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We examine energy relaxation of non-equilibrium quasiparticles in “dirty” superconductors with
the electron mean free path much shorter than the superconducting coherence length. Relaxation
of low-energy non-equilibrium quasiparticles is dominated by phonon emission. We derive the cor-
responding collision integral and find the quasiparticle relaxation rate. The latter is sensitive to
the breaking of time reversal symmetry (TRS) by a magnetic field (or magnetic impurities). As a
concrete application of the developed theory, we address quasiparticle trapping by a vortex and a
current-biased constriction. We show that trapping of hot quasiparticles may predominantly occur
at distances from the vortex core, or the constriction, significantly exceeding the superconducting
coherence length.

I. INTRODUCTION

Current interest to the dynamics of Bogoliubov quasi-
particles in superconductors is motivated in no small part
by the efforts aimed at building a quantum computer.
The actively explored “cavity QED” architecture relies
on quantum coherence of qubits built of conventional su-
perconductors [1]. Realization of the topological quan-
tum computing requires coherence of devices made of
proximitized semiconductor quantum wires brought into
the p-wave superconducting state by applied magnetic
field [2]. In any of the concepts, the presence of quasipar-
ticles is detrimental to the coherence. The Q-factors of
the parts comprising the cavity-QED qubit are reduced
by quasiparticles. They also are able to “poison” the
Majorana states, which are central for the topological
quantum computing.

The development of the qubit technology has advanced
also the ability to monitor the quasiparticles population
and dynamics. Time-resolved measurements performed
with the transmon [3] and fluxonium quibits [4, 5] allowed
the experimentalists to measure the rates of quasiparticle
trapping by a single vortex in a superconducting strip,
to identify minute dissipative currents of quasiparticles
across a Josephson junction (thus resolving a longstand-
ing “cosϕ-problem” [6]), and to monitor the spontaneous
temporal variations of the quasiparticle density.

Measurements [4, 5] did confirm that at low temper-
atures (less than ∼ 0.1Tc of Al) the quasiparticle den-
sity, albeit low, far exceeds the equilibrium value. Fur-
thermore, statistics of temporal variations of the density
substantially differs from thermal noise. Sources of ex-
cess quasiparticles remain unknown, and planting quasi-
particle traps [7–9] remains a viable way of improving
the device performance. Trap is a spatial region with
a suppressed value of superconducting gap. Suppression
may be achieved, e.g., through the proximity effect, or
through local violation of time-reversal invariance (as it
naturally happens in and around the core of a vortex).
Energy loss in the trap (mostly due to phonon emission)

prevents a quasiparticle from exiting into the region with
the nominal gap value.

The importance of the quasiparticle energy relaxation
in device applications, and the newly acquired ability of
precise measurements [3–5] of the quasiparticles dynam-
ics prompts us to revisit the kinetic theory of quasipar-
ticles interacting with phonons in a disordered supercon-
ductor. We derive the corresponding collision integrals
and relaxation rates which then may be used in sophisti-
cated phenomenological models of quasiparticle diffusion
and trapping [9, 10].

In considering the electron-phonon interaction in disor-
dered metals, we follow the seminal works of Tsuneto [11]
and Schmid [12], who established the correct form of the
electron-phonon interaction in the limit of short electron
mean free path, ql � 1 (here q is the phonon wave
vector). We incorporate the electron-phonon interaction
in the general framework of Keldysh non-linear sigma-
model. It allows us to consider on equal footing normal
metals and superconductors, and it becomes especially
convenient for describing the effect of breaking the time-
reversal symmetry (TRS).

The kernel of the collision integral for electrons in nor-
mal metal which we find in the unified technique, agrees
with the earlier results [13, 14] obtained diagrammati-
cally; this kernel depends only on the energy transferred
in the collision to a phonon. Considering the Bogoli-
ubov quasiparticles, we are able to cast the result for the
collision integral in the conventional terms of the quasi-
particle energy distribution functions. In the presence of
TRS, the corresponding kernel factorizes on two terms:
the normal-state kernel and a combination of the Bo-
goliubov transformation parameters. Factorization takes
place also if TRS is broken; in that case, the second fac-
tor is determined by the proper solution of the Usadel
equation. In either of the two cases, the second factor
depends separately on the initial and final energy of a
quasiparticle.

The additional (compared to the normal state) energy
dependence of the kernel affects the dependence of the
quasiparticle relaxation rate on its energy. These rates,
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in turn, determine the effectiveness of trapping. As an
example of application of the developed theory, we con-
sider trapping of a quasiparticle by an isolated vortex
and a current-biased constriction. In both cases there is
a pattern of super-currents, slowly decaying as a function
of distance, ∼ r−1, from the vortex core, or ∼ r1−d from
a constriction with d-dimensional superconducting leads.
These super-currents lead to a weak breaking of TRS and
thus suppression of the energy gap and modification of
the energy dependence of the density of states (DOS).
Such a suppression allows quasiparticles to be trapped
already very far from the vortex core or the constriction.
For low enough phonon temperature and relatively “hot”
quasiparticles this peripheral shallow trapping proves to
be more efficient than the deep trapping by the core of
the vortex, or the constriction. We discuss possible rela-
tion of the theory to experiments [3, 15].

The paper is organized as follows: in Section II we re-
view the theory of electron-phonon interactions in dis-
ordered normal metals. We derive the corresponding
Keldysh non-linear sigma-model and use it to obtain the
electron-phonon collision integral in the dirty limit. In
Section III we generalize the sigma-model on supercon-
ductors, including those with broken TRS, and in Section
IV derive kinetic equation for the quasiparticle distribu-
tion. Section V is devoted to applications of the theory
to trapping by vortex and current-biased constriction as
well as discussion of the existing experiments. We sum-
marize with a brief discussion in Section VI. Two Appen-
dices present an alternative derivation of the sigma-model
and summarize results for ultrasound attenuation.

II. ELECTRON-PHONON INTERACTIONS IN
DISORDERED NORMAL METALS

A. Interaction vertex

Theory of electron-phonon interactions in normal dis-
ordered metals had a long and, at times, controversial
history. Early considerations were based on the Fröhlich
Hamiltonian [16], which assumes screened Coulomb in-
teractions between electron density and induced lattice
charge, eρ0 divu, created by phonon displacement u(r, t).
Here eρ0 is the uniform lattice charge density. Due to
global neutrality it is exactly equal to the electron den-
sity:

ρ0 =

pF∫
ddp

(2π)d
=

εF∫
0

dε ν(ε) =
vF pF ν

d
, (1)

where normal metal DOS is ν(ε) = (ε/εF )d/2−1ν and
ν = ν(εF ). While perfectly legitimate in the clean case,
the Fröhlich Hamiltonian misses an important piece of
the physics in the “dirty” limit ql� 1, where q is phonon
wavenumber and l is electron elastic mean free path.

As was first realized by Pippard [17], phonons not only
deform the lattice, but also displace impurities, trans-

forming formerly static impurity potential Uimp(r) into
the dynamic one, Uimp(r)→ Uimp(r + u(r, t)). Colloqui-
ally, this leads to the electron density being dragged along
with the lattice displacement and providing a perfect
compensation for the induced lattice charge eρ0 divu. In
other words, the displaced impurity potential provides
fast elastic relaxation of the electron distribution around
the Fermi surface locally deformed by phonons. These
ideas were put on a quantitative basis by Tsuneto [11]
and Schmid [12], who showed that in the limit ql � 1
the Fröhlich Hamiltonian should be substituted by an-
other effective electron-phonon interaction vertex:

iSe:ph=

∫
dt
∑
p,q

ψ̄
(
p +

q

2
, t
)

Γµν(p)iqµuνq,tψ
(
p− q

2
, t
)
,

(2)
where ψ̄ and ψ are electrons creation and annihilation
operators and Γµν(p) is the traceless tensor

Γµν(p) = pµvν −
pF vF
d

δµν . (3)

Notice that, in view of Eq. (1), the last term here rep-
resents the Fröhlich coupling −ν−1(ρ0divu)(ψ̄ψ). Upon
averaging over the Fermi surface it is exactly compen-
sated by the first term in Eq. (3), i.e.

∫
dΩpΓµν(p) = 0.

This property is a result of the perfect screening of the
bare Coulomb interactions. The latter is a good approx-
imation as long as phonon frequencies are much smaller
than electronic plasma frequency. The remaining cou-
pling is of a quadrupole nature, as seen from Eqs. (2),
(3). This leads to a significantly weaker electron-phonon
coupling, than the one inferred from the Fröhlich term
[18]. A number of subsequent studies [13, 14, 19] reaf-
firmed validity of the Schmid coupling (2), (3) from var-
ious perspectives.

The most straightforward way to derive Eqs. (2), (3)
[11, 20] is by performing a unitary transformation, which
yields a Hamiltonian in the co-moving reference frame,
where the impurity potential is static. We shall not re-
peat this derivation here. Instead, we accept Eqs. (2),
(3) as a starting point and derive an effective non-linear
sigma model which incorporates electron-phonon inter-
action in the Schmid form. In Appendix A we provide
an alternative derivation of the sigma-model, which pro-
ceeds in the laboratory reference frame and deals with a
dynamic random potential Uimp(r + u(r, t)) and strong
Coulomb interactions between electron density and in-
duced lattice charges. We show that it brings the same
effective sigma model, justifying the use of the effective
electron-phonon vertex in the Schmid form (2), (3).

B. Non-linear sigma model

We now perform the standard [21, 22] averaging over
the static disorder and introduce the non-local field
Qt,t′(r) to split emerging four-fermion term. The result-
ing action, including electron-phonon coupling, Eqs. (2),
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(3), is now quadratic in the fermionic fields which may
be integrated out in the usual way, leading to

iS = −πν
4τ

Tr{Q2}+ Tr log

{
G−1

0 +
i

2τ
Q+ Γµν∂

µuν
}
,

(4)
where the inverse bare electron Green function is given
by G−1

0 = i∂t +∇2/2m+ µ ≈ i∂t + ivµ∂
µ.

From this point on, one proceeds along the standard
root of deriving Keldysh non-linear sigma-model [21, 22].
To this end one passes to the Keldysh 2×2 structure, by
splitting the contour on forward and backward branches
and performing Keldysh rotation. Upon this procedure
the fields acquire the matrix structure, e.g. u → û =
uαγ̂α, where α = cl, q denotes classical and quantum
Keldysh components and γ̂cl = σ̂0, γ̂q = σ̂1 are the two
vertex matrices in the Keldysh space.

One then realizes that the soft diffusive modes of the
action are described by the manifold Q̂2 = 1 and there-
fore one can write Q̂ = R̂−1Λ̂R̂, where Λ̂ is the Green
function in coinciding spatial points,

Λ̂ =
i

πν

∑
p

Ĝ0(p, ε) =

(
1 2Fε
0 −1

)
, (5)

and Fε is a distribution function. Rotation matri-
ces, R̂−1, belong to an appropriate symmetry group.
One then introduces dressed Green function Ĝ =(
Ĝ−1

0 + i
2τ Λ̂

)−1

and rewrites the action (4) as

iS = Tr log
{
1+ĜR̂[Ĝ−1

0 , R̂−1] + Ĝ R̂Γµν ∂
µûν R̂−1

}
.

(6)
Finally, one expands the logarithm here to the lowest
non-vanishing orders. This way one obtains the standard
non-linear sigma-model action (first neglecting electron-
phonon Γ-term):

iSQ̂ = −πν
4

Tr
{
D (∂rQ̂)2 − 4∂tQ̂

}
, (7)

where D = v2
F τ/d is the diffusion constant and d is the

dimensionality of electron system. We focus now on the
phonon-induced term. It is easy to see that the first order
in Γ term vanishes due to the fact that the integral over
the Fermi surface

∫
dΩpΓµν(p) = 0. It is this point,

where the Schmid coupling, Eqs. (2), (3), is qualitatively
different from the Frölich one (the latter would bring the

first order Tr
{

(ρ0div û)Q̂
}

term). Going to the second
order in Γ, one finds:

iSQ̂,u = −1

2
Tr
{
Ĝ R̂Γµν ∂

µûν R̂−1Ĝ R̂Γηλ ∂
ηûλ R̂−1

}
.

(8)
We use now

Ĝp =
1

2
GRp (1 + Λ̂) +

1

2
GAp (1− Λ̂), (9)

along with∑
p

pµvνG
R
p pηvλG

A
p (10)

=
2πντp2

F v
2
F

d(d+ 2)
(δµνδηλ + δµηδνλ + δµλδνη)

to find

iSQ̂,u =
πνD p2

F

4
Tr
{

[Q̂ , ∂µûν ][Q̂ , ∂ηûλ]
}

Υµν,ηλ, (11)

where

Υµν,ηλ =
1

d+ 2

[
δµηδνλ + δµλδνη −

2

d
δµνδηλ

]
. (12)

The local vertex (11) is the leading term describing inter-
action of phonons with the electronic degrees of freedom
in disordered metals, in ql � 1 limit. The naive defor-
mation potential term S ∝ ρ0Tr{Q̂div û} is absent due
to the perfect screening manifested in the traceless form
of the electron-phonon vertex (3). See also Appendix
A for more discussion of this issue. The second order
cross-term between the two terms in the logarithm in
Eq. (6) leads to S ∝ ρ0τDTr{∇2Q̂div û}. It is of the
order (ql) � 1 of the leading term (11) and thus should
not be kept within the accuracy of the adopted approxi-
mations.

The effective electron-phonon sigma model, Eqs. (7)
and (11), should be supplemented with the standard
phonon action. In the Keldysh technique it is given by

iSu = i
ρm
2

∑
q,ω,j

ūµ,αq,ω

[
ω2 −

(
ω(j)
q

)2
]
σ̂1
αβη

(j)
µν (q)uν,βq,ω,

(13)
where ρm is the material mass density, j = l, t labels
longitudinal and transversal polarizations encoded by the
projectors

η(l)
µν(q) =

qµqν
q2

; η(t)
µν (q) = δµν −

qµqν
q2

, (14)

and ω
(j)
q = vjq is the acoustic phonons dispersion with

the speed of sound vl,t. Indexes α, β = cl, q and Pauli
matrix σ̂1 act in the 2×2 Keldysh space. We will need an
imaginary part of the corresponding retarded propagator:

ImURνµ(q, ω) = Re 〈uν,clq,ωū
µ,q
q,ω〉 (15)

=
∑
j

η
(j)
νµ (q)

ρm

π

2ω
(j)
q

[
δ
(
ω − ω(j)

q

)
− δ

(
ω + ω(j)

q

)]
.

The corresponding Keldysh component is given by the
fluctuation-dissipation relation: UKνµ = Bω(URνµ − UAνµ),
where Bω = coth(ω/2T ) is the bosonic distribution func-
tion.

The effective action, Eqs. (7), (11), and (13) with the
vertices defined in Eqs. (12) and (14) serves as the start-
ing point for investigating the kinetics of electrons and
phonons. We relegate the evaluation of the ultrasonic at-
tenuation to Appendix B, where we reaffirm the known
results [12, 19, 20, 23] obtained by different techniques,
and proceed to study the electron kinetics.
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C. Electron-phonon collision integral

To derive collision integral for electron-phonon interac-
tions one first integrates over the phonon displacements
u(r, t) with the help of Eq. (15) to obtain the collision
action from Eq. (11):

Scoll =
πνDp2

F

4
Tr
{
Q̂ε−ω,ε′−ωγ̂

αQ̂ε′,εγ̂
β
}
Uαβνλ q

µqηΥµν,ηλ,

(16)

where Uαβνλ = Uαβνλ (q, ω) and summation over ε, ε′, ω,q
are understood. One now looks for the stationary point
equation for the action SQ + Scoll. It’s Keldysh (1,2)
component constitutes the kinetic equation [21, 22] for
the distribution function Fε in Eq. (5),

∂tFε −∇r [D∇rFε] = −2Icoll[Fε(r, t)], (17)

where the collision integral is given by

Icoll[Fε(r, t)] = − 1

2πν

〈(
δiScoll

δQ̂εε(r)

)(1,2)〉
Q̂

. (18)

The variational derivative here ought to be restricted to
the sigma-model target space, Q̂2 = 1. A way to in-

sure this is to use parameterization Q̂→ e−Ŵ/2Q̂eŴ/2 ≈
Q̂+ 1

2 [Q̂, Ŵ ] and expand the action (16) to the linear or-

der in Ŵεε. Here Ŵ ’s are infinitesimal generators of the
symmetry transformations. Because of the local nature
of the vertex in Eq. (16), the Q̂ integration may be sub-

stituted by the stationary point: Q̂ → Λ̂. This way one
obtains:

Icoll[Fε] = i
Dp2

F

8

∑
q,ε′

[
γ̂βΛ̂ε′ γ̂

αΛ̂ε − Λ̂εγ̂
βΛ̂ε′ γ̂

α
](1,2)

×Uαβνλ (q, ε− ε′)qµqηΥµν,ηλ =
1

4

∑
ε′

Mε,ε′ I[F ]; (19)

I[F ] = −1 + FεFε′ + Bε−ε′ [Fε − Fε′ ] .

The phonon matrix element in the collision integral (19)
in normal metal is found to depend only on the energy
difference, Mε,ε′ = MN

ε−ε′ , where

MN
ω =2Dp2

F

∑
q

Im
[
URνλ(q, ω)

]
qµqηΥµν,ηλ=M (l)

ω +M (t)
ω ,

(20)
and the superscripts j = l, t stand for longitudinal and
transverse modes, respectively. Expressing the fermion
and boson distributions in terms of the respective occu-
pation numbers, Fε = 1−2fε and Bω = 1+2Nω, we may
bring Icoll[Fε] to the standard “in minus out” form,

Icoll[fε] =

∫
dε′

2π
MN
ω [Nωfε′(1−fε)− (1 +Nω)fε(1−fε′)] ;

(21)
where ω = ε− ε′ and Icoll[fε] = 0 in equilibrium.

Employing Eqs. (12), (15) and (20) one finds:

M (j)
ω =

bjπDp
2
F

ρm

∑
q

q2

ω
(j)
q

δ
(
ω − ω(j)

q

)
=
bjπΩd
(2π)d

Dp2
Fω

d

ρmv
d+2
j

,

(22)
where Ωd = 2πd/2/Γ(d/2) is the area of Sd−1 unit sphere
and d is the effective phonon dimensionality. The coeffi-
cients are given bt = (d− 1)/(d+ 2); bl = 2bt/d (in these
instances d is the dimensionality of the electron system).

In fact, Eqs. (20), (22) should include a dressed phonon
propagator rather than the bare one. Such dressing leads
to: (i) a renormalization of sound velocities, (ii) a finite
lifetime of the phonon modes given by the ultrasound at-
tenuation coefficient, reviewed in Appendix B. The for-
mer effect is accommodated by using the correct (i.e.
renormalized) values of vl and vt in the phonon prop-
agator. The latter leads to the broadening of the delta-
function in Eq. (22) into the Lorentzian of the width γq
(see Appendix B), which has a negligible effect as long
as γq � ωq.

These results for the normal metal were derived in
Ref. [12–14] using diagrammatic techniques. Here we
reproduced them through the sigma-model technique,
which is much more suitable for treating the supercon-

ducting case, considered below. We notice that M
(l)
ω of

Eq. (22) is factor (vl/vF )2 � 1 smaller than that of
Ref. [18] for ω < v2

l /D. The latter was obtained with
the Fröhlich coupling (i.e. disregarding impurities shift-
ing with the lattice deformations). The two approaches
give comparable results for the longitudinal phonons at
ω ≈ vl/l where they both match with the clean limit ex-

pectation M
(l)
ω ∝ vF p

2
Fω

d−1/(ρmv
d+1
l ). The transversal

phonons give the dominant contribution to the collision
integral in the disordered limit ω < vt/l, since typically
vt < vl. However, in the opposite – clean limit, the

transversal matrix element is M
(t)
ω ∝ Dp2

Fω/(ρmv
3
t l

2),
[14] and is less important than the longitudinal one.

For comparison, the electron-electron collision integral
may be written in the form of Eq. (21), with the bosonic
occupation number Nω = ω−1

∫
dε′′fε′′(1 − fε′′−ω) and

a different matrix element given by: MN
ω → Me:e

ω ∝
ωd/2−1D−d/2/ν, [24]. As a result the ratio of electron-
electron and phonon matrix elements in normal metals
is

Me:e
ω

MN
ω

∝ M

m

(
v2
j

Dω

)d/2+1

∝
(m
M

)d/2( 1

ωτ

)d/2+1

, (23)

where M is the ion mass and we used that ρm ∝
Mνp2

F /m and v2
j ∝ v2

Fm/M . Therefore electron-electron
relaxation in normal metals dominates for the energy
transfer ω < τ−1(m/M)d/(d+2).
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III. DISORDERED SUPERCONDUCTORS

A. Sigma-model

The non-linear sigma-model is readily extended to
disordered superconductors [22, 25]. It is written in
terms of the local pair correlation function Q̌t,t′(r) ∝
〈Ψ(r, t)Ψ†(r, t′)〉, where Ψ(r, t) is the four component
spinor in the Nambu and Keldysh subspaces. As a re-
sult Q̌t,t′(r) is a 4 × 4 matrix, as well as the matrix in
the time, t, t′, space. It satisfies the non-linear condition
Q̌2 = 1. Its dynamics is governed by the action:

iSQ̌:∆̌ = −πν
8

Tr
{
D (∂rQ̌)2 − 4Ť3∂tQ̌+ 4i∆̌Q̌

}
, (24)

where ∆̌(r, t) = ∆(r, t)γcl ⊗ τ̂+ −∆(r, t)γcl ⊗ τ̂− is the
order parameter matrix. To discuss broken TRS later
on, we have also included a vector potential through the
long derivative:

∂rQ̌ = ∇rQ̌+ i[AŤ3, Q̌]. (25)

Hereafter τ̂0,1,2,3 are Pauli matrices in the Nambu space
and Ť3 = γ̂cl⊗ τ̂3. Here the operation Tr involves trace in
4× 4 Nambu-Keldysh space, as well as trace in time (or
equivalently energy) space and the spatial integration.

The electron-phonon interactions are given by Eq. (11)
(with factor 1/2 to compensate for the Nambu doubling
of the degrees of freedom), where the displacement field
ǔ is proportional to τ̂0 matrix in the Nambu space. The
corresponding collision action, obtained by integrating
out the phonon degrees of freedom, is given by Eq. (16)
(again with factor 1/2). Its variation over Q̌ leads to
the collision integral in the form of Eq. (19). The ma-
jor difference of the superconducting case is that the Λ̌ε
matrices in Eq. (19) are rotated in Nambu space, as ex-
plained below.

Taking variation of the effective action (24), (11) with
respect to the Q̌ as explained after Eq. (18), one obtains
the saddle point Usadel equation [22, 26]{
Ť3∂t, Q̌

}
+
− ∂̂r

(
DQ̌ ∂̂rQ̌

)
− i
[
∆̌, Q̌

]
=

1

πν

δScoll

δQ̌
, (26)

We look for a solution of this equation Q̌ = Λ̌ in the
standard form respecting causality:

Λ̌ =

(
Λ̂R Λ̂K

0 Λ̂A

)
K

, (27)

with retarded, advanced and Keldysh components being
matrices in the Nambu subspace. The non-linear con-
straint Λ̌2 = 1 is resolved as

Λ̂RΛ̂R = Λ̂AΛ̂A = 1̂ , Λ̂K = Λ̂RF̂ − F̂ Λ̂A , (28)

where F̂ is a distribution matrix in the Nambu space,
which may be written as [27] F̂ = FLεε′(r)τ̂0 + FTεε′(r)τ̂3.
Here FL,T are longitudinal (odd with respect to energy

permutation) and transverse (even in energy permuta-
tion) components of the quasiparticle distribution func-
tion. These two are responsible for the transport of en-
ergy and charge correspondingly. (The conventional dis-
tribution functions FL,Tε (r, t)) are obtained by Wigner
transformation with (ε+ ε′)/2→ ε and ε− ε′ → t.) Since
the transversal component usually decays fast to zero, we
shall primarily focus only on the long-lived longitudinal
component of the non-equilibrium quasiparticle distribu-
tion and often omit the superscript for brevity FLε (r, t) =
Fε(r, t). In thermal equilibrium FLε = tanh ε/2T , while
FTε = 0.

The non–linear constraints (Λ̂R(A))2 = 1̂, Eq. (28),
may be explicitly resolved in the Nambu space by the
angular parametrization [22, 28]:

Λ̂R(r, ε)=

(
coshϑ sinhϑ eiχ

− sinhϑ e−iχ − coshϑ

)
N

= V̂ −1τ̂3V̂ ;(29)

Λ̂A(r, ε)=

(
− coshϑ − sinhϑ eiχ

sinhϑ e−iχ coshϑ

)
N

=−V̂
−1

τ̂3V̂ ,

where ϑ(r, ε) and χ(r, ε) are complex, coordinate– and
energy–dependent angles. Here

V̂ε(r) = e
ϑ
2 τ̂

1

e−i
χ
2 τ̂

3

; V̂ε(r) = e
ϑ
2 τ̂

1

e−i
χ
2 τ̂

3

, (30)

notice that in presence of the phase χ the matrix V̂ε is
not a complex conjugate of V̂ε. The full saddle point
Λ̌-matrix (27), (28) then acquires the form

Λ̌(r, ε) = Ǔ−1
ε (r) τ̂3 ⊗ σ̂3 Ǔε(r), (31)

where σ̂3 is the Keldysh space matrix and

Ǔ =

(
V̂ V̂ F̂

0 −V̂

)
K

; Ǔ−1 =

V̂ −1 F̂ V̂
−1

0 −V̂
−1


K

.

(32)
The expectation value of the order parameter satisfy

the self-consistency equation, obtained by variation of
SQ̌,∆̌ − iν

2λTr{∆̌σ̂1 ⊗ τ̂0∆̌} over the quantum component

∆q. This leads to (we assume FT = 0):

∆ =
λ

4

ωD∫
−ωD

dε FLε
[
sinhϑ+ sinhϑ

]
, (33)

where λ is the BCS interaction constant and ωD is the
Debye frequency cutoff.

In the absence of the vector potential, i.e. with unbro-
ken TRS, substituting Eqs. (29) into the retarded and
advanced components of the Usadel equation (26) one
finds for the Nambu angle:

ε = ∆ cothϑ = ∆ coth ϑ̄. (34)

For |ε| > ∆ one thus finds that ϑ(ε) is real and

coshϑ =
ε

ξε
; sinhϑ =

∆

ξε
; ξε ≡ sign(ε)

√
ε2 −∆2.

(35)
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Within the energy gap, |ε| < ∆, the angle is ϑ =
−iπ/2 + θ, with real θ. For all energies the following
symmetry relation holds ϑ(−ε) = −ϑ̄(ε). The local DOS
is expressed through the Nambu angle as

ν(ε) =
ν

2
Re tr

{
τ̂3Λ̂R

}
= νRe coshϑ(ε) = ν

ε

ξε
Θ(|ε|−∆),

(36)
where Θ is the step function.

B. Superconductors with broken TRS

In many cases of the practical interest the vector po-
tential (and hence the phase χ) changes slowly on the
scale of the superconducting coherence length. In these
cases one may disregard the gradient terms in the action
(24) and write it as:

iS
(0)

Q̌,∆̌
= −πν

8
Tr
{
− γ

2
[Ť3, Q̌]2 + 4iεŤ3Q̌+ 4i∆̌Q̌

}
, (37)

where γ = 2DA2 is the energy scale associated with the
local breaking of TRS. For a vortex A = 1/(2r), where r
is distance from the core, and thus γ = 1

2∆(ξ/r)2, where

ξ =
√
D/∆ is the coherence length. For a thin film of

width d < ξ in a parallel magnetic field H‖ one finds

γ = 1
6D(H‖d)2.

Taking retarded and advanced components of the Us-
adel equation (26) without gradients (or equivalently,
substituting the saddle point ansatz (27) – (30) into the
action (37) and taking variation over the complex Nambu
angles ϑ, ϑ̄), one finds the saddle point condition:

ε = ∆ cothϑ− iγ coshϑ = ∆ coth ϑ̄+ iγ cosh ϑ̄. (38)

It’s solution is depicted in Fig. 1 and admits an important
symmetry relation:

ϑ(−ε) = −ϑ̄(ε) . (39)

The local DOS is expressed through the Nambu angle
as

ν(ε) =
ν

4
tr
{
τ̂3Λ̂R − Λ̂Aτ̂3

}
=
ν

2

[
coshϑ(ε) + cosh ϑ̄(ε)

]
;

(40)
it is shown in Fig. 2. Within the energy gap, |ε| < εg,
DOS is zero, i.e. Re [coshϑ] = 0 and thus the angle is ϑ =
−iπ/2+θ, with real θ. This brings ε = ∆ tanh θ−γ sinh θ.
The right hand side of the latter condition reaches max-
imum at cosh θ = (∆/γ)1/3. Substituting this back into
Eq. (38) one finds for the energy gap [29]

εg =
(

∆2/3 − γ2/3
)3/2

≈ ∆

(
1− 3

2

( γ
∆

)2/3
)
, (41)

where the last approximate relation holds for γ � ∆.
The gap closes at γ = ∆. Immediately above the gap,
ε & εg, DOS takes the form:

ν(ε) = ν

√
2

3

(
∆

γ

)2/3√
ε− εg

∆
. (42)

0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

Re ϑ

Im
ϑ

FIG. 1. Complex plane of ϑ(ε) for γ/∆0 =
0.01; 0.05; 0.2; 0.456; 0.49 from right to left. In the gapped
case (i.e. γ/∆0 < 0.456) ϑ(0) = −iπ/2 and there is a cusp
at ε = εg; eventually ϑ(∞) → 0. Full dots indicate ε = ∆,
notice Imϑ(∆)→ −iπ/6 as γ → 0.

At ε ≈ ∆ it reaches its maximum value ν(∆) ≈√
3

4 ν(4∆/γ)1/3 and merges with the BCS result ν(ε) =

νε/
√
ε2 −∆2 at ε−∆ ∝ ∆1/3γ2/3, see Fig. 2.

0.5 1.0 1.5 2.0
ϵ/Δ0

0.5

1.0

1.5

2.0

2.5

3.0

ν(ϵ)/ν

FIG. 2. DOS as a function of energy for the same values of
TRS breaking parameter γ as in Fig 1.

At T = 0 the self-consistency relation (33) takes the
form:

∆ =
λ

2
Re

ωD∫
0

dε sinhϑ =
λ

2
Re

∫
dϑ

dε

dϑ
sinhϑ, (43)

where according to Eq. (38) dε/dϑ = −∆ sinh−2 ϑ −
iγ sinhϑ and the last integral runs along the contour de-
picted in Fig. 1. Performing the elementary integration
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one finds [29]

ln
∆0

∆
=

{
πγ/(4∆); γ ≤ ∆,
g(γ/∆); γ > ∆,

(44)

g(x) = ln(x+
√
x2 − 1)− 1

2x

√
x2 − 1 +

x

2
arcsinx−1,

where ∆0 is the order parameter at γ = 0. Since
g(x) → ln(2x) at x → ∞, the self-consistency condition
looses a non-trivial solution at γ ≥ ∆0/2. On the other
hand, the gap closes at γ = ∆ = e−π/4∆0 ≈ 0.456∆0.
Therefore in the narrow range 0.456 < γ/∆0 < 0.5 the
order parameter is finite, while where is no gap in DOS,
Fig. 3. This is the phenomenon of gapless superconduc-
tivity.

0.1 0.2 0.3 0.4 0.5

γ

Δ0

0.2

0.4

0.6

0.8

1.0

FIG. 3. Order parameter ∆/∆0 (green) and gap energy εg/∆0

(red) as functions of TRS breaking parameter γ/∆0. The blue
line is the super-current density js(γ) (in arbitrary units),
given by Eq. (63).

For γ � ∆ one finds from Eq. (44) ∆ ≈ ∆0− π
4 γ. The

linear in γ suppression of the order parameter may be also
found from Ginzburg-Landau equation for T . Tc. No-
tice that this suppression of the order parameter is para-
metrically weaker than suppression of the gap, Eq. (41).
Therefore for the weak breaking of TRS, γ � ∆0, one
may drop the distinction between ∆ and ∆0.

IV. KINETICS OF QUASIPARTICLES

A. Kinetic equation

The kinetic equations are given by the (1, 2) Keldysh
component of the Usadel equation (26). Employing
Wigner representation and projecting onto τ̂0 and τ̂3

Nambu components, one obtains equations for the lon-
gitudinal FLε (r, t) = −FL−ε(r, t) and the transversal

FTε (r, t) = FT−ε(r, t) distribution functions:

ν(ε)

ν
∂tF

L
ε −∇r

[
DL(ε)∇rF

L
ε

]
=−2ILcoll, (45)

ν(ε)

ν
∂tF

T
ε −∇r

[
DT (ε)∇rF

T
ε

]
+MT (ε)FTε =−2ITcoll,(46)

where local DOS is given by Eq. (40) and other parame-
ters are defined as, [22, 27, 28]:

DL(ε) =
D

4
tr
{
τ̂0 − Q̂RQ̂A

}
= D cosh2

(
ϑ− ϑ̄

2

)
,

(47)

DT (ε) =
D

4
tr
{
τ̂0 − τ̂3Q̂Rτ̂3Q̂A

}
= D cosh2

(
ϑ+ ϑ̄

2

)
;

(48)

MT (ε) =
1

2
tr
{
Q̂R∆̂ + ∆̂Q̂A

}
= i∆

(
sinhϑ− sinh ϑ̄

)
= 2γ cosh2

(
ϑ+ ϑ̄

2

)
| sinhϑ|2. (49)

The mass, MT (ε), exists only in the absence of TRS. It
goes to zero at large energy as MT → 2γ∆2/ε2, but ac-
quires a large value MT (εg) = 2∆4/3γ−1/3 near the gap.
Such a mass provides a rapid decay of the transversal
component of the distribution function to zero. We thus
focus here only on the slow longitudinal relaxation.

The corresponding collision integral is given by
Eq. (19) (with factor 1/2 to compensate for Nambu dou-
bling of the degrees of freedom), where one should use
the Nambu-rotated Λε-matrices, Eq. (31). This yields,
e.g.:

trN

{
τ̂0
[
γ̂clΛ̂ε′ γ̂

clΛ̂ε − Λ̂εγ̂
clΛ̂ε′ γ̂

cl
](1,2)

K

}
(50)

= 2(FLε − FLε′ ) Re
[
cosh(ϑ− ϑ′) + cosh(ϑ− ϑ̄′)

]
,

where ϑ = ϑ(ε) and ϑ′ = ϑ(ε′). As a result, the kinetic
equation for the quasiparticles occupation number fε =
(1− FLε )/2 acquires a form:

ν(ε)

ν
∂tfε−∇r

[
DL(ε)∇rfε

]
= ILcoll[fε], (51)

ILcoll[fε]=

∫
dε′

2π
MS
ε,ε′ [Nωfε′(1− fε)−(1 +Nω)fε(1− fε′)],

where superconducting phonon matrix element is:

MS
ε,ε′ =

1

2
Re
[
cosh(ϑ− ϑ′) + cosh(ϑ− ϑ̄′)

]
MN
ε−ε′

=
ν(ε)

ν

ν(ε′)

ν
[1− 4uεvεuε′vε′ ]M

N
ε−ε′ , (52)

where ω = ε − ε′, the normal state matrix element MN
ω

is given by Eqs. (20), (22) and DOS ν(ε) is given by
Eqs. (40), (42). Motivated by standard TRS notations,
we introduced

2uεvε ≡
Re[sinhϑ]

Re[coshϑ]
, (53)

which is only defined for |ε| > εg, see Fig. 4. Employing
Eqs. (38)–(42), one may show that

2uεvε ≈
{

∆/|ε|; ε−∆� ∆1/3γ2/3;√
1− (γ/∆)2/3; |ε−∆| . ∆1/3γ2/3

(54)
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Since ν(ε′) = 0 for |ε′| < εg, while [1− 4uεvεuε′vε′ ] tends
to a constant, one finds MS

ε,ε′<εg
= 0: as expected the

final energy ε′ has to be outside the spectral gap. For
TRS superconductors these results appeared in Ref. [13].

0.0 0.5 1.0 1.5 2.0
ϵ/Δ00.0

0.2

0.4

0.6

0.8

1.0

2uϵvϵ

FIG. 4. 2uεvε as a function of energy for the same values of
TRS breaking parameter γ as in Fig 1.

The factor ν(ε)/ν on the right hand side of Eq. (52)
is cancelled against the same on the left hand side of
Eq. (51). As a result, one finds for the “out” electron-
phonon relaxation rate:

1

τe:ph
=

∫
|ε′|>εg

dε′ν(ε′)

2πν
(1+Nω)(1−fε′) [1− 4uεvεuε′vε′ ]M

N
ω .

(55)
The energy integral here may be further subdivided onto
positive, ε′ > εg, and negative ε′ < −εg regions, rep-
resenting the inelastic scattering and recombination pro-
cesses correspondingly:

1

τe:ph(ε)
=

1

τ sc
e:ph(ε)

+
1

τ rec
e:ph(ε)

, (56)

where

1

τ sc
e:ph

=

∞∫
εg

dε′ν(ε′)

2πν
(1+Nε−ε′)(1−fε′)[1−4uεvεuε′vε′ ]M

N
|ε−ε′|;

1

τ rec
e:ph

=

∞∫
εg

dε′ν(ε′)

2πν
(1 +Nε+ε′)fε′ [1−4uεvεuε′vε′ ]M

N
|ε+ε′|. (57)

To obtain recombination time we changed integration
variable ε′ → −ε′ and used that FL−ε′ = −FLε′ and there-
fore (1 − f−ε′) = fε′ . We also employed Eq. (39), which
insures that both ν(ε′) and 2uε′vε′ are even functions.
For low concentration of non-equilibrium quasiparticles
fε′ � 1 the recombination processes may be disregarded,
even though their matrix element tends to be larger.

V. KINETICS OF QUASIPARTICLES
TRAPPING

A. Trapping rate

We now focus on trapping of non-equilibrium quasi-
particles within the regions with the locally suppressed
energy gap. Such suppression is often achieved by break-
ing TRS, resulting in a spatially dependent TRS break-
ing parameter γ(r). For example, an isolated Abrikosov
vortex brings γ(r) = 1

2∆(ξ/r)2.
Quasiparticles with an initial energy ε > ∆ diffuse to

the regions with the suppressed gap εg(r) < ∆. There
they can inelastically scatter to a final energy ε′ within
the window εg(r) < ε′ < ∆ by emitting an acoustic
phonon. As a result, they end up being trapped within
the spatial region εg(r) < ε′, due to Andreev reflec-
tions from its boundaries. We evaluate the corresponding
trapping rate, assuming very low phonon temperature,
Nω � 1, and small concentration of non-equilibrium
quasiparticles, i.e. fε′ � 1. As a result the trapping
rate is found as:

1

τtr
=
bjπΩd
(2π)d

Dp2
F

ρmv
d+2
j

∆∫
εg

dε′ν(ε′)

2πν
[1− 4uεvεuε′vε′ ] (ε−ε′)d,

(58)
where the coefficients bj are defined after Eq. (22).

There are two distinct limits for the trapping rate dis-
tinguished by the comparison of the relative excess en-
ergy of nonequilibrium quasiparticles, δε ≡ (ε − ∆)/∆,
and the relative energy range affected by breaking of
TRS, (γ/∆)2/3. Carrying out the integration in Eq. (58)
with the help of Eqs. (42), (54), one finds;

1

τtr
∝ Dp2

F∆d+1

ρmv
d+2
j

( γ
∆

)1
3

{
(γ/∆)

2
3 (d+1); δε < (γ/∆)

2
3 ,

δd+1
ε ; (γ/∆)

2
3 < δε . 1.

(59)
In most metals the longitudinal sound velocity is about

twice that of the transversal one. As a result, the
transversal phonons are about an order of magnitude
more efficient in trapping the non-equilibrium quasipar-
ticles than the longitudinal ones. Hereafter we thus re-
strict ourselves exclusively to the transversal waves. No-
tice that the transversal phonons are coupled to electrons
due to impurity displacement mechanism, which is only
present in the disordered limit ql = ωl/vt . 1. The
characteristic length scale vt/ω is typically in the range
10-100 nm. We shall assume that the characteristic thick-
ness of superconducting films is larger than that and put
d = 3 in the subsequent estimates.

B. Trapping power of a single vortex

We now evaluate the total trapping power of a vortex in
a superconducting film, defined as a spatial integral of the
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local trapping rate (58), P =
∫
d2r/τtr(r). This quan-

tity may then be used as a sink term in the macroscopic
2D diffusion equation for the density of non-equilibrium
quasiparticles, n(r, t),

∂tn−∇[D∇n] = −P δ(2)(r)n, (60)

where the vortex is placed at r = 0. The form of the
right-hand side of Eq. (60) assumes the vortex core be-
ing a perfect sink. This is adequate, if (i) the density of
non-equilibrium quasiparticles exceeds substantially the
density of equilibrium excitations with energy ε > ∆ in
the core region, and (ii) relaxation of non-equilibrium
quasiparticles occurs due to “deeply inelastic” processes.
The former condition is met in low-temperature experi-
ments, see, e.g., Ref. [3]. Condition (ii) is satisfied for
the relaxation by phonon emission (we note in passing
that tunneling processes in S-I-N structures [9] provide a
counter-example to (ii), resulting in a measurable back-
flow from a trap).

For an isolated vortex the TRS breaking parameter is
a function of the distance r from the core γ = 1

2∆(ξ/r)2.

The trapping rate at small γ scales as γ1/3 ∼ r−2/3, and
thus the integral in the definition of the trapping power
is dominated by large distances from the vortex core.
Employing Eq. (58), one finds:

P =
D(pF ξ)

2∆4

10πρmv5
t

[(
rc
2ξ

)2 (
(1 + δε)

4 − δ4
ε

)
+

(
R

ξ

)4/3
δ4
ε

]
.

(61)
The first term in the square brackets here is the contri-
bution of the vortex core, which we model as a normal
cylinder with the radius rc. The second term is coming
from the outer periphery of the vortex core with R be-
ing it’s effective outer radius. It is determined by either
a distance between vortices, a penetration depth, or the
condition that ∆ − εg(R) ≈ T , where T is the phonon
temperature. Indeed, beyond such a radius the trap is
too shallow and trapping is not effective because of the
activation escape. This leads to (R/ξ)4/3 ≈ ∆/T and
and allows us to rewrite the last term in the brackets
of Eq. (61) as (δε∆

1/4/T 1/4)4. The peripheral trapping
may dominate, if the typical quasiparticles excess energy
grossly exceeds the phonon temperature.

We now use the parameters of devices investigated
in experiment [3] to estimate P with the help of Eq.
(61) and compare it with the experimental findings. In
Ref. [3] the trapping power of individual vortices in an
aluminum film was measured to be P = 6.7 × 10−2

cm2/s at the base temperature of T = 20 mK. The rel-
evant parameters of the film were [3] D = 18 cm2/s;
vt = 3.0 × 105 cm/s; ρm = 2.7 g/cm3; EF = 11.7 eV;
∆ = 1.8 × 10−4 eV. With these parameters one finds
D(pF ξ)

2∆4/(ρmv
5
t ) = 6.8 × 10−3 cm2/s. As a result,

the core contribution to the trapping power in Eq. (61)
is about two orders of magnitude smaller than the ob-
served value for a reasonable estimate of rc and δε. At
the base temperature, (R/ξ)4/3 ≈ ∆/T = 102, the pe-
ripheral contribution may provide trapping of the right

order of magnitude only if δε ∼ 1. For the geometry of
devices in Ref. [3], there are no reasons to expect that
the quasiparticles are so ”hot” in the vicinity of the vor-
tices. Therefore, albeit the peripheral contribution adds
to the trapping power, it is not sufficient to explain the
observed value of P .

C. Trapping by a current-carrying constriction

Trapping rate was also measured [15] in a nano-bridge
closed by a flux-biased superconducting loop. The flux
bias was creating a super-current flowing through the
constriction. The super-current breaks TRS and thus
suppresses the the energy gap in the nano-bridge itself as
well as in the adjacent leads, carrying the stray currents.
Assuming 3D leads, the stray current density may be es-
timated as js(r) = Is/(2πr

2), where r is distance from
the constriction and Is is the total super-current through
the constriction.

