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Abstract

Solid interfaces with exceptionally low or high thermal conductance are of intense scientific and

practical interest. However, realizing such interfaces is challenging due to a lack of knowledge of

the phonon transmission coefficients between specific modes on each side of the interface and how

the coefficients are affected by atomic scale structure. Here, we report an ab-initio based study of

phonon transmission at Si/Ge interfaces using a recent extension of the Atomistic Green’s Function

method that resolves transmission coefficients by mode. These results provide a detailed framework

to investigate the precise transmission and reflection processes that lead to thermal resistance and

how they depend on phonon frequency as well as incident angle. We find that the transmission

and reflection processes can be partly explained with familiar concepts such as conservation of

transverse momentum, but we also find that numerous phonons have zero transmission coefficient

despite the existence of modes that satisfy transverse momentum conservation. This work provides

detailed insights into precisely which phonons transmit or reflect at interfaces, knowledge necessary

to design solid interfaces with extreme values of thermal conductance for thermoelectricity and heat

management applications.
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I. INTRODUCTION

Two-dimensional defects, such as heteregenous interfaces or grain boundaries, play a

key role in the overall properties of nanomaterials1. Contrary to what has been achieved

with photons or electrons, the understanding of phonon transmission processes at solid

interfaces remains poorly developed, with direct measurements of transmission coefficients

having only been recently reported2. Therefore, designing interfaces with extreme values of

thermal boundary resistance (TBR) is still a challenge. Crucial technologies, such as thermal

interface materials3 or thermoelectrics4,5, would greatly benefit from a better understanding

of phonon transmission through two-dimensional defects.

To achieve such a control over TBR, knowledge of transmission coefficients for all phonons

over the Brillouin zone is essential, exactly as knowledge of Fresnel coefficients is essential

for designing optical anti-reflection coatings. However, most analytical models and compu-

tational tools do not provide this detailed information. Simple models such as the acous-

tic mismatch model (AMM) in the long wavelength limit and the diffuse mismatch model

(DMM) in the short wavelength limit fail to reproduce many experimental observations6.

Molecular dynamics simulations7,8have allowed the overall value of the TBR to be computed,

including the full anharmonicity of the interatomic potential. Mode-resolved techniques9–14

have been recently developed to investigate how specific phonon modes are affected by inter-

faces. However, the typical wave packet approach is extremely computationally expensive

for many modes in a Brillouin zone grid.

The Atomistic Green’s Functions (AGF) method15 has also been used extensively to

compute the transmission through a device connected to reservoirs given knowledge of the

empirical or ab-initio force constants. While the original AGF algorithm16–23 yields trans-

mission coefficients that are resolved only by phonon frequency, recently Ong and Zhang24

extended the AGF formalism for mode-resolved calculations on a graphene/boron-nitride

interfaces using empirical force constants. A similar numerical method25 based on the har-

monic force constants has also been developed using perfectly matched layer boundaries to

compute mode-resolved transmission. However, these algorithms have not yet been applied

to interfaces between three-dimensional solids with ab-initio force constants.

In this work, we have investigated interfacial phonon transmission using the mode-

resolved AGF formalism for a Si/Ge interface with force constants obtained from first-
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principles. In Section II, we present the methodology with the mode-resolved formalism of

the AGF, which allows for the calculation of transmission coefficients from a specific mode in

a material to a specific mode in the other material. After, we obtain the modal transmission

coefficients and analyze the results, particularly in comparison to the predictions of simple

models like the AMM. Finally, we examine the zero-transmission processes to draw general

conclusions on the physical mechanisms involved in the phonon transmission.

II. METHODOLOGY

We first briefly describe the formalism used to compute the mode-resolved transmission

coefficients as reported in Ref.24. This method requires the knowledge of the harmonic

force constants of the system which we obtain from first-principles using the temperature-

dependent effective potential method (TDEP)26–28.

A. Original Atomistic Green’s Functions

In the original framework of the AGF15,29, the studied system is divided into three inter-

acting parts: the left and right semi-infinite leads and the device, as depicted in Fig. 1. It

Silicon Germanium

Left lead Right leadDevice

x

y

z

FIG. 1. Atomic structure of the Si/Ge interface. The black dashed lines separate the system into

three sub-systems: the left (Si) and right (Ge) semi-infinite leads and the device containing the

interface. For each lead, two identical layers are created (red dashed lines) for the mode-resolved

AGF formalism.
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is possible to write the equation of motion of this system using the following matrix form:

(

ω2I−H
)

Ψ = 0, (1)

where ω is the radial frequency, I is the identity matrix, Ψ are the eigenvectors of the total

system and H is the harmonic matrix representing the atomic interactions
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(2)

where HD is the harmonic matrix of the device, HLD is the coupling matrix between the left

lead and the device and HDR the coupling matrix between the device and the right lead. As

H is hermitian, HLD = H†
DL and HRD = H†

DR. The harmonic matrix of the left lead HL

is divided into submatrices, where H00
L represents the harmonic matrix of the layer in the

left lead in contact with the device, H11
L the harmonic matrix of the layer in the left lead

in contact with the previous layer and H01
L the coupling matrix between them, as depicted

in Fig. 1. The same notation is also used for the right lead. The device retarded Green’s

function Gret
D (ω) is defined as

Gret
D (ω) =

(

ω2I−HD −ΣL −ΣR

)−1
, (3)

where ΣL,R are the self-energies of the left and right leads respectively representing the cou-

pling between the leads and the device. They are defined using the left and right uncoupled

retarded Green’s functions g00
L = [(ω2 + ηi) I−HL]

−1
and g00

R = [(ω2 + ηi) I−HR]
−1
, which

are computed with the decimation technique30, each lead being divided into two equivalent

sub-layers, as depicted in Fig. 1. We checked that η = 10−6ω2 is small enough not to affect

the density of states and guarantee a quick convergence of the decimation technique. The

self energies are defined as ΣL = HDLg
00
L HLD and ΣR = HDRg

00
R HRD. The transmission

spectrum is finally calculated using the Caroli formula:

Ξ(ω) = Tr
(

ΓRG
retΓLG

ret †
)

, (4)
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with ΓL = i
(

ΣL −Σ†
L

)

and ΓR = i
(

ΣR −Σ†
R

)

. Finally, the thermal conductance G(T ) is

computed using the Landauer formalism:

G(T ) =
1

2πA

∫ +∞

0

~ω
∂n

∂T
(ω, T )Ξ(ω)dω, (5)

with n(ω, T ) the Bose-Einstein distribution and A the transverse area. For the Si/Ge

interface, the equation for the thermal conductance is modified as described by Tian et

al.19. To reduce the computation time for the transverse directions, a Fourier transform

of the equations of motion in both transverse directions is carried out and the transmis-

sion Ξ(ω,~k‖) is computed for each transverse wave vector ~k‖ defined on a uniform grid:

Ξ(ω) = 1/N~k‖

∑

~k‖
Ξ(ω,~k‖), where N~k‖

is the number of transverse wave vectors.

B. Mode-resolved Atomistic Green’s Functions

We now present the mode-resolved AGF formalism adapted by Ong et al.24 from electronic

transport31. This theory is based on Bloch matrices using the translational symmetry in

both left and right leads. These matrices give for each mode in both leads the phase change

of the eigenvectors passing from one unit cell to the neighbour. The Bloch matrices for

modes travelling from the left to right leads can be defined from the uncoupled retarded

Green’s functions g00
L and g00

R :

Fadv
L =

[

(

H10
L g00

L

)†
]−1

, (6)

Fret
R = g00

R H10
R . (7)

The diagonalization of these Bloch matrices provides the eigenvector matrices {Uadv
L ,Uret

R }
in both leads associated with eigenvalue matrices Λadv

L ,Λret
R corresponding to a phase factor

eik⊥a, where a represents the sublayer thickness in each lead, and k⊥ is the longitudinal

component of the wave vector:

Fadv
L Uadv

L = Λadv
L Uadv

L , (8)

Fret
R Uret

R = Λret
R Uret

R . (9)

Two groups of modes can be created from this diagonalization: propagating phonons with

|Λnn| = 1 and evanescent modes with |Λnn| < 1, where n is the index of the phonon mode.We
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only consider in the following the propagating modes. The knowledge of the longitudinal

component of the wave vector, in addition to the transverse ones involved in the transverse

Fourier transform of the equations of motion, provides the angle between the phonon wave

vector and the heat flux direction. It is important to note that the number of propagating

modes corresponds to the number of branches at a specific frequency and transverse wave

vector, which can be zero. The velocity matrices VL and VR are also necessary to compute

the mode-resolved transmission coefficients:

VL =
aL
2ω

Uadv †
L Γ00

L Uadv
L , (10)

VR =
aR
2ω

Uret †
R Γ00

R Uret
R , (11)

with Γ00
L = i

(

Σ00
L −Σ00†

L

)

, Γ00
R = i

(

Σ00
R −Σ00†

R

)

, Σ00
L = H10

L g00
L H01

L , Σ00
R = H01

R g00
R H10

R and

aL,R the sublayer thickness of the left and right leads respectively. VL and VR respectively

correspond to the projection of the mode group velocity in the left and right lead along

the temperature gradient direction, so they are null for evanescent phonons. Finally, the

mode-resolved transmission matrix t is computed as:

t =
2iω√
aLaR

V
1/2
R

[

Uret
R

]−1 Gret
[

Uadv †
L

]−1

V
1/2
L . (12)

with

Gret = g00
R HRDG

ret
D HDLg

00
L . (13)

This matrix provides the transmission for each mode of the left lead coupled with phonons

in the right lead and the eigenvalue matrices Λadv
L and Λret

R the information about the

angle of each wave vector with the heat flux direction. The element |tij|2 provides the

transmission coefficient for a mode i in the left lead coupled with phonon j in the right lead,

and αi =
∑

j |tij|2 the transmission for a mode i in the left lead to all possible modes in the

right lead.

III. MODE-RESOLVED TRANSMISSION COEFFICIENTS THROUGH A SI/GE

INTERFACE

A. Description of the Si/Ge interface

We apply the mode-resolved AGF formalism to a Si/Ge interface. The structure of the

studied system is shown in Fig. 1. We assume identical interactions between Si and Ge
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atoms based on the ab-initio force constants of bulk silicon28. The mass mismatch between

the two materials is considered as the key parameter for phonon reflection and transmission

at the interface20. The heat flux direction x is oriented along the [100] direction of the

conventional cell of bulk silicon. The atomic mass of Si and Ge atoms are respectively set

to 27.98 and 73.92 amu. As the interaction cutoff has been set to 9.42 Å, the thickness of

each layer in the left and right leads is equal to twice the lattice constant of bulk Si, 10.88

Å. We used periodic boundary conditions and Fourier transformed the dynamical equation

in the transverse directions. We set the transverse k-point grid to 100 × 100 to ensure the

convergence of the transmission spectrum with respect to the transverse size. We also used

the Spglib to consider the irreducible k-points of the structure.

B. Angular transmission spectrum of the Si/Ge interface

The transmission spectrum through the Si/Ge interface, obtained from the traditional

AGF formalism, is plotted in Fig. 2(a). This result is compared with the transmission

spectra through bulk Si and Ge for which no interface exists. Until 2 THz, low frequency

phonons transmit through the Si/Ge interface with a transmission close to the one in Si bulk,

as it is the material with the limiting transmission. The higher frequency phonons reflect

at the interface with a much higher probability as they are affected by the atomic mass

mismatch between the two materials. The Si/Ge spectra are consistent with that computed

for a perfect Si/Ge interface from ab-initio by Tian et al.19; the interface conductance G we

obtain is 2.10 × 108 W.m−2.K−1 at 300 K, in good agreement with the value of 2.09 × 108

W m−2 K−1 calculated by Tian et al..

We now use the mode-resolved AGF formalism to compute the transmission coefficients

for a mode in the left reservoir to another mode in the right reservoir for various frequencies

and transverse components of the wave vector. Figure 2(b) presents the transmission coef-

ficient for each pair of modes from Si and Ge leads as a function of frequency and the angle

of these modes in each material with respect to the normal to the interface. We observe

several general trends, including that low frequency phonons have transmission coefficients

near unity and that modes with large incident angles are likely to reflect. It is worth not-

ing that individual phonons can still transmit with a near perfect transmission close to the

cutoff frequency of Ge density of states at 9 THz. Besides these general observations, the
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FIG. 2. (a) Transmission versus phonon frequency through the Si/Ge interface obtained from the

AGF compared to the results of Tian et al.
19 (open circles). The transmission spectra through

bulk Si (red dashed) and Ge (green dashed) are plotted to show the effect of the Si/Ge interface

on the phonon transport on the whole spectrum. (b) Mode-resolved transmission as a function

of frequency, angle of the phonon in Si θSi and angle in Ge θGe. The colormap indicates the

transmission coefficient for each pair of modes from Si and Ge leads, from 0 (dark blue) to 1

(yellow).

coefficients vary widely, and therefore additional analysis is required to extract useful infor-

mation from this large dataset to identify the physical principles governing the transmission

processes.

To begin, we examine the cumulative thermal conductance as a function of the incident

angle CG(θ) and frequency CG(ω) from both Si and Ge leads. These quantities are defined

as:

CG(θ) =

∫ θ

0

(

∫ +∞

0
G(θ, ω)dω

)

dθ

∫ π/2

0

(

∫ +∞

0
G(θ, ω)dω

)

dθ
, (14)

CG(ω) =

∫ ω

0

(

∫ π/2

0
G(θ, ω)dθ

)

dω

∫ +∞

0

(

∫ π/2

0
G(θ, ω)dθ

)

dω
, (15)

where θ is the incident angle and G(θ, ω) the thermal conductance for each mode. Figure
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3(a) shows that a broad range of incident angles contribute to the total thermal conductance:

80% is due to incident phonons with an incident angle larger than 47◦ and 50% for incident

angle larger than 64◦. This result is partially explained by the large number of incident

modes with a high incident angle and leads to a key conclusion: dramatically modifying the

TBR requires affecting phonons with incident angle larger than 45◦.

The frequency-dependent cumulative thermal conductance CG(ω) is plotted in Fig. 3(b).

Again, a broad range of the phonon spectrum contributes to the TBR between 1 THz and

9 THz. This is due to the weak dependence of the transmission spectrum of Fig. 2(b) as a

function of frequency. This result indicates that achieving extreme values of TBR requires

consideration of the entire phonon spectrum over a wide range of frequencies.
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FIG. 3. Cumulative interface thermal conductance. (a) As a function of angle of incidence in Si

and Ge CG(θ). Phonons with incidence angle greater than 45◦ contribute to 80% of the TBR. (b)

As a function of frequency CG(ω). The whole phonon spectrum contributes almost uniformly to

the TBR.

9



C. Comparison with the acoustic mismatch model

We next examine how our calculations compare with the widely-used AMM, which is

expected to be valid in the low frequency limit. The AMM is based on the assumption of

elastic wave theory in whichacoustic waves propagate through a continuous medium charac-

terized by an acoustic impedance Z = ρv, where ρ represents the volumetric mass density of

the material and v the speed of sound in the material. The acoustic impedance mismatch at

the interface can either lead to a phonon reflection or transmission possibly involving mode

conversion. Conservation of the transverse components of the wave vector at the interface

leads to Snell’s laws when mode conversion is not considered in an isotropic medium:

sin θ1
v1

=
sin θ2
v2

, (16)

where θ1 and θ2 are the incident and reflected/transmitted angles with respect to the normal

vector of the surface, respectively. In the following, we consider a simplified model for the

mode conversion at the interface, which provides analytical equations for both Snell’s law and

the phonon transmission through the Si/Ge interface. Thus, we can express the transmission

in the AMM as follows:

tAMM =
4Z1Z2 cos θ1 cos θ2

(Z1 cos θ1 + Z2 cos θ2)
2
. (17)

These two equations are applied to three ideal cases where (1) longitudinal (respectively

transverse) phonons are transmitted as longitudinal (resp. transverse) phonons, correspond-

ing to no mode conversion (noted as T → T and L → L), (2) longitudinal phonons are

converted to transverse ones (L → T ) and (3) transverse phonons are converted to longitu-

dinal ones T → L. Our AGF calculation naturally accounts for all these cases, enabling a

comparison with the analytical predictions.

