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The thermalization of fast electrons by phonons is studied in CsI, NaI, SrI2, and YAlO3. This
numerical study uses an improvement to a recently developed method based on a density functional
perturbation description of the phonon modes that provides a way to go beyond widely used phonon
models based on binary crystals. The method is compared to standard ab initio approaches to the
electron-phonon interaction. Improvements to this method are described, and scattering rates are
presented and discussed. The relative activity of the numerous phonon modes in materials with
complicated structures is discussed, and a simple criterion for finding the modes that scatter strongly
is presented.

I. INTRODUCTION

Detailed theoretical and experimental investigations
over the last decade have shown that the thermaliza-
tion phase of a scintillation event plays a significant role
in determining the ultimate performance of scintillating
gamma-ray detectors.1–7 While much of the underlying
physics is now well-understood, significant gaps remain
regarding the complicated sequence of events following
gamma excitation of a polar crystal. In particular, com-
peting effects arising from the different mobilities and
lifetimes of the various excitations that are present in
scintillating materials. In the course of this discovery,
it has been noted that ionic crystals with more than
two atoms in a unit cell show less resolution limiting
non-proportionality than similar materials with simple
crystal structures. It has been hypothesized8–11 that
the improved performance in complex crystals may re-
sult from reduced charge separation. As the secondary
electrons travel away from the less mobile holes, they
are less able to escape to remote regions of the crystal
if the crystal structure has low symmetry. These elec-
trons, therefore, are more likely to recombine with holes
and ultimately contribute to the optical signal. Analyz-
ing this type of hypothesis requires detailed knowledge
of the microscopic physics, including the thermalization
distances and times of initially hot electrons created in
the energy cascade. This thermalization occurs mainly
through interaction with the phonons, which have mostly
been treated with phenomenological models that apply
best to systems with small, simple unit cells.2,5–7,12 De-
tailed evidence on the dynamics of the energy cascade is
emerging from modeling and experiment,3,11,13–17 how-
ever uncertainty remains about the population of various
types of secondary excitations, their dynamics, and mu-
tual interactions. Importantly, the amount of energy and
momentum relaxation that is due to optical and acoustic
phonons differs widely in various models.6,7,18–20 A ma-
jor challenge to understanding the energy cascade is the
highly excited nature of the relevant degrees of freedom.
In contrast to situations arising from the application of

low-energy electromagnetic fields and temperature gradi-
ents (e.g. as encountered in the design of electronic de-
vices), the energy cascade involves carriers with kinetic
energy comparable to the band gap of the material (i.e.
several eV). This implies that carriers are not well de-
scribed by quasiparticles near band extrema.

In an effort to direct searches for improved scintilla-
tors and shed light on these questions, we have recently
developed a semi-classical theory21 to estimate the rate
of energy transfer between hot electrons produced in the
cascade initiated by the absorption or Compton scatter-
ing of a gamma-ray photon. In the present manuscript we
describe refinements to this theory that improve the ac-
curacy and computational feasibility of the method. We
provide updated results for CsI, new results for NaI, and
new results for two complex polar scintillators: stron-
tium iodide (SrI2) and yttrium aluminum perovskite
(YAP,YAlO3). The first two materials are included be-
cause they have been extensively studied and are widely
used; they also have simple two-atom cubic unit cells.
The other two materials are more complex structurally
(with 24 and 20 atoms in their primitive unit cells) and
representative of materials considered in the search for
improved scintillators. The low-energy carrier transport
in SrI2 is of current interest because SrI2 is a bright
and proportional scintillator.22 The fundamental reasons
for this high performance are still unknown.23,24 YAP is
interesting because it has excellent non-proportionality
characteristics.25,26 Of the two complex materials, SrI2
has soft phonon modes typical of ionic alkali- and alkaline
earth-halides while YAP, a representative oxide, exhibits
very stiff vibrations. These different phonon properties
lead to different scintillation behavior, and a description
of both types of materials within a common framework
is desirable. This manuscript joins a growing body of
work27–29 using ab initio methods to understand atomic-
scale phenomena and their relation to radiation detector
performance.
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II. COMPUTATIONAL METHODS

In Ref. 21 we formulated a semi-classical theory
of the electron-phonon interaction. This theory was
derived from a viewpoint complementary to the stan-
dard, fully quantum formulation of the electron-phonon
interaction30–35 in which the fundamental quantity is the
coupling gk,k′ = 〈k′|Hep|k〉 between electronic quasipar-
ticle states |k〉 and |k′〉. The quasiparticles are described
as Bloch waves (with band and crystal momentum indices
in the composite k) resulting from density functional the-
ory (DFT) calculations, sometimes with quasiparticle ef-
fects beyond DFT included (e.g. in the GW framework).
Hep is a coupling Hamiltonian that must be specified.
The advent of robust implementations of density func-
tional perturbation theory allowed the ab initio calcula-
tion of both phonon structures and the electron-phonon
interaction.36–38 In this context, Hep is taken as the first-
order change in the Kohn-Sham (KS) Hamiltonian in re-
sponse to deformation of the structure corresponding to
excitation of a phonon. This choice is intuitive and theo-
retically justified by Giustino.39 This quantum theory of
the electron-phonon interaction has been applied to a va-
riety of systems including metals,40 semiconductors,41,42

and even hot carrier thermalization in insulators.43 These
calculations have been found to require dense sampling
in reciprocal space; practical access to useful results was
greatly improved by the application of Fourier interpo-
lation of the phonon structures and matrix elements to
achieve sufficient sampling of the Brillouin zone. Ap-
proaches representing the electronic orbitals in terms of
maximally localized Wannier functions have made con-
verged results more accessible.42,44–46

The approach developed here is motivated by a de-
sire to get away from a band-structure description of
the quasiparticles. Such descriptions become increasingly
complicated as the quasiparticle kinetic energy grows be-
yond the first band crossing and more bands become ac-
cessible. Energy cascades produce quasiparticles of very
high energy which decay by a variety of processes. For
quasiparticles with kinetic energy similar to and lower
than the band gap of the material, the quasiparticle-
phonon interaction is the primary relaxation channel.
The model of the current manuscript is targeted at quasi-
particle kinetic energies of several eVs in complex sys-
tems, a regime where there are many bands throughout
the Brillouin zone accessible to the carriers. A quantum
description of the quasiparticles is hampered by the large
number of bands. When there is only one band available,
the direction of the crystal momentum and its magnitude
(or, equivalently, the energy) determine the quasiparticle
wave function and the physical properties of the quasipar-
ticle. When there are many bands available, eigenstates
are in general linear combinations of many Bloch waves.
In this case tabulation of the gk,k′ = 〈k′|Hep|k〉 becomes
cumbersome, as does application of the matrix elements
in mesoscale simulations which require some kind of av-
eraging over the available states or an explicit description

of the carrier wavefunction.
Since significant modeling of energy cascade events

has been performed using a classical description of
the quasiparticles produced by high-energy (MeV)
excitation,2–8,47,48 we have chosen to use the same de-
scription in this work. This means the energy and mo-
mentum of the quasiparticle follow the classical disper-
sion E = k2/2, and the carrier’s trajectory r(t) is a suc-
cession of constant-velocity ballistic legs interrupted by
scatterings from phonons. The rate and distribution of
energy transfers of such scatterings are the main quan-
tities sought in this work. To make a useful model that
can be applied when only the particle velocity is known,
we average over initial positions r(0) of the trajectories
uniformly distributed in the unit cell of the crystal. As in
the conventional theory of the electron-phonon interac-
tion, the quantum nature of the phonon structure is kept
in the current theory. We use standard density func-
tional perturbation theoretic (DFPT) calculations of the
phonons and the first-order induced densities associated
with lattice distortions and static homogeneous applied
electric fields. Since this approach is different than the
conventional one, we will note the relationship between
expressions encountered in our semi-classical theory to
their counterparts in the conventional, fully quantum one
which is described well in references 49 and 39.
To derive expressions for the scattering rate Γ suffered

by our classical point-particle, we assume that it interacts
with the lattice vibrations of an insulating crystal via a
simple screened Coulomb interaction

vsc = 4π

(

ǫ−1
∞

q2
+

1− ǫ−1
∞

q2 + k2tf

)

(1)

that goes to the bare Coulomb interaction 4π/q2 at large
momentum transfers q and to an interaction 4πǫ−1

∞ /q2

screened by the frozen-lattice dielectric constant ǫ∞ at
small q. The crossover wave-vector is taken as the
Thomas-Fermi wave-vector ktf of the homogeneous elec-
tron gas with the same average density as the valence
electrons in the crystal.
We then treat this interaction as a perturbation to

the phonon system. We derive the following golden-rule
type expression for the rate of excitation (upper sign) or
deexcitation (lower sign) of the λ,q phonon mode by a
charged particle traveling through a crystal:

Γ
(±)
λ,q =

2πN

V

∑

G

|vsc (q+G)nλ(q+G)|2

× δ

(

±ωλ,q − (q+G) · v +
1

2
(q+G)2

)

.

(2)

In our notation, λ indexes the phonon branch, q and
G are momenta from the first Brillouin zone and the
reciprocal lattice respectively, V/N is the volume of the
unit cell of the crystal, v is the velocity of the charged
particle that is traversing the material, and ωλ,q is the
phonon energy. We use Hartree atomic units (e2 = h̄ =
m = 1).
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Eq. 2 is based on the electrostatic interaction between
two charge distributions: the perturbing charge (taken as
a point charge screened by the sample electrons via Eq.
1) and the density nλ induced by the excitation of the
phonon branch λ. This interaction is then averaged over
positions of the perturbing point charge in the crystal.

In the conventional, quantum formulation of the
electron-phonon interaction, an expression very similar to
Eq. 2 is derived from a different perspective. In this case,
the electrons are treated quantum mechanically as well as
the phonons. A complete field-theoretic derivation of an
expression of the form of Eq. 2 is given by Giustino39 in
Eq. 169. A thourough discussion of the derivation lists all
the approximations involved. Inspection shows that this
expression is identical to Eq. 2 except that the electron-
phonon matrix elements gk,k′ = 〈k′|Hep|k〉 of Ref. 39
are replaced by vsc (q+G)nλ(q+G) here, and the par-
ticle energies (which are usually taken as eigenvalues of
KS or GW quasiparticles in the quantum theory) are re-
placed with their free-electron values E(k) = k2/2. The
physical meanings of these terms is clear: the electron-
phonon coupling scatters (quasi-)particles from one state
to another by the absorption or emission of a phonon.

The semi-classical theory evaluated in this work has as
quasiparticles classical point charges that are screened
by the dielectric response of the host material in the
role played by the computed KS orbitals in ab initio

approaches. This is a key difference that makes the
current theory compatible with existing kinetic Monte
Carlo (KMC) descriptions of the energy cascade in
scintillators6,7,48,50,51 which use a classical description
of the electrons and holes. Also, fully quantum theo-
ries of the electron-phonon interaction contain exchange-
correlation contributions to the interaction Hamiltonian
which are absent in the theory of this work. While the
difference in the representation of the quasiparticles is
stark, the semiclassical theory used here is equivalent to
one in which free electrons occupy plane-wave orbitals
and interact via the effective interaction

∑

q,λ vscnq,λ.

For materials in their ground state there is no thermal
population of phonons and only phonon emission (upper
sign in Eq. 2) needs to be considered. At finite tem-
perature the rates of emission and absorption of phonons
through the λ,q channel are

[N (T, ωλ,q) + 1] Γ
(+)
λ,q and

N (T, ωλ,q) Γ
(−)
λ,q

(3)

respectively. Here N (T,E) is the normal Bose occupa-
tion factor, which is given in terms of the Boltzmann
constant kB by

N (T,E) =
(

eE/(kBT ) − 1
)−1

. (4)

The total rates of phonon emission or absorption are ob-

tained by summing over the various phonon modes:

Γ(±) =
∑

λ,q

Γ
(±)
λ,q =

∑

λ

∫

BZ

dq

(2π)3
Γ
(±)
λ,q

=
8π2Z2N

V

∑

λ

∫

dQ

(2π)
3 |vsc (Q)nλ (Q)|2

× δ

(

±ωλ,q −Q · v +
Q2

2

)

.

(5)

The first integral in Eq. 5 is over the Brillouin zone, and
the second is extended to all of reciprocal space by the
sum over the reciprocal lattice. We use the shorthand
that q is the unique momentum from the first Brillouin
zone that differs from Q by a reciprocal lattice vector.
The integrand in Eq. 5 is the probability density for
a phonon scattering event that transfers energy ±ωλ,q

and momentum ±Q from the particle to the vibrational
modes of the crystal. The energy-conserving δ-function
in Eq. 5 yields a 2-d integral over a surface that is a
sphere of radius

√

v2 ∓ 2ωλ,q centered at v when ωλ,q is
constant. Averages of the quantity X over the scattering
events can be found using similar integrals:

〈

X(±)
〉

=
8π2Z2N

Γ(±)V

∑

λ

∫

dQ

(2π)
3 |vsc (Q)nλ (Q)|2 X (v,Q)

× δ

(

±ωλ,q −Q · v +
Q2

2

)

.

(6)

Our strategy is to use Eq. 5 to find Γ(±) and then use
Eq. 6 with X being, e.g., the cosine of the scattering an-
gle. The integrals are completed numerically using tech-
niques described in Ref. 21 and below. These results then
provide an average picture of the scattering that can be
parameterized in simplified microscopic models such as
KMC simulations: Γ(±) determines how often the par-
ticles scatter, and 〈cos θ〉 and 〈ωλ,q〉 determine how fast
the propagation direction and speed respectively relax.

In Ref. 21, we calculated nλ numerically on a grid
in reciprocal space within the plane-wave framework of
the ABINIT code.36,37,52,53 Subsequent experience has
shown that it is difficult to produce the correct small-
q behavior in such calculations. The acoustic modes at
the zone center correspond to phonons with vanishing
frequency: the crystal is simply translated in space with
constant velocity. An electron drifting with such a crystal
should not be scattered. Mathematically, this situation
corresponds to the small-q limit. This limit is important
because the factors of q+G in the denominator heavily
weight small-q scattering events; the numerator needs to
vanish sufficiently fast to ensure that the q = 0 acoustic
modes do not introduce unphysical scattering. This is
related to the acoustic sum rule34 as described below.
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FIG. 1: Computed electronic first-order density response
(smooth lines) and the corresponding effective charge approx-
imation (decorated lines) in CsI. The imaginary part of the
induced density in response to displacing Cs is in blue (the
real part vanishes by symmetry); the real part of the response
to I displacements is in yellow; the imaginary part of the I re-
sponse is in purple.

A. Effective charge approximation

To arrive at a numerical procedure that is stable,
tractable, and well-behaved near Γ, we have calculated
the induced density in response to atomic displacements
from the Born effective charge tensor Z∗

κ,βα. This quan-
tity can be equivalently defined as the force on an atom
in the κ sublattice under a macroscopic electric field (per
unit applied field) or the linear coefficient in an expan-
sion of the macroscopic polarization (in the direction β)
per unit cell in response to displacement (in the direction
α) of the κ sublattice.34,36 In this formulation, we take

nλ (q+G) =
∑

κ,α

u∗
κ,α,λ (q)

√

2Mκωλ,q



−ie−iτκ·(q+G)
∑

β

Z∗

κ,αβ × (q+G)β





=
∑

β

Z∗

λ,β (q+G)× (q+G)β .

(7)

The phonon vibrations are described by the eigenvectors
u∗

κ,α,λ (q) of the dynamical matrix, and τκ is the equi-
librium position in the central unit cell of the atom be-
longing to the κ sublattice. For an effective charge tensor
proportional to the identity (Z∗

κ,αβ = Z∗
κδα,β), the term

in parentheses in Eq. 7 reduces to the first-order den-
sity response of a point charge Z∗

κ. When we describe a
material as polar, we mean it posseses a non-zero Z∗

κ,αβ.

An advantage of this approach is that the acoustic

sum rule can be enforced by adjusting the computed ef-
fective charge tensor following Gonze and Lee.36 This
avoids spurious contributions from the acoustic modes
near Γ. Acoustic modes should obey Z∗

λ,β (q+G) → 0

as q → 0.54 The effective charge approximation guar-
antees this is so. Comparison of Eq.’s 7 and 2 to Eq.’s
S4 and 4 of Ref. 46 shows that the current theory cor-
responds (up to differences in the descriptions of the
electrons) to the long-range part of the electron-phonon
vertex in that work. As those authors point out, the
long-range part in Ref. 46 away from Γ can be defined
in any smooth way that preserves the long-wavelength
limit. For example, Vogl54 defines the short-ranged part
of the electron-phonon interactions to be the part that
survives if the macroscopic electric field is canceled by
an appropriate uniform external field. The long-range
part is the remainder. This definition differs from that
of Ref. 46 but has the same long-wavelength limit. Both
the scattering potential here and the long-range contri-
butions of Verdi et al. contribute to scatterings when
the macroscopic field vanishes. A more refined theory
would include higher order contributions with terms pro-
portional to (q+G)α (q+G)β and higher powers of the
momentum. Such a theory would recover the full Hartree
response, including all the short-ranged contributions.
This neglect is likely to cause our electron-phonon scat-
tering rates to be underestimated.

A further advantage of using the Born effective charges
to estimate the density response is that they can be found
by considering the response of the energy to a homo-
geneous electric field37 instead of collective atomic dis-
placements. This is possible because both responses (to
an electric field or to atomic displacements) are related
through the dielectric tensor. Since the effective charges
are found through the response to a homogeneous electric
field, within the effective charge approximation the den-
sity response can be found with Γ-point calculations for
fields in (at most) three directions. Our previous efforts
relied on calculations of the induced density on a grid
spanning the (irreducible wedge of the) Brillouin zone,
leading to the storage of many large density files for fine
grids in reciprocal space. Of course the phonon eigenvec-
tors u∗

κ,α,λ (q) still need to be calculated throughout the
Brillouin zone, but this can be efficiently accomplished
using Fourier interpolation of the dynamical matrices,36

which only need to be directly computed on modest k-
grids (8 × 8 × 8 was the largest used in this work). We
used 24× 24× 24 fine grids for calculation of the phonon
structure throughout this work.

Fig. 1 shows the effective charge approximation (in-
ferred from an electric-field perturbation at Γ) with direct
calculations using atomic-displacement perturbations in
CsI. We see that the real and imaginary parts of the in-
duced density (especially at smallQ) are well-reproduced
by the effective charge approximation. The diagonal part
of the computed effective charges used in this work are
reported in Table I. For the simple systems (CsI, NaI)
the effective charge tensor is proportional to the identity
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material sublattice Z∗

αα Z∗

ββ Z∗

γγ

CsI Cs 1.32 1.32 1.32

I -1.32 -1.32 -1.32

NaI Na 1.16 1.16 1.16

I -1.16 -1.16 -1.16

SrI2 Sr 2.56 2.70 2.56

I1 -1.47 -1.24 -1.23

I2 -1.09 -1.45 -1.32

YAP O1 -2.28 -2.35 -2.15

O2 -2.38 -2.13 -2.31

Y 4.00 3.87 3.70

Al 2.93 2.96 2.95

TABLE I: Diagonal elements of the Born effective charge ten-
sor.

matrix by symmetry. Here the acoustic sum rule reduces
to one the number of independent degrees of freedom in
the calculation of the effective charges. In contrast, the
lower symmetry systems (YAP, SrI2) have different diag-
onal elements in different directions and non-trivial off-
diagonal elements (e.g. the I1 sublattice in SrI2 moved in
the xy−plane has a response in the orthogonal in-plane
direction of 0.412 elementary charges compared to the
diagonal value of -1.24).
A drawback of the effective charge approximation de-

scribed here is that it predicts no induced density (and
hence no electron-phonon interaction) in non-polar ma-
terials (e.g. Si where the effective charges vanish by sym-
metry). In materials with non-vanishing Born effective
charge tensors all modes generally contribute, including
acoustic modes and optical modes that are transverse
at Γ. A further drawback is that the effective charge
approximation fails for large wavevectors. The term in
parentheses in Eq. 7 (representing the Q = q+G Fourier
component of the density response to a ’primitive’ per-
turbation of the κ sublattice in the α direction) is linear
in the wavevector Q = |q+G| with coefficient Z∗

κ,αβ
whereas a more realistic model with distributed electron
density and a point nucleus will have the same coeffi-
cient equal to Zκδαβ where Zκ is the atomic number of
the atoms occupying sublattice κ. Since Z∗

κ,αβ < Zκ, the
induced density at large wavevector is underestimated in
the effective charge approximation. This will reduce the
scattering rates of umklapp processes in our results. An
investigation of the magnitude of this effect utilizing the
all-electron density and its response to atomic displace-
ments is envisioned for the future.

B. Adaptive integration

The adaptive integration method used here was de-
scribed in Ref. 21. The method is based on partitioning
a bounded volume of reciprocal space into cubes in re-
duced coordinates (corresponding to parallelepipeds in

Cartesian coordinates) which are iteratively subdivided
into smaller cubes. This subdivision process continues
until all contributions to the integral in Eq. 2 are found
to sufficient accuracy. In the course of this integration,
cubes that do not intersect the surface defined by

±ωλ,q − (q+G) · v +
1

2
(q+G)2 = 0 (8)

are discarded from the list since they do not contribute
to the integral. We previously discarded cubes if the left-
hand side of Eq. 8 had the same sign at all 8 vertices,
implying that all of the vertices are either inside (negative
sign) or outside (positive sign) the kinematically-allowed
surface. This procedure can underestimate the integral
by dropping cubes whose vertices all take the same sign
but still intersect the kinematically-allowed surface (e.g.
if the intersection is confined to one face of the cube).
To avoid this kind of error, we have introduced bound-
ing spheres in reciprocal space obtained by setting the
phonon frequency in Eq. 8 to 0 (giving a sphere interior
to the actual surface) or to the maximum phonon fre-
quency in the material (giving a sphere exterior to the
actual surface). The convexity of the parallelepipeds and
the spheres implies that any parallelepiped that has all
vertices strictly inside the interior sphere does not in-
tersect the interior sphere or the actual surface. Hence
any such cubes are dropped from our integration scheme.
The bigger problem occurs for parallelepipeds with all
vertices exterior. For this case we test for a pair of paral-
lel faces of the parallelepiped that define two planes that
do not intersect the exterior sphere. This criterion will
always find intersections with the exterior sphere for par-
allelepipeds whose side length is less than the diameter
of the exterior sphere. In practice we have found it to be
an effective culling criterion.
Our adaptive integration method has been tested by

reproducing analytic results and generally works well. It
does, however, leave some very sharp dips and peaks (vis-
ible in Figs. figs. 6 to 9, 11 and 12) that are due to using
a finite, constant stopping criterion.

C. Approximations of the current work compared

to conventional ab initio approaches

Conventional ab initio approaches to electron-phonon
interactions are based on matrix elements gk,k′ between
Bloch Kohn-Sham states |k〉 of the first-order change
to the Kohn-Sham Hamiltonian induced by phonon
excitation.39 The theory evaluated here differs in the fol-
lowing ways.

1. The electrons that are scattered are classical parti-
cles whose energy is k2/2.

2. The interaction Hamiltonian is based on the
induced Hartree potential and thus neglects
exchange-correlation contributions.
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FIG. 2: Computed phonon density of states.

FIG. 3: Computed phonon band structure (in cm−1) along
high-symmetry directions in NaI compared to the experimen-
tal data of Melvin55 (+’s) and Woods56 (x’s).

3. The induced Hartree potential itself is calculated
according to the effective charge approximation and
hence neglects some short-ranged contributions, in-
cluding the entire electron-phonon interaction for
non-polar materials.

III. RESULTS AND DISCUSSION

This paper includes calculations of four polar scin-
tillating crystals. Two of these are simple (binary) al-
kali halide systems, and two are more complicated sys-
tems of lower symmetry. This selection of materials al-
lows us to make detailed comparisons to existing models
(which are only available for small, high-symmetry mate-

FIG. 4: Phonon band structure (in cm−1) along high-
symmetry directions in YAP. The color of the lines indicates
the degree to which the mode is longitudinal: red corresponds
to longitudinal modes and black to purely transverse modes.

FIG. 5: Phonon band structure (in cm−1) along high-
symmetry directions in SrI2. The color of the lines indicates
the degree to which the mode is longitudinal: red corresponds
to longitudinal modes and black to purely transverse modes.

rials) and explore the effects of lowering symmetry on the
electron-phonon interaction. The energy distribution of
the phonon modes in the materials studied in the current
work is shown in Fig. 2. Experimental data are avail-
able for momentum-resolved phonon band structures of
CsI57 and NaI.55,56 These are compared with theoretical
predictions in Ref. 21 (CsI) and Fig. 3 (NaI). We find
good agreement with the measured phonon frequencies in
these two systems giving us confidence that our numeri-
cal approach is accurately capturing the phonon physics.
The computed phonon band structures for YAP (Fig. 4)
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FIG. 6: Total phonon scattering rates in CsI and NaI and the
contribution of the acoustic modes at zero and room temper-
ature.

and SrI2 (Fig. 5) are also shown.

A. Simple alkali halides: CsI and NaI

In our CsI calculations, Troullier-Martins58 type pseu-
dopotentials obtained from the ABINIT website were
used. The Teter parametrization59 of the local density
approximation was employed to calculate the exchange-
correlation energy. A 8 × 8 × 8 k-grid was used result-
ing in 35 symmetry-inequivalent k-points. Good results
can be obtained with substantially fewer k-points. The
NaI system was treated with PBE.60 Norm-conserving
pseudopotentials61 and a 20 Ha energy cutoff were em-
ployed.
Our previous work21 found that the acoustic modes

in CsI contributed significantly to the energy relaxation
of fast particles. Through subsequent analysis of those
results we have attributed the strong acoustic mode scat-
tering to the failure of the numerical calculations to obey
the acoustic sum rule discussed in section IIA. Our up-
dated results for scattering rate are shown in Fig. 6,
which shows the rates of phonon emission and absorp-
tion at two temperatures as a function of particle energy.
In these improved calculations, the acoustic modes con-
tribute hardly at all at low energies and only moderately
at higher energies. As can be seen in Fig. 6, the acous-
tic modes contribute at most around 15% of the total
scattering at relevant energies at T=0. At higher tem-
peratures, stimulated processes involving acoustic modes
become more important since the Bose occupation fac-
tors for these low-energy modes turn on at lower tem-
peratures. A similar situation is found in NaI. For
these systems, the scattering is dominated by the single
longitudinal-optical (LO) phonon mode. At low tempera-

FIG. 7: Scattering rates from the single LO mode in CsI
and NaI at room temperature from the current work and the
usual phenomenological model evaluated at parameters from
our DFT calculations (i.e. m∗ = 1 and ǫ0, ǫ∞ listed in Table
II).

ture, the electron-phonon coupling is stronger in NaI than
CsI, but the softer longitudinal optical phonon in CsI ac-
quires appreciable thermal population at lower temper-
ature, and stimulated emission and absorption are more
important in CsI. Hence, at room temperature, CsI and
NaI have similar phonon emission rates.

1. Optical modes in NaI and CsI

As pointed out above, most of the scattering in the cur-
rent results involves the long-wavelength LO modes. Al-
though the Fröhlich problem has been considered solved
since the 1950’s, authoritative, quantitative predictions
are not available for hot particles in real systems. A
fundamental problem is that the effective mass approxi-
mation relating quasiparticle energy and momentum, im-
plicit in the Fröhlich Hamiltonian, is only valid for low-
energy particles. Hence, to apply this model, one must
choose an effective mass or, at least, some dispersion re-
lation. The dependence of the phonon scattering rate on
the quasiparticle dispersion arises from the conservation
of energy and momentum: different phonon processes are
allowed for different dispersion relations.
In previous work, we have tried the bare electron mass

m∗ = 1,7 including the real part of the polaron self-
energy in the Fröhlich model itself,6 and using predic-
tions derived from DFT band structures.51 We compare
a Fröhlich model with m∗ = 1 (as assumed in the cur-
rent work) and the dielectric constants ǫ0 and ǫ∞ from
our calculations in Fig. 7. Our calculated dielectric con-
stants are compared to experimental values in Table II.
We point out that the current work assumes m∗ = 1
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NaI CsI

theory expt. theory expt.

ǫ0 6.63 7.3 6.99 5.65

ǫ∞ 3.47 2.9 3.65 3.0

1/ǫ∞ − 1/ǫ0 0.14 0.21 0.13 0.16

TABLE II: Computed and experimental18 dielectric con-
stants. The theoretical numbers were used in the phenomeno-
logical model plotted in Fig. 7.

FIG. 8: Scattering rates from the acoustic and transverse op-
tical modes in CsI and NaI at room temperature. The current
semi-classical results are compared to phenomenological mod-
els following the work of Sparks20 and Llacer and Garwin.19

Models are shown with and without the correction proposed
by Bradford and Woolf.62

in Eq. 2, although other dispersion relations could be
implemented in a straightforward way.

2. Scattering from acoustic and transverse modes in NaI

and CsI

The exchange of energy and momentum between hot
electrons and acoustic phonons has been a major chal-
lenge limiting simulations of electron transport up to the
present. Sparks et al.20 developed the first detailed mod-
els of acoustic phonon scattering for hot electron trans-
port that included umklapp processes. This model was
based on the work of Holway and Fradin63 who used
the deformation potential approximation. Holway and
Fradin found scattering rates that decreased with in-
creasing particle energy; Sparks and later work by Fis-
chetti et al.,64 on the other hand, found that the in-
clusion of umklapp processes gave scattering rates that
were much larger at high energies and increased rapidly
(like E3/2) at high energy. As the experimental picture
of hot electron transport in SiO2 became more estab-

lished, Bradford and Woolf62 noted that the high energy
behavior of the scattering from acoustic modes in the
Sparks and Fischetti models was unphysical. They pro-
posed a model based on a pseudo-potential that added
a screening term that suppressed umklapp events and
yielded smaller scattering rates. Although originally de-
rived for modeling avalanche breakdown in solids (prin-
cipally SiO2), this model and closely related ones have
been used for Monte Carlo modeling of scintillator per-
formance in our group6,7,51 and others.2,8–11 All these
models of acoustic mode scattering are based on the de-
formation potential approximation which is derived by
considering perturbations to the band structure by acous-
tic vibrations and the subsequent effects on low-energy
electrons in a parabolic band. These conditions are not
representative of high-energy electrons. To arrive at in-
tegrals that can be evaluated analytically for high-energy
particles, the above authors were forced to make ad hoc

and unsatisfying assumptions about the electron-phonon
Hamiltonian. In particular, only a single longitudinal
acoustic (LA) mode was considered. This is because, for
binary systems, the six long-wavelength vibrations are
split into four transverse modes (i.e. the dot product of
the phonon eigenvectors and q vanishes as q → 0 ) and
two completely longitudinal ones: LO and LA branches.
Since, in acoustic vibrations, the atoms move sympathet-
ically, the electron-phonon coupling ǫ−1

∞ nλ(Q)(4π/Q2) is
non-singular at the origin, and the scattering-rate inte-
gral Eq. 5 gets the largest contributions away from Γ.
This is why umklapp processes are important for the
acoustic modes. In contrast, for LO phonons, the cou-
pling is singular near Γ, and Fröhlich type scattering is
dominated by long-wavelength contributions. The clas-
sification into longitudinal and transverse modes can not
be made away from Γ where the modes have mixed char-
acter. Since the longitudinal part of the induced density
interacts with the longitudinal field of the thermalizing
particle, all modes (not just the LA mode) contribute to
this type of scattering.

