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Willis fluids, or more generally Willis materials, are homogenized composites that exhibit coupling
between momentum and strain. This coupling is intrinsic to inhomogeneous media and can play a
significant role in the overall response in acoustic metamaterials. In this paper, we draw connec-
tions between bianisotropy in electromagnetism and Willis coupling in elastodynamics to provide
a qualitative understanding. Building upon these analogies, we introduce a new homogenization
for acoustic metamaterials based on a source-driven, multiple scattering approach that highlights
the physical origins of Willis coupling. Moreover through numerical examples, we compare several
macroscopic material descriptions of acoustic metamaterials with non-negligible Willis coupling.
The descriptions neglecting Willis coupling may not satisfy restrictions stemming from reciprocity,
passivity, and causality, which suggests that including Willis coupling in macroscopic descriptions
is necessary to realize physically meaningful macroscopic parameters.

I. INTRODUCTION AND MOTIVATION

The emergence of metamaterials in electromagnetism,
elastodynamics, and acoustics has provided new impe-
tus for homogenization schemes accounting for multiscale
dynamics.1–11 A valid homogenization scheme must ac-
curately relate the dynamic response of microscopic inho-
mogeneities and their interactions at the mesoscale to re-
alize metamaterials with exotic macroscopic parameters
exhibiting very large, near zero, and even negative values,
while also being physically meaningful and independent
of the specific setup in which the material is tested.12–14

One critical result of dynamic homogenization, often ne-
glected due to quasi-static assumptions, is the existence
of coupling terms in constitutive relations.6 The concept
of coupled constitutive relations is well known in elec-
tromagnetism, and it is generally referred to as bian-
isotropy or magnetoelectric coupling.15–17 In contrast,
field coupling in elastodynamics and acoustics, commonly
referred to as Willis coupling, has only recently begun to
receive attention.18,19

In traditional media, constitutive relations associate
fields whose inner product yields either the potential or
kinetic energy at a material point. Potential energy is
calculated from the inner product of the electric field
and electric displacement in electromagnetism, stress and
strain in elastodynamics, and pressure and volume strain
in acoustics. Kinetic energy is calculated from the in-
ner product of the magnetic field and magnetic flux in
electromagnetism and particle velocity and momentum
density in elastodynamics and acoustics. Additionally,
energy is converted from one form to the other in wave
propