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The universality of electronic friction I: the equivalence of the
Head-Gordon/Tully model and von-Oppen’s NEGF approach at

equilibrium

Wenjie Dou and Joseph E. Subotnik
Department of Chemistry, University of Pennsylvania,

Philadelphia, Pennsylvania 19104, USA

For a molecule moving near a single metal surface at equilibrium, following von Oppen et al

(Beilstein J. Nanotechnol, 3, 144 (2012)) and using a non-equilibrium Green’s function (NEGF) ap-
proach, we derive a very general form of electronic friction that includes non-Condon effects. We then
demonstrate that the resulting NEGF friction tensor agrees exactly with the Head-Gordon/Tully
(HGT) model, provided that finite temperature effects are incorporated correctly. The present re-
sults are in agreement with our recent claim that there is only one, universal electronic friction
tensor arising from the Born-Oppenheimer approximation (Phys. Rev. Lett. 119, 046001 (2017)).
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I. INTRODUCTION

The dynamics of molecules near metal surfaces underlie many interesting phenomena in the
area of electrochemistry1–6 and molecular electronics7–13. While these dynamics can be directly
related to straightforward gas-molecule/metal scattering processes14–17 and chemisorption/dissociation18–20,
one must always remember that these dynamics can also display surprising behavior.21–27 Due
to electron transfer processes between molecule and metal, the charge state of the molecule need
not be static and thus the Born-Oppenheimer approximation can break down28,29. Compared
with more conventional nonadiabatic effects for molecules in the gas phase or solution30–38,
such non-adiabaticity at a metal surface is extremely challenging because the metal presents a
continuous manifold of electron states (rather than a handful)39–44.
The simplest way to model the non-adiabaticity at a metal surface is the electronic friction

model. In the limit of fast electronic dynamics, where electron transfer occurs very quickly, the
nuclei move effectively on an average PES while also experiencing friction and a fluctuating force.
In the literature, quite a variety of friction models have been derived using different methods,
some systematic and some ad hoc. Techniques for deriving friction include path integrals45, non-
equilibrium Green’s functions (NEGF) and scattering approaches46–48, influence functionals49,50,
Meyer-Miller (MM) mappings51,52, quantum-classical Liouville equation projections53, as well as
simple Fermi-Golden rule arguments54,55. The final expression for electronic friction can also
be expressed in a variety of different forms, i.e. in the time or energy domains51,56, in terms of
greens functions or scattering matrices46,47, in diabatic or adiabatic basis representations (e.g.
Kohn-Sham orbitals)50,52,57,58, or in the form of response/correlation functions or derivative
couplings45,52,59,60, etc.
Among these different forms for electronic friction, probably the mostly common used expres-

sion was given by Head-Gordon and Tully (HGT) in 199552. The HGT friction model has been
successfully used to calculate the time scale for vibrational relaxation, and has been implemented
in ab initio electronic structure theory61. The original HGT model is based on a MM mapping in
the adiabatic basis combined with Ehrenfest dynamics. While the original article was restricted
to zero temperature, very recently, as argued in Ref.55 and confirmed in Ref.53, the fluctuating
force and other finite temperature effects can also be included54.
Apart from the HGT expression, another important (and very different) type of electronic

friction has been given by von Oppen et al, using a NEGF and scattering matrix formalism47.
This approach has certain advantages relative to the HGT approach. In particular, through
this approach Langevin dynamics are more rigorously derived with the proper random force; the
approximation can also be systematically verified. Moreover, the friction can be applied to the
non-equilibrium case, resulting in, for instance, current induced friction. However, the derivation
is rather complicated for those without expertise in nonequilibrium field theory, especially when
non-Condon effects are incorporated56. Furthermore, both the HGT and von Oppen NEGF
models effectively assume non-interacting electrons, where electron-electron (el-el) correlation is
missing; el-el interactions can give very new and interesting physics at low temperature26,53,62.
Finally, a third form for electronic friction can also be found in the literature: the friction

can be expressed in terms of response/correlation functions45,53,59. Indeed, the HGT form for
electronic friction can be rewritten in the form of Fermi’s Golden rule rate, i.e. second order
perturbation theory55, which is equivalent to a correlation function expression. More generally,
el-el interactions can also be incorporated into the friction tensor when expressed with correlation
functions (as was argued by Suhl et al long ago59).
Now, despite the presence of so many different approaches to electronic friction, to date,

unfortunately, there have been very few studies comparing the different formal expressions. Fur-
thermore, there has been no conclusion in the literature as to the differences between these
friction tensors. For instance, on the one hand, are there perhaps different forms for electronic
friction, just as there are many slightly different master equations53,63–67? When studying rate
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crossings near a metal surface, Hynes el al derived a non-Markovian friction tensor and argued
that this friction tensor was “quite distinct [from the HGT] Markovian electronic friction, acting
on a particle impinging from the gas phase on a metallic surface.”51 Or perhaps, on the other
hand, are the different forms for electronic friction just a matter of notation?

In a recent letter, we have argued that there is a unique, universal electronic friction tensor53

that is valid in and out of equilibrium, with or without el-el interactions:

γαν(R) =

∫ ∞

0

dt tre

(

δf̂α(R)e−iĤ(R)t/~∂ν ρ̂ss(R)eiĤ(R)t/~
)

(1)

Here δf̂α = −∂αĤ+ tre(∂αĤρ̂ss) is the random force, Ĥ is the electronic Hamiltonian, and ρ̂ss is
the steady state electronic density matrix (all parameterized at position R). tre implies tracing
over the many-body electronic eigenstate states. At equilibrium, where ρ̂ss is a Boltzmann

average (ρ̂ss(R) = e−βĤ(R)/Z), Ref.53 proves that the friction tensor can be recast into the form
of a correlation function of the random force:

γαν =
β

2

∫ ∞

0

dt tre

(

δf̂αe
−iĤt/~(δf̂ν ρ̂ss + ρ̂ssδf̂ν)e

iĤt/~
)

(2)

Eq. 2 agrees with the results of Suhl59 and Mozyrsky45 and co-workers. Furthermore, without
el-el interaction, Ref.53 also demonstrates that Eq. 2 can be further reduced to the HGT model
(Eq. 25).

With this background in mind, in the present article, our goal is to take one more step forward
towards consolidating electronic friction models. In particular, our goal is to prove that the elec-
tronic friction as calculated with NEGFs (following von Oppen et al47) is in complete agreement
with the HGT model52 at equilibrium (which in turn agrees with the universal friction tensor
in Ref.53). Note that we do not consider electron-electron interactions in this paper (because
von Oppen’s NEGF treatment assumes independent electrons). While we have previously shown
agreement between von Oppen and HGT for a one-level problem56, our earlier approach was not
direct and could not be easily extended to the case of many system (molecular) orbitals with or
without non-Condon effects. In the current paper, however, we claim that this agreement can
be proven quite generally.

We organize this paper as follows. In Sec. II, using a NEGF approach in order to connect
with von Oppen’s formalism, we derive a Langevin equation for a non-interacting electronic
system. In Sec. III, we apply our results to a model of a molecule (system) with many orbitals in
contact with a bath of metallic electrons at equilibrium. Here, we demonstrate that the NEGF
formalism is entirely equivalent to the HGT model, even when we include non-Condon effects,
whereby metal-molecule couplings may fluctuate with nuclear motion. In Sec. IV, we discuss a
key nuance which must be properly addressed when performing an NEGF gradient expansion
with non-Condon effects. We conclude in Sec. V.

Notations: Below we use a hat to denote electronic operators. α and ν index nuclear degrees
of freedom (DoFs) with position and momentum vectors R and P. p and q index electronic
orbitals in general. m and n index the electronic orbitals in the system (molecule), whereas k

and k′ index the orbitals in the bath (metal). Ĥ denotes the electronic Hamiltonian, including the

pure nuclear potential U0(R). The total Hamiltonian is represented by Ĥtot, i.e. the electronic
Hamiltonian plus the nuclear kinetic energy.
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II. NON-EQUILIBRIUM GREEN’S FUNCTION

A. Equation of motion

We consider coupled electron-nuclear motion, where the total Hamiltonian Ĥtot can be divided
into the electronic Hamiltonian Ĥ, and nuclear kinetic energy,

Ĥtot = Ĥ +
∑

α

P 2
α

2mα
(3)

The electronic Hamiltonian Ĥ consists of a manifold of electrons that is quadratic (in electronic
orbitals p, q) plus a nuclear potential energy U0(R):

Ĥ =
∑

pq

Hpq(R)d̂†pd̂q + U0(R) (4)

Without loss of generality, we restrict ourselves to the case of a real-valued H matrix below.
Here, we re-emphasize that we are treating a non-interacting electronic (or Hartree-Fock or mean-
field) Hamiltonian. (For a very general treatment that includes electron-electron interactions,
see Ref.53. )
We consider the classical dynamics of the nuclei, such that the equation of motion (EOM) for

the nuclei is given by the Newtonian equation,

mαR̈α = −∂αĤ = −∂αU0 −
∑

pq

∂αHpq〈d̂
†
pd̂q〉+ δf̂α (5)

where we have defined the random force δf̂α

δf̂α = −
∑

pq

∂αHpq

(

d̂†pd̂q − 〈d̂†pd̂q〉
)

(6)

Our goal is to transform Eq. 5 into a Langevin equation. To achieve this purpose, we define
the lesser and retarded Green’s functions (GFs) respectively,

G̃<
qp(t1, t2) =

i

~
〈d̂†p(t2)d̂q(t1)〉R(t1) (7)

G̃R
qp(t1, t2) = −

i

~
θ(t1 − t2)〈{d̂q(t1), d̂

†
p(t2)}〉R(t1) (8)

Since the electronic Hamiltonian Ĥ is quadratic, and the nuclei are prescribed by R(t1) and not

R(t2), the equation of motion (EOM) for G̃R is given by

−i~∂t2G̃
R(t1, t2) = δ(t1 − t2) + G̃R(t1, t2)H. (9)

B. Gradient Expansion: mean force and friction

To proceed, it will be convenient to work in the Wigner representation, where the Wigner
transformation is defined as,

G̃R(t, ǫ) =

∫

dτ eiǫτ/~G̃R(t+ τ/2, t− τ/2). (10)
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For a convolution,D(t1, t2) =
∫

dt3B(t1, t3)C(t3, t2), the Wigner transformation can be expressed
with a “Moyel operator” as:

DW (t, ǫ)= exp

[

i~

2

(

∂A
ǫ ∂

B
t − ∂B

ǫ ∂A
t

)

]

BWCW

≈ BWCW +
i~

2
∂ǫB

W ∂tC
W −

i~

2
∂ǫC

W ∂tB
W . (11)

The approximation made in the above equation is known as a gradient expansion in some fields
of physics (and an ~ expansion in others).

After applying the Wigner transform and the gradient expansion to the EOM of G̃R(t1, t2)
(Eq. 9), we find

G̃Rǫ− G̃RH = 1 +
i~

2
∂ǫG̃

R∂tH +
i~

2
∂tG̃

R. (12)

At this point, we note that we are looking for a general friction tensor, i.e. a tensor that
multiplies the velocity Ṙ. Because we will eventually replace ∂t =

∑

ν Ṙ
ν∂ν , it is clear that, for

all terms where there is already one factor of ∂t, we may safely replace G̃R with the frozen GR.
We define the frozen GF,

GR(R, ǫ) = (ǫ−H(R) + iη)
−1

(13)

Here GR represents the responses of an electron achieving instantaneous equilibration with the
electronic Hamiltonian H (which will eventually be modulated by some nuclear motion). Sub-
stitution of the frozen Green’s function for the full Green’s function leads to

G̃R(GR)−1 ≈ 1 +
i~

2
∂ǫG

R∂tH+
i~

2
∂tG

R. (14)

Note that ∂ǫG
R = −GRGR, ∂tG

R = GR∂tHGR, as well as ∂tH =
∑

ν Ṙ
ν∂νH. Therefore, Eq.