The strategy employed here is complementary to these
efforts. We do not use any separate approximations for
transverse and acoustic modes: all phonons are treated
identically. Instead of relying on models based on zone-
center quantities like the speed of sound, we explicitly
calculate the phonon eigenvectors. This work is based on
detailed calculations of the phonon properties through-
out the Brillouin zone. Hence our approach can pro-
vide additional information on the nature of the ther-
malization of hot electrons. Of course the current work
also employs approximations. The most severe one for
acoustic phonons is probably the effective charge approx-
imation of Eq. 7. Another major approximation is the
dispersion relation implicit in the energy-conserving δ-
function in Eq. 2. However we believe the current work
is an improvement on the deformation potential based
approximations, is suitable for semi-quantitative predic-
tions, and amenable to systematic improvement.

Our results for CsI and NaI are displayed in Fig. 8
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FIG. 9: Average cosine of the scattering angle as a function
of particle energy. Results from the phenomenological model
for the LO modes of Ref. 51 are also shown.

which also includes phenomenological models similar to
those used in Refs. 6,7 appropriate for these materials.
Both of these models use m∗ = 1 as we have assumed
in this work. One of these models includes the screen-
ing correction of Bradford and Woolf using a value of
α = 24.3 nm−1 calculated for CsI by Boutboul et al.65

The main conclusion from this comparison is that the
scattering from non-LO modes for high energy (above 3
eV, e.g.) is predicted to be weaker in our semi-classical
calculations compared to the Sparks model and shows
behavior comparable to the Bradford and Woolf model.
The increasingly large scattering rates at high energy
that Bradford and Woolf worked to tame are absent in
our numerical results, which tend to nearly constant val-
ues at high energies. For low electron energies, our nu-
merical simulations show more electron scattering than
any of the deformation potential-based models. We stress
that our semi-classical method requires only the atomic
structure for input and treats all phonon modes identi-
cally.

3. Average scattering angle

Besides the scattering rate, information about the mo-
mentum relaxation is needed for KMC simulations. For
LO modes, predictions can be made from the Fröhlich
model19 about the scattering angle. For other modes,
the final momentum of the particle is typically taken in a
random direction (or, equivalently, the motion is treated
as diffusion with diffusion constant D = v2/(3Γ) where
v is the particle speed).5 We are interested in how these
approximations compare to numerical results in the the-
ory presented here. To this end we show (in Fig. 9) the
average cosine of the scattering angle for scattering at

FIG. 10: Total phonon emission rate in inverse seconds at
T = 0 in a suite of polar crystals.

T=0 K in NaI and CsI computed via Eq. 6. Also shown
are the Fröhlich model results. For the common approxi-
mation of a uniformly distributed random direction after
scattering the average cosine vanishes. As for the scat-
tering rates, the numerical results are in better agree-
ment with the phenomenological ones for LO modes. At
low energies, electrons are seen to mostly back-scatter
(〈cos(θ)〉 < 0) in CsI while in NaI the scattering is mostly
forward. In these calculations, however, the scattering
rate for acoustic phonons is small and serves as the de-
nominator in Eq. 6. Hence these results should be viewed
skeptically. At higher energies (where non-LO modes are
more relevant) our method does not suffer from this prob-
lem and predicts scattering that is significantly biased in
the forward direction.

B. Complex polar crystals: YAP and SrI2

Our YAP calculations are based on the structure re-
ported by Ross et al.66 An energy cutoff of 30 Ha
was used; the Brillouin zone was sampled with a 4 ×
4 × 4 grid (resulting in 27 k-points). As for NaI,
the PBE60 exchange-correlation functional and norm-
conserving pseudopotentials61 were employed. As men-
tioned above, ABINIT was used for all DFT calcula-
tions. Our calculations of SrI2 are based on the struc-
ture reported by Barnighausen and Schulz67 as obtained
from the Crystallography Open Database.68 Approxima-
tions similar to those used for YAP were employed in
our calculations for SrI2. Troullier-Martins type pseu-
dopotentials obtained from the ABINIT website were
used. The Teter parametrization59 of the local density
approximation was employed to calculate the exchange-
correlation energy. The energy cutoff was set to 10 Ha,
and a 8 × 4 × 4 grid of k-points was used. Responses to
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FIG. 11: Contributions to the phonon scattering rate by the
three strongest modes in YAP as a function of the energy of
the thermalizing particle.

FIG. 12: Contributions to the phonon scattering rate by the
three strongest modes in SrI2 as a function of the energy of
the thermalizing particle for particles moving in the yz-plane
with a y-component of the velocity twice the z-component.

all 72 atomic displacements were considered over the 68
symmetry-inequivalent k-points; homogeneous (Γ-point)
electric fields in all three directions were also calculated
to find the LO-TO splitting in all three directions.

The resulting phonon band structures (Figs. 4 and 5)
comprise a rich set of excitations available to the material
and lead to multiple pathways for energy and momentum
transfer between thermalizing particles and these mate-
rials. Full numerical calculations of the scattering rates
as a function of the energy of the scattering particle were
calculated using the methods described in section II for
velocities with no component in the x-direction and a y-

component twice the z-component. The total scattering
rates for all four materials at T = 0 are plotted in Fig.
10.
As expected from its large phonon frequencies, YAP

has high scattering rates (several times as large) com-
pared to the other materials considered here. The phonon
scattering in YAP along our line of velocities is domi-
nated by a few active modes: mostly by the stiffest LO
mode (at an energy of 0.089 eV) with significant con-
tributions from two other optical modes (52 and 20) at
0.089 and 0.073 eV respectively. The total scattering
rate and the contributions from these active modes are
exhibited in Fig. 11. In SrI2, we find the strongest scat-
tering (at zero temperature) from the two stiffest modes
and from mode 12. At Γ, these modes have energies of
0.00364, 0.0197, and 0.0208 eV. We show the total scat-
tering rate in SrI2 and the contributions from these three
modes in Fig. 12. Also shown in that plot is the sum of
the scattering rates from the three dominant modes. The
remainder of the scattering is distributed broadly among
the remaining 69 modes: some modes are not active at
all while others contribute small amounts.
In order to understand the relative magnitude of opti-

cal modes to scattering, we define a mode-effective charge
for velocities along the three Cartesian directions by con-
sidering Eq. 7 as q approaches Γ along the α-axis:

Zλ,α =
∑

κ,β

Z∗

κ,βα√
2Mκ

lim
q→0

u∗

κ,β,λ√
ωλ,q

. (9)

Here the limit is meant to be taken in the α direction. For
many optical modes, the scattering rate integral Eq. 5 is
dominated by contributions from near the intersection of
the kinematically-allowed surface and the line segment
connecting the origin and the particle velocity in mo-
mentum space. Hence this quantity gives an indication
of which modes interact strongly with particles travel-
ing in the α direction. For both cubic alkali halide sys-
tems considered above, Zλ,α vanishes for all but the LO
mode. This quantity can also be computed from stan-
dard phonon calculations of the zone-center properties
(i.e. the LO-TO splitting and associated eigenvectors for
macroscopic polarization along the three different direc-
tions). Hence it is computationally cheap compared to
the full Brillouin zone adaptive integration used in our
full results. We find the dominant modes listed above
among those with large Zλ,α. Of interest is the fact that
a large Zλ,α is not sufficient to ensure strong scattering.
For example, Zλ=69,α=z is 26% of the largest mode ef-
fective charge (Zλ=72,α=y), and, based on this fact, one
would expect significant scattering in these calculations.
But we find mode 69 makes a very small contribution to
the total scattering rate. This implies that a model based
on zone-center quantities like Zλ,α is insufficient to de-
scribe the scattering because it misses the q-dependence
of the phonon physics. This observation also points to
the need to use fine grids for the phonon quantities to
capture the rapid variations of the phonon eigenvectors.
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We propose that Eq. 9 provides a good screening criteria
for strong optical modes in complex systems that could
be used to improve the efficiency of full calculations by
avoiding large calculations of modes with small effective
charges.
In systems with simple phonon structures, all of the

low-energy scattering is from the LO mode. Thus, parti-
cles whose energy is below the LO phonon energy do not
have sufficient energy to emit phonons leading to long
thermalization times and lengths when the thermal en-
ergy is much smaller than the LO phonon energy. In
more complex materials this is no longer the case, and
low-energy particles continue to have active energy loss
channels. At finite temperature, the situation is more
complicated still since a thermalizing particle can suc-
cessively absorb and emit vibrational quanta from differ-
ent modes, transferring the energy difference between the
two modes to the lattice in the process. Vasilev and co-
workers2,5 have considered this situation and proposed
that such sequential scatterings will be more effective at
thermalizing particles if the ratio of the greater energy to
the smaller one is less than 2. Based on this criterion, we
expect the two stiffest modes in SrI2 to provide a means
for efficient cooling down to low energies.

IV. CONCLUSIONS

We have improved our semi-classical theory of the
electron-phonon scattering rates for hot electrons by the
implementation of a smooth approximation for the first
order density response based on Born effective charges.

This advance has permitted the use of fine grids in re-
ciprocal space and made feasible the calculation of large
systems of current research interest. We have improved
previous work in this area by imposing the acoustic sum
rule on the scattering behavior. We have investigated the
scattering of electrons by phonons in four important in-
organic scintillating crystals by making direct numerical
simulations of the phonon scattering rates. These calcu-
lations are summarized in Fig. 10. We conclude, in con-
tradiction to our earlier work and long-used phenomeno-
logical models based on the deformation potential, that
acoustic modes are not the dominant channel for energy
relaxation for any energy in polar materials. They are
dominated either by scattering from optical phonons or
electronic processes. Our method gives a way to calcu-
late the strength of scattering in any polar crystal, and
we suggest a numerically cheap way to find the most im-
portant thermalizing modes in a given material.
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