To apply our theory we need to find a relation between
the local supper-current density js(r) and the local TRS
breaking parameter γ(r). Assuming an applied vector
potential A(r), the super-current density is obtained by
variation of the action (24) over the (quantum component
of the) vector potential and is given by

− js=AeνDIm

∞∫
0

dε FLε sinh2 ϑ=AeνDIm

0∫
ϑ(0)

dϑ
dε

dϑ
sinh2ϑ,

(62)
where in the second equation we put T = 0 and changed
the integration variable to ϑ. We will also assume that
the vector potential A, which creates the super-current
is the sole source of the breaking TRS symmetry (i.e. no
additional magnetic field is present) and thus γ = 2DA2.
Performing the integration one finds (we traded here A
for γ):

js = eνγ3/2

√
D

2
Reh

(
∆

γ

)
; (63)

h(x) = x sin−1 x− 2

3

(
1−

√
1− x2

(
1 +

1

2
x2

))
.

Notice that ∆ = ∆(γ) according to Eq. (44). The result-
ing critical current js(γ) is plotted in Fig. 3. For small
js the effective TRS breaking parameter γ is found from
Eq. (63) as

γ(r) =
8

π2
∆

(
js(r)

eνξ∆2

)2

=
2∆

π4

(
Is

eνξ3∆2

)2(
ξ

r

)4

.

(64)
According to Eq. (59) the trapping rate far from the

constriction (i.e. for small γ) scales as τ−1
tr (r) ∼ γ1/3 ∼

I
2/3
s r−4/3. To calculate the total trapping rate τ−1

T of
the constriction, measured in Ref. [15], one integrates
this expression over the volume of the leads and multi-
plies by nqp – concentration of non-equilibrium quasipar-
ticles (in notations of Ref. [15] nqp = xqpν∆, where xqp
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is dimensionless fraction of broken Cooper pairs). The
aforementioned volume integral is coming from large dis-

tances R and thus τ−1
T ∼ I

2/3
s R5/3. As explained above,

the outer radius R is limited by thermally activated es-
cape and is estimated from (γ(R)/∆)2/3 = T/∆. This

leads to R ∼ I
1/2
s T−3/8. As a result, the trapping rate

of the constriction, coming from its outer periphery, is
given by:

1

τT
∝ Dp2

F (∆δε)
4

ρmv5
t

nqpξ
3

(
Is

eνξ3∆2

)2/3(
∆

T

)5/8

. (65)

(For 2D pattern of stray currents one finds τ−1
T ∼ I2

sT
−1.)

Both dependencies on current and temperature are in a
qualitative agreement with the data of Ref. [15]. The
“core” contribution, due to trapping on localized An-
dreev bound states, was calculated in Ref. [15] and found
to be about two orders of magnitude less than the ob-
served value. The peripheral trapping, discussed here,
may well account for this discrepancy, though quantita-
tive comparison is impeded by the uncertainty in δε and
nqp.

VI. DISCUSSION OF THE RESULTS

We have developed a unified theory for treating
electron-phonon kinetics in disordered normal metals and
superconductors, including superconductors with broken
TRS. The latter case is particularly important for eval-
uation of the trapping rate of non-equilibrium quasipar-
ticles in the regions, where the energy gap is suppressed
by a local magnetic field or a super-current. Quasiparti-
cle traps are proven to be useful for increasing coherence
time of superconducting qubits.

Our theory shows that the trapping rate, τ−1
tr , is a

very sensitive function of the TRS breaking parameter
γ, which at low temperature scales as τ−1

tr ∝ γ1/3. As
a result, even the regions with a weak breaking of TRS,
such as a far periphery of a vortex or a constriction, may
provide a significant contribution to the overall trapping
power of “hot” quasiparticles. The quantitative compar-
ison with the experiment [15] requires detailed knowl-
edge of non-equilibrium quasiparticles energy distribu-
tion, which is not available at the moment. Our esti-
mates show that in order to account for the observed
trapping rates, the non-equilibrium quasiparticles excess
energy should be ε−∆ ∼ ∆� T , where T is the phonon
bath temperature.
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Appendix A: Alternative derivation of the
electron-phonon action

Here we provide an alternative derivation of Eqs. (11),
which is based on first principles Coulomb interactions
between the electrons and the lattice as well as impu-
rity drag by the lattice displacements. The first of these
effects leads to to the standard Coulomb action

SC =

∫
dt

[
1

2

∑
q

ϕq,tU
−1
C ϕ−q,t +

∑
r

ϕr,t(ρ0divu− ρe)r,t

]
,

(A1)
where ϕr,t is the fluctuating scalar potential, UC =
4πe2/q2 is the bare Coulomb interaction, ρe(r, t) =
ψ̄(r, t)ψ(r, t) − ρ0 is the excess electron density, while
ρ0divu is the excess lattice density.

The second effect is more subtle and pertains to the
disordered limit ql � 1, where l = vF τ is the elastic
mean free path and τ is the elastic mean free time. It
originates from the fact that the impurities are frozen
into the crystal lattice and therefore are also subject to
the displacement u(r, t) [11–14, 17, 19]. Therefore hith-
erto static random disorder potential becomes a dynamic
object Vdis(r)→ Vdis(r+u(r, t)). It is convenient to shift
r to write the interaction of the electron density with the
disorder potential as

Hdis =
∑
r

Vdis(r)ρe(r− u(r, t), t) (A2)

Performing averaging over the Gaussian distribution of
short-ranged disorder, one finds the following action

iSdis = − 1

4πντ

∫∫
dtdt′

∑
r

ψ̄r−u,tψr−u,tψ̄r−u′,t′ψr−u′,t′ ,

(A3)
where u = u(r, t) and u′ = u(r, t′). One can now rear-
range the fermionic fields and decouple the four-fermion
action with the help of the non-local in time field Qt,t′(r).
This leads to the following term:

ψ̄r−u,tQt,t′(r)ψr−u′,t′ ≈ ψ̄r,t

[
Qt,t′(r)− L̂1 +

1

2
L̂2

]
ψr,t′ .

(A4)
We have expanded fermionic fields to the second order in
the displacement u, which brings the two operators:

L̂1 =
←
∇ ·uQt,t′(r) +Qt,t′(r)u′·

→
∇; (A5)

L̂2 =
←
∇
←
∇ ·· uuQ+

←
∇ ·u 2Qu′·

→
∇ +Qu′u′ ··

→
∇
→
∇,

where the arrows above the gradient operators show di-
rection of the differentiation in the context of Eq. (A4).
The action is now quadratic in the unshifted fermionic
fields which may be integrated out in the standard way,
leading to the determinant:

Tr log

{
G−1

0 − ϕ+
i

2τ

[
Q− L̂1 +

1

2
L̂2

]}
, (A6)
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where ϕ = ϕr,t is the scalar potential coming from the
Coulomb interactions, Eq. (A1).

From this point on, one proceeds along the standard
root of deriving Keldysh non-linear sigma-model [22]. To
this end one passes to the Keldysh 2 × 2 structure, by
splitting the contour on forward and backward branches
and performing the Keldysh rotation. One then real-
izes that the soft diffusive modes of the action are de-
scribed by the manifold Q̂2 = 1 and therefore one can
write Q̂ = R̂−1Λ̂R̂, where Λ̂ is the Green function in co-
inciding spatial points, Eq. (5). This way Eq. (A6) may
be rewritten as:

Tr log

{
1+ĜR̂[G−1

0 , R̂−1]−ĜR̂
[
ϕ̂+

i

2τ
L̂1−

i

4τ
L̂2

]
R̂−1

}
.

(A7)
Finally, one expands the logarithm here to the lowest
non-vanishing orders. This way one obtains the stan-
dard non-linear sigma-model action (first neglecting L̂1,2

terms):

iS0 =
iν

2
Tr{ϕ̂σ̂1ϕ̂} − πν

4
Tr{D(∂rQ̂)2 − 4∂tQ̂− 4iϕ̂Q̂}.

(A8)
The first term on the right hand side here represents
static polarizability (i.e. screening) of the electronic
band. It comes from the so-called retarded-retarded and
advanced-advanced loops. The dynamic screening is en-
coded in πνTr{ϕ̂Q̂} term along with fluctuations of the

Q̂ field around its stationary point Λ̂.
We focus now onto the phonon-induced L̂1,2 terms,

which originate from the motion of the impurities rela-
tive to the electronic liquid. It is easy to see that the
first order in L̂1 vanishes. One is thus left with the three

terms: (i) first order in L̂1 and in iR̂vF ·
→
∇ R̂−1; (ii)

first order in L̂2 and (iii) second oder in L̂1. A straight-
forward, but somewhat lengthy evaluation of these three
terms results it

iS(i) = −iπν vF pF
d

Tr{û · ∇Q̂} = iπρ0Tr{divû Q̂}; (A9)

iS(ii) = −iπν
2τ

p2
F

d
Tr{û · û− û Q̂û Q̂}; (A10)

iS(iii) = i
πν

2τ

p2
F

d
Tr{û · û− û Q̂û Q̂} (A11)

+
πνD p2

F

4
Tr
{

[Q̂ , ∂µûν ][Q̂ , ∂ηûλ]
}

Υµν,ηλ,

where Υµν,ηλ is given by Eq. (12). Notice that the lead-
ing orders in S(ii) and S(iii) exactly cancel each other.
The second sub-leading term in Eq. (A11) originates from

gradient operators in L̂1 acting on displacements û, as
opposed to the Green functions G.

The scalar linear coupling S(i) may be combined with
the potential term in Eq. (A8) by shifting the potential

ϕ̂→ φ̂ = ϕ̂+ ρ0
ν divû. In the limit of the strong Coulomb

interactions, UC → ∞ in Eq. (A1), this allows to
eliminate Fröhlich deformation potential electron-phonon
coupling. Indeed, the static screening ν

2 Tr{ϕ̂σ̂1ϕ̂} in

Eq. (A8) along with the interaction term ϕ̂σ̂1ρ0div û
in Eq. (A1) upon the aforementioned shift results in
ν
2 Tr{φ̂σ̂1φ̂} − ρ20

2νdivû σ̂1divû. The first term here stay
for the screened electron-electron interactions, unaffected
by lattice displacement, while the second one serves to
renormalize upward the longitudinal sound velocity. This
latter effect is already accommodated by using the cor-
rect value of vl and thus no other effects of the scalar
electron-phonon coupling, S(i), remain.

The only remaining term thus is the second –
quadrupole term in Eq. (A11), which coincides exactly
with Eq. (11). The latter was derived using phenomeno-
logical Schmid form, Eq. (2), of the electron-phonon cou-
pling. The present first principles derivation provides
thus an independent justification for the Schmid theory
[12].

Appendix B: Ultrasonic attenuation

1. Normal metals

For the sake of completeness we outline calculation of
the ultrasonic attenuation. It is found by integrating out
electronic degrees of freedom, Q̂, and focusing on mod-
ification of the phonon propagator (15) due to electron-
phonon coupling. In the leading approximation it is given
by the action (11), where one puts Q̂ = Λ̂, cf. Eq. (5),
and integrates over the energy:

iSΛ̂,u =−νp2
F

∑
q,ω

ūµ,αq,ωK̂
αβ(ω)

Dq2

d+ 2

[
δµν+

d−2

d

qµqν
q2

]
uν,βq,ω,

(B1)
where the kernel is

K̂αβ(ω) =
1

4

∫
dεTr

{
γ̂αγ̂β − Λ̂ε−ωγ̂

αΛ̂εγ̂
β
}
. (B2)

For normal metals one finds, cf. Eq. (5), the dissipative
Caldeira-Leggett kernel:

K̂(ω) =

(
0 −ω
ω 2ωBω

)
(B3)

and Bω =
∫
dε (1−Fε−ωFε)/(2ω) is the bosonic distribu-

tion function. It provides damping to the phonon action,

Eq. (13): (ω ± i0)2 −
(
ω

(j)
q

)2

→ ω2 ± iγ(j)
q ω −

(
ω

(j)
q

)2

(along with the fluctuation-dissipation related noise),
where the damping factors are [19, 20, 23]:

γ(j)
q = cj

νp2
F

ρm
Dq2, (B4)

where ct = 2/(d+ 2) and cl = ct[1 + (d− 2)/d].

2. Superconductors

In the superconducting case the K̂(ω) kernel, Eq. (B2),
depends on the rotation angle in the Nambu space. For
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it’s retarded, i.e. α = q and β = cl, component one finds:

KR(ω) = −1

4

∫
dε
[

cosh(ϑ− ϑ′)FLε′ − cosh(ϑ̄− ϑ̄′)FLε

+ cosh(ϑ− ϑ̄′)(FLε′ − FLε )
]
, (B5)

where ε′ = ε − ω. Since for ε < εg, Imϑ(ε) = −π/2
there is no contribution to the integral from the region
ε, ε′ < εg. The imaginary part of this expression, coming
from the two energy intervals ±εg < ε < ±εg + ω, is
∼ ω2 at small ω, which gives a small renormalization
to the sound velocity. The real part, responsible for the
attenuation, takes the following form:

ReKR(ω) =

∫
dε
ν(ε)

ν

ν(ε′)

ν
[1− 4uεvεuε′vε′ ] (fε′ − fε),

(B6)
where 2uεvε is given by Eq. (53), fε = (1− FLε )/2 is the
quasiparticle occupation number and the integral runs
over the two intervals ε < −εg and ε > εg + ω, where
both DOS are non-zero.

For TRS superconductors the above expression takes
the form:

ReKR(ω) =

∫
dε

εε′ −∆2

√
ε2 −∆2

√
ε′2 −∆2

(fε′ − fε). (B7)

In the case ω � ∆, T one may expand over ω and use the

fact that the fraction in Eq. (B7) tends to 1 as ω → 0. As
a result, ReKR(ω) = −2ω

∫∞
∆
dε (dfε/dε) = 2ωf∆. This

way the ultrasound attenuation coefficient in equilibrium
disordered TRS superconductors is found to be [11, 23,
30]:

γSq = 2f

(
∆(T )

T

)
γNq , (B8)

where f(∆/T ) is the Fermi function. (The same relation
holds in the clean case as well [31].)

It is worth noticing that the celebrated Eq. (B8) does
not hold in the TRS broken case. Indeed, in the limit

ω → 0, the factor
(
ν(ε)
ν

)2

[1− (2uεvε)
2] = (Re coshϑ)2 −

(Re sinhϑ)2 6= 1 for complex ϑ(ε). In the small tempera-
ture case, T < γ2/3∆1/3 < εg, Eqs. (42), (54) lead to:

ReKR(ω)=
−4ω

3γ2/3∆1/3

∞∫
εg

dε(ε−εg)
dfε
dε

=
4ω

3γ2/3∆1/3

∞∫
εg

dεfε,

(B9)
In equilibrium this brings:

γSq =
4T

3γ2/3∆1/3
e−εg/T γNq , (B10)

i.e. there is an additional small factor ∼ T/(γ2/3∆1/3) in
comparison with TRS case (it may be overcompensated,
though, by the fact that εg < ∆).
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[16] H. Fröhlich, Phys. Rev. 79, 845 (1950); H. Fröhlich, Adv.
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