14 can be solved as

G̃R ≈ GR +
i~

2

∑

ν

Ṙν(∂ǫG
R∂νHGR −GR∂νH∂ǫG

R) (15)

At this point, we have a straightforward adiabatic first order correction to the frozen retarded
GF. This correction can be transformed back into the time domain as follows:

G̃R(t1, t2)≈ GR(t1, t2)

+
i~

2

∑

ν

Ṙν

∫

dt3 ∂ǫG
R(t1, t3)∂νHGR(t3, t2)

−
i~

2

∑

ν

Ṙν

∫

dt3 G
R(t1, t3)∂νH∂ǫG

R(t3, t2) (16)

Here we have used the backwards Wigner transformation. For instance, ∂ǫG
R(t1, t2) is defined

as

∂ǫG
R(t1, t2) ≡

∫

dǫ

2π~
e−iǫ(t1−t2)/~∂ǫG

R(
t1 + t2

2
, ǫ) (17)

Note that the correction of the full Green’s function takes the form of a time convolution in
real time. If this convolution is extended to a convolution on the Keldysh contour, we may now
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reproject onto the real time domain for the lesser GF. Using the standard projection rules for
NEGF68, we find

G̃<(t1, t2) ≈G<(t1, t2)

+
i~

2

∑

ν

Ṙν

∫

dt3 ∂ǫG
<(t1, t3)∂νHGA(t3, t2)

+
i~

2

∑

ν

Ṙν

∫

dt3 ∂ǫG
R(t1, t3)∂νHG<(t3, t2)

−
i~

2

∑

ν

Ṙν

∫

dt3 G
<(t1, t3)∂νH∂ǫG

A(t3, t2)

−
i~

2

∑

ν

Ṙν

∫

dt3 G
R(t1, t3)∂νH∂ǫG

<(t3, t2) (18)

Finally, if we again perform a Wigner transformation, we recover,

G̃< ≈ G< +
i~

2

∑

ν

Ṙν(∂ǫG
<∂νHGA −GR∂νH∂ǫG

< + ∂ǫG
R∂νHG< −G<∂νH∂ǫG

A)

(19)

Using Eq. 5, we can now identify the correct friction coefficient

γαν = ~

∫

dǫ

2π
tr(∂αH∂ǫG

<∂νHGA − ∂αHGR∂νH∂ǫG
<) (20)

as well as a mean force,

Fα = i

∫

dǫ

2π
tr(∂αHG<) (21)

Thus, we have derived several terms in the desired Langevin equation,

mαR̈α = −∂αU0 + Fα −
∑

ν

γανṘ
ν + δf̂α (22)

C. Equilibrium

Eq. 20 is a general form for friction valid in or out of equilibrium. At equilibrium, this
expression can be simplified further using the following relationships:

G<= i2πPf (23)

P= −
1

π
ImGR = δ(ǫ−H) (24)

Here f is the Fermi function, f(ǫ) = (eβǫ + 1)−1 (1/β ≡ kBT ). We also have the universal
relationship, GA = (GR)†. Using these relationships and integration by parts, Eq. 20 can be
further rewritten as:

γαν = −π~

∫

dǫ tr(∂αHP∂νHP)∂ǫf (25)

The exact form of Eq. 25 was not derived by von Oppen et al, but this result does agree with
the HGT model.52 Similarly, the mean force at equilibrium reads:

Fα = −

∫

dǫ tr(∂αHP)f (26)
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To make the Langevin equation (Eq. 22) closed, we must now evaluate the correlation function

of the random force δf̂α.

D. Correlation of the Random Force

We now evaluate the correlation of the random force. While Ref.53 provides a complete non-
Markovian correlation function, here we consider only the Markovian correlation function:

〈δf̂α(t)δf̂ν(t
′)〉 = Dανδ(t− t′) (27)

This Markovian assumption is consistent with an adiabatic approximation (where electrons move
much faster than nuclei).