The AMM predicts the existence of critical angles θcr, above which incident phonons

cannot transmit from the material with the lower speed of sound to the second one. More

precisely, modes with the necessary transverse momentum do not exist in the second material

and so the incident mode must be reflected. In Figs. 4(a) and (b), we compare the angle

and transmission at 1 THz given by both theoretical frameworks. Figure 4(a) respectively

compares the transmission computed by both models from Ge to Si. Both calculations agree

at such a low frequency and small incident angles, with a transmission of 0.94 consistent

with the elastic wave theory. When mode conversion is not considered in the AMM, the
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FIG. 4. Comparison between the mode-resolved AGF and the simplified AMM with either no mode

conversion (T → T and L → L), longitudinal to transverse conversion (L → T ) and transverse

to longitudinal conversion (T → L). (a) Transmission coefficient from Ge to Si at 1 THz. (b)

Relation between the incident and transmitted angle from AGF compared with the prediction of

Snell’s law at 1 THz. (c) Transmission coefficient from Ge to Si at 4 THz. (d) Relation between

the incident and transmitted angle from AGF compared with the prediction of Snell’s law at 4

THz. The colormap represents the transmission coefficient, from 0 (dark blue) to 1 (yellow).

results agree well with AGF. When transverse modes from Ge are converted to longitudinal
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phonons in Si, the AMM also coincides with the AGF data. However, the conversion from

longitudinal phonons in Ge to transverse modes in Si are contradictory with the AGF data.

Figure 4(b) shows the sine of the angle of phonons in Ge and Si and compare them to

Eq. 16 for the three cases previously described. Good agreement between both models

is depicted, showing the validity of the elastic wave theory at frequencies around 1 THz.

In addition, most of the high transmission processes do not involve any mode conversion

at the interface at 1 THz. To test if this simplified model can fully explain AGF data,

Figs. 4(c) and (d) show the same comparison between the AGF and the AMM at 4 THz,

where the assumptions of the AMM should be less accurate. Figure 4(c) shows that at 4

THz, the trends predicted by the AMM dramatically differ from the AGF calculations. In

particular, there is no critical angle above which the transmission is zero, contrary to what

the AMM predicts. This discrepancy is due to the non-isotropic dispersion of the actual

crystals of Si and Ge that are not captured by the AMM. Figure 4(d) shows that Snell’s

laws under the isotropic approximation no longer correctly describe the relation between the

angle of phonons in Si and Ge, also due to the anisotropy of the isofrequency surface. As

a consequence, the complete elastic wave theory should be applied to correctly capture the

non-linearities in the dispersion relations, which is beyond the scope of this work.

IV. ZERO-TRANSMISSION PROCESSES

An additional observation from our mode-dependent calculations is the presence of many

processes with transmission coefficient of identically zero. When examining the modal trans-

mission coefficients for a given frequency and transverse momentum, two distinct cases ap-

pear. The first case involves the presence of modes in only one lead: these modes cannot

couple to phonons in the second lead due to the lack of modes with the necessary transverse

momentum. In other words, these modes undergo total internal reflection.

To visualize this phenomenon, we plot in Fig. 5 the slowness surface for Ge and Si at 1

THz. The cross-plane component of the wave vector kx is plotted as a function of one of the

in-plane components, ky, with kz set to 0. In this figure, we distinguish three branches in

Ge and Si as close to circular shape curves corresponding to the longitudinal and transverse

acoustic isofrequency surfaces. As the transverse wave vector ky must be conserved at the

interface, all the modes in Ge with ky > 0.1 cannot couple to modes in Si, leading to total
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internal reflection. As a consequence, two critical angles appear for each of the transverse

branches. It is worth noting that the slowness surface should be analyzed for each frequency

and transverse components of the wave vector, which gives rise to many critical angles.

The second group of zero-transmission processes occurs even when modes exist in both

left and right leads. In the following, we label these mechanisms as ”uncoupled modes”. We

finally define ”authorized mechanisms” as the transmission of a phonon mode from one lead

to the other one with a non-zero transmission coefficient. We now investigate the fraction

of processes characterized by non-zero transmission, total internal reflection and uncoupled

modes as a function of incident angle and frequency. Figure 6(a) compares these three

groups with respect to frequency for phonons coming from Ge propagating towards the Si

lead. At low frequency, most of the zero-transmission processes are due to total internal

reflection. The large number of total internal reflection processes until 3.5 THz leads to

the conclusion that it is mostly the transverse acoustic phonons that are totally reflected at

the interface. Uncoupled modes mechanisms are absent until 2.3 THz, and then become as

numerous as the non-zero transmission processes. Only 21% of the forbidden processes are

due to total internal reflection, highlighting the importance of the uncoupled-mode processes.

Ge

Si

FIG. 5. Surface slowness for Ge (top half) and Si (bottom half) at 1 THz. The cross-plane

component of the wave vector kx is plotted as a function of one of the in-plane component ky with

kz = 0 for each pair of coupled modes. The three acoustic branches are present in each material

and two critical angles θcr appears in Ge for both transverse acoustic (TA) branches. The colormap

represents the modal transmission, from 0 (dark blue) to 1 (yellow).
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(b)(a)

Ge Si

Si Ge

degrees

FIG. 6. Comparison of the fraction of processes involving total internal reflection (TIR), uncou-

pled modes and authorized mechanisms (normalized by the total number of processes over the

whole phonon spectrum). (a) As a function of frequency. TIR represents only 20% of the zero-

transmission processes. (b) As a function of incident angle from Ge to Si and from Si to Ge. TIR

occurs for incident angle greater at 40◦ in Ge and 60◦ in Si. Uncoupled mode processes have an

angular distribution similar to that of non-zero transmission mechanisms.

For frequencies lower than the cutoff frequency in the density of states of Ge, total internal

reflection from Si to Ge is not the main mechanism, as predicted by the AMM. However,

total internal reflection still occurs in the stiffer Si lead with higher sound velocity than Ge,

showing that the anisotropic and non-linear dispersion relations in Si and Ge can lead to

unintuitive results. Naturally, above 9 THz, all the modes from Si are totally reflected as

no modes are present in Ge.

The angular dependence of these processes is presented in Fig. 6(b). Both figures present

a comparison for respectively the direction from Ge to Si and from Si to Ge. Total internal

reflection processes only occur for phonons with an incident angle greater than 40◦ from Ge

and around 60◦ from Si. These two angles are crucial to realize interfaces with exceptional

values of TBR by taking advantage of the natural angular-dependent reflection due to the

absence of modes in the second material. Uncoupled-modes and non-zero transmission
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FIG. 7. Mode-resolved transmission as a function of the dot product of the left and right eigen-

vectors ~e∗L.~eR. The colormap indicates the density of processes, dark blue meaning no process and

yellow indicating a high density of processes. The uncoupled mode processes cannot be explained

by orthogonality of the eigenvectors.

processes show very similar angular trends in both directions through the interface. Both

trends are explained by the number of modes in each lead as a function of incident angles

in Ge and Si; the number of modes at a given frequency increases as the incident angle is

larger.

Although we do not know for certain the origin of the uncoupled mode processes, we

suspect that symmetry considerations play a key role. For instance, it is impossible at

normal incidence to excite a transverse mode from a longitudinal one. From this simple

example, the orthogonality of the polarization vector in the left and right lead might play a

role to explain these zero-transmission mechanisms. Figures 7(a) and (b) present the mode-

resolved transmission as a function of the dot product ~e∗L.~eR, where ~eL,R are the eigenvectors

of the leads. In Fig. 7(a), a clear correlation between the mutual polarization of modes and

the transmission can be drawn at 2 THz. When the vectors are aligned, a high transmission

is observed. Unfortunately, this conclusion does not hold at higher frequency. Figure 7(b)

shows at 8 THz that the transmission is not correlated to the dot product of the eigenvectors
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as ~e∗L.~eR is always smaller than 0.2 and the transmission spans uniformly from 0 to 1. Thus,

the eigenvector orthogonality cannot explain the physical reason of this zero-transmission

group. Additional efforts will be needed to confirm that these processes are symmetry-

forbidden.

V. CONCLUSION

We have performed a mode-resolved study of phonon transmission through a Si/Ge in-

terface using Atomistic Green’s Functions with force constants from first-principles. We

find that heat is carried across interfaces by a wide range of phonon frequencies and in-

cident angles, particularly those with incident angle greater than 45◦. We also show that

the transmission coefficients predicted by the AMM are generally in poor agreement with

the actual coefficients. Finally, we show that in addition to total internal reflection, there

exists an additional major type of process with zero transmission coefficient. Even if two

phonons satisfy the conservation of energy and transverse momentum at the interface, the

transmission of energy by this pair of modes can still be zero. Further work is necessary

to elucidate the physical origin of such processes. Our fundational work provides detailed

mode-resolved insights necessary to create solid interfaces with exceptional values of thermal

boundary resistance.
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