĥ0(L+ 1− N̂

2
)− b†b. (B5)

Notice that (L + 1− N̂
2 ) is a positive-definite, invertible

operator that commutes with Ĥ. Thus we can redefine

Ĥ ′RG ≡
1

L+ 1− N̂
2

Ĥ = Ĥ0 −
1

L+ 1− N̂
2

b†b. (B6)

Comparing with Eq. (B1) we find that Ĥ ′RG and ĤRG

are exactly the same when restricted to a fixed particle
number sector N = 2M .

As an aside, we point out that in the 1D case, our
construction can also reproduce the Richardson-Gaudin-
Kitaev chain29 at the “Moore-Read line”

ĤRGK =
1

2

∑
k

sin2(k/2)c†kck (B7)

− 1

L+ 1−M
1

4

∑
k,k′

sin
k

2
sin

k′

2
c†kc
†
−kc−k′ck′ ,

if we do the similar calculation as in Eqs. (B4-B6) for the
1D ground state

|ψM 〉 =

(
1

2

∑
k

1

sin k
2

c†kc
†
−k

)M
|0〉. (B8)
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Appendix C: Calculation of the single particle
correlation function for the px + ipy model

In this section we calculate the single particle corre-
lation function of the particle-number projected ground
states

〈G2M+1|ψ†rψr′ |G2M+1〉

=
1

L2

∑
k

e−ik·(r−r
′)〈G2M+1|ψ†kψk|G2M+1〉, (C1)

where for simplicity we use periodic boundary condition
and |G2M+1〉 is the unique ground state with 2M + 1
particles, L is the system size and M is the number of
Cooper pairs. Notice that the projected ground state can
be represented as

|G2M+1〉 = C−1/2P̂2M+1|G〉

= C−1/2 1

2πi

∮
|ξ|=1

dξ
ξN̂

ξ2M+2
|G〉, (C2)

where N̂ is the particle number operator, C is a normal-
ization factor, and

|G〉 = ψ†k=0

∏′

k

(k + ψ†kψ
†
−k)√

|k|2 + 1
|0〉 (C3)

is the mean-field ground state, where k = kx + iky and
the prime means each pair (k,−k) appears exactly once.
Thus

〈G2M+1|ψ†kψk|G2M+1〉 =
〈G|ψ†kψkP̂2M+1|G〉
〈G|P̂2M+1|G〉

=

[∮
|ξ|=1

1

ξ2M+1

ξ2

|k|2 + ξ2
g(ξ)dξ

]
/

[∮
|ξ|=1

1

ξ2M+1
g(ξ)dξ

]
, (C4)

where

g(ξ) =
∏′

k

(|k|2 + ξ2) = exp

[∑′

k

ln(|k|2 + ξ2)

]
≈ exp

[
L2

2(2π)2

∫
|k|<Λ

ln(|k|2 + ξ2)d2k

]

= exp
L2

8π

[
(Λ2 + ξ2) ln(Λ2 + ξ2)− ξ2 ln ξ2

]
, (C5)

where we have introduced an ultraviolet momentum cut-
off |k| < Λ. The total number of states is therefore
Ω = πΛ2/( 2π

L )2, and the filling fraction is defined as

ν = 2M+1
Ω = 4π(2M+1)

Λ2L2 . The integrals of Eq. (C4) are of

the form
∮
f(ξ)eh(ξ)dξ where h(ξ) = ln g(ξ)−(2M+1) ln ξ

and can be calculated using the saddle point approxima-
tion in the thermodynamic limit: M → ∞, Λ, ν fixed.
The result is

〈G2M+1|ψ†kψk|G2M+1〉 =
ξ2
0

|k|2 + ξ2
0

+O(
1

M
), (C6)

where ξ0 is the saddle point of the exponent h(ξ) satis-
fying h′(ξ0) = 0, which can be simplified to

ln

(
1 +

Λ2

ξ2
0

)
= ν

Λ2

ξ2
0

. (C7)

Substituting Eq. (C6) into Eq. (C1), we get (in the ther-
modynamic limit)

〈G2M+1|ψ†rψr′ |G2M+1〉 =
1

(2π)2

∫
d2k

ξ2
0

|k|2 + ξ2
0

e−ik·(r−r
′)

=
ξ2
0

2π
K0(ξ0|r− r′|), (C8)

where K0(x) is the modified Bessel function of the
second kind. Since K0(x) ≈

√
π
2xe
−x as x → ∞,

〈G2M+1|ψ†rψr′ |G2M+1〉 decays exponentially fast as |r−
r′| → ∞. The exponential decay of the single particle
correlation function suggests that single particle excita-
tion spectrum is gapped36.
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