Since the electronic Hamiltonian Ĥ is quadratic, Wick’s theorem can be applied,

〈δf̂α(t)δf̂ν(t
′)〉 = ~

2
∑

p′q′pq

∂αHp′q′G̃
>
q′p(t, t

′)∂νHpqG̃
<
qp′(t′, t), (28)

In the limit of fast electronic motion and relaxation, we replace the adiabatic GF (G̃) by the
corresponding frozen GF (G), such that

Dαν = ~
2

∫

dτ tr(∂αHG>(τ)∂νHG<(−τ))

= ~

∫

dǫ

2π
tr(∂αHG>(ǫ)∂νHG<(ǫ)) (29)

Eq. 29 is valid in or out of equilibrium. At equilibrium, similar to Eq. 23, we have

G> = −i2π(1− f)P (30)

Now the correlation function of the random force reads

Dαν = 2π~

∫

dǫ tr(∂αHP∂νHP )f(1− f). (31)

If we compare Eq. 31 with the friction in Eq. 25, and note that, at equilibrium ∂ǫf =
−βf(1−f), we see that the second fluctuation-dissipation theorem is satisfied (Dαν = 2kBTγαν)
at equilibrium. Therefore, after equilibration, the nuclei will always reach the same temperature
as the (electronic) metal surface.

III. A MODEL WITH SYSTEM-BATH SEPARATION

Eq. 25 and Eq. 31 are very general expressions which make no distinction between a system and
bath, and thus might appear nonintuitive. To connect with more traditional views of electronic
friction, as in Ref. 47, we now separate the total system into a molecule with orbitals (index m
and n), and a metal with a manifold of electronic orbitals (index k). The system-bath (molecule-
metal) coupling is taken to be linear:

Ĥ = Ĥs + Ĥb + Ĥc, (32)

Ĥs =
∑

mn

hmn(R)b̂†mb̂n + U0(R), (33)

Ĥb =
∑

k

ǫkĉ
†
k ĉk, (34)

Ĥc =
∑

km

Vkm(R)(b̂†mĉk + ĉ†k b̂m). (35)
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Notice that, aside from the bare nuclear potential U0(R), the energy of the system hmn(R) and
the system-bath coupling Vkm(R) also depend on nuclear position R.
Now, because all of the electronic terms are quadratic, we can apply Eq. 25 to evaluate

tr(∂αHP∂βHP) (36)

=
1

π2

∑

mnm′n′

∂αhmnImGR
nn′∂νhn′m′ImGR

m′m (37)

+
2

π2

∑

mnkm′

∂αhmnImGR
nk∂νVkm′ ImGR

m′m (38)

+
2

π2

∑

mknm′

∂αVkmImGR
mn∂νhnm′ImGR

m′k (39)

+
4

π2

∑

mnkk′

∂αVkmImGR
mk′∂νVk′nImGR

nk (40)

Here, we have used the imaginary part of the retarded frozen GF to replace P , since P(ǫ) =
− 1

π ImGR(ǫ).
To proceed, for the non-interacting electrons, the following relationship can be applied (because

of the Dyson equation)

GR
nk =

∑

n′

GR
nn′Vn′kg

R
k (41)

gRk is the retarded GF for the electron in the metal

gRk = (ǫ − ǫk + iη)−1 (42)

so that

Im
∑

k

GR
nk∂αVkm′ = Im

∑

kn′

GR
nn′Vn′kg

R
k ∂αVkm′ (43)

If we denote

2
∑

k

Vn′kg
R
k ∂αVkm′ = Σ̄α

n′m′ (44)

we find

tr(∂αHP∂βHP)

=trs

(

(

ImGR
s ∂αh+ Im(GR

s Σ̄α)
)(

ImGR
s ∂νh+ Im(GR

s Σ̄ν)
)

)

(45)

Here the trace trs implies a summation over only the system orbitals (m, n), and GR
s is the

retarded GF for the system,

GR
s = (ǫ − h− Σ)−1 (46)

Σmn =
∑

k

Vmkg
R
k Vkn (47)

We note that, from the definitions in Eq. 44 and Eq. 47, ∂αΣmn = 1
2 (Σ̄

α
mn + Σ̄α

nm). The final
friction is then

γαν = −~

∫

dǫ

π
trs

(

(

ImGR
s ∂αh+ Im(GR

s Σ̄α)
)(

ImGR
s ∂νh+ Im(GR

s Σ̄ν)
)

)

∂ǫf

(48)
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For the case that ∂αVkm = 0 (which is known as the Condon approximation), Eq. 48 was derived
previously by von Oppen et al. Here, however, we have shown that the von Oppen friction results
are identical to the HGT friction results (Eq. 25). Furthermore, in the present manuscript, we
have now extended von Oppen’s results to account for non-Condon effects, i.e. the fact that Vkm

should generally depend on R.

A. Wide-band limit

To better understand the implication of the non-Condon effects, we note that in the literature
the wide-band approximation is often used, such that the following purely imaginary quantities
can be defined,

∑

k

Vn′kg
R
k Vkm′ = −iΓn′m′/2 (49)

2
∑

k

Vn′kg
R
k ∂αVkm′ = −iΓ̄α

n′m′/2 (50)

Here Γmm is the lifetime or hybridization of molecular orbital m on the metal surface. By
definition, we have ∂αΓmn = 1

2 (Γ̄
α
nm+Γ̄α

mn), and GR
s = (ǫ−h+ iΓ/2)−1. Thus, in the wide-band

limit, the friction becomes:

γαν = −~

∫

dǫ

π
trs

(

(∂αhImGR
s +

1

2
Γ̄αReGR

s )(∂νhImGR
s +

1

2
Γ̄νReGR

s )
)

∂ǫf (51)

Thus, we see that non-Condon effects restructure the wide-band approximation so that the
electronic friction will now depend on both the imaginary and real parts of the system Green’s
function. In general, non-Condon effects can increase or decrease friction, depending on the
relative signs of the two components in Eq. 51.

IV. DISCUSSION

The results above are fairly straightforward. We have shown (i) that an NEGF formalism
recovers the exact same electronic friction as the Head-Gordon/Tully approach; this agreements
confirms our earlier claim53 there is only a single, universal electronic friction tensor that is
relevant to semi-classical dynamics. We have also shown (ii) that non-Condon effects can be
incorporated into the relevant electronic friction. In a previous paper, with only a single electronic
orbital, we demonstrated that non-Condon contributions to the electronic friction can sometimes
be significant56.
At this point, before concluding, there is one key feature that ought to be addressed regarding

formalisms. In the present article, our approach was to (i) perform a gradient expansion of the
full Green’s function (Sec. II), and then (ii) project the full GF onto the system and system-bath
coupling to learn about molecular motion on a surface. Through this procedure, we arrived at the
relevant friction coefficient (Sec. III) which satisfies the second fluctuation-dissipation theorem.
Now, while the formalism just described might seem obvious enough, we must emphasize that
the steps taken above are not standard at all. By contrast, the more typical approach would be
the opposite: (i) first focus on the system coordinates and (ii) second apply a gradient expansion
in the smaller space of (system) nuclear motion. For instance, in Ref.47, von Oppen et al take
the latter (not former) approach.
In our experience, we have found that these two approaches usually agree, but can disagree

when non-Condon effects are present. Here, there are two data points worth mentioning. First,
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in Ref.56, for the case of one system molecular orbital with non-Condon effects, we have previ-
ously performed a gradient expansion separately for the system and system-bath coupling GFs.
In such a case, the resulting friction does agree with HGT model. However, second, although we
do not reproduce the derivation here, for the case of multiple system orbitals in contact with a
metal with non-Condon effects, one finds that the two approaches above do not agree. Instead,
if one invokes a naive gradient expansion which separates the system and system-bath GFs, one
will recover a different friction tensor that is clearly incorrect. This incorrect friction tensor
does not agree with the HGT method and does not satisfy the second fluctuation-dissipation
theorem. Furthermore, this incorrect friction tensor is not symmetric along nuclear DoFs at
equilibrium (whereas the correct friction tensor in this manuscript [Eq. 25 or Eq. 48] is sym-
metric). Hence, by studying non-Condon effects, the present manuscript has clearly discerned
how to perform a proper gradient expansion when system-bath couplings become complicated
and position-dependent.

V. CONCLUSIONS

In conclusion, we have extended the non-equilibrium Green Function (NEGF) approach to
deal with a very general Hamiltonian with many molecular orbitals sitting near a metal surface.
We have derived a general form of electronic friction as felt by the system nuclei, and we have
included the effects of non-Condon terms in the Hamiltonian. At equilibrium, we have shown
the equivalence between a NEGF approach and the Head-Gordon/Tully (HGT) model, providing
strong evidence to back up our recent claim of a single, universal friction tensor arising from the
Born-Oppenheimer approach53. Future work will necessarily investigate the connection between
Ref.53, the HGT model and the NEGF formalism under out of equilibrium conditions, i.e. for a
molecule sitting between two leads with a current running through it.
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22 E. Lörtscher, J. W. Ciszek, J. Tour, and H. Riel, Small 2, 973 (2006).
23 J. Koch and F. von Oppen, Phys. Rev. Lett. 94, 206804 (2005).
24 M. Kisiel, E. Gnecco, U. Gysin, L. Marot, S. Rast, and E. Meyer, Nat. Mater. 10, 119 (2011).
25 M. Langer, M. Kisiel, R. Pawlak, F. Pellegrini, G. E. Santoro, R. Buzio, A. Gerbi, G. Balakrishnan,

A. Baratoff, E. Tosatti, and E. Meyer, Nat. Mater. 13, 173 (2014).
26 M. Plihal and D. C. Langreth, Phys. Rev. B 60, 5969 (1999).
27 D. M. Kennes, E. Y. Wilner, D. R. Reichman, and A. J. Millis, Nat. Phys. 13, 479 (2017).
28 J. C. Tully, Theoretical Chemistry Accounts 103, 173 (2000).
29 A. M. Wodtke, J. C. Tully, and D. J. Auerbach, Int. Rev. Phys. Chem. 23, 513 (2004).
30 J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
31 J. E. Subotnik, A. Jain, B. Landry, A. Petit, W. Ouyang, and N. Bellonzi, Ann. Rev. Phys. Chem.

67, 387 (2016).
32 R. Kapral, Ann. Rev. Phys. Chem. 57, 129 (2006).
33 A. White, S. Tretiak, and D. Mozyrsky, Chem. Sci. 7, 4905 (2016).
34 S. K. Min, F. Agostini, and E. Gross, Phys. Rev. Lett. 115, 073001 (2015).
35 O. V. Prezhdo and P. J. Rossky, J. Chem. Phys. 107, 825 (1997).
36 A. Kelly, N. Brackbill, and T. E. Markland, J. Chem. Phys. 142, 094110 (2015).
37 P. Huo and D. F. Coker, J. Chem. Phys. 137, 22A535 (2012).
38 M. Ben-Nun and T. J. Martinez, J. Chem. Phys. 108, 7244 (1998).
39 H.-T. Chen, G. Cohen, A. J. Millis, and D. R. Reichman, Phys. Rev. B 93, 174309 (2016).
40 W. Dou, A. Nitzan, and J. E. Subotnik, J. Chem. Phys. 142, 084110 (2015).
41 N. Shenvi, S. Roy, and J. C. Tully, J. Chem. Phys. 130, 174107 (2009).
42 M. Thoss, I. Kondov, and H. Wang, Phys. Rev. B 76, 153313 (2007).
43 M. Galperin and A. Nitzan, J. Phys. Chem. Lett. 6, 4898 (2015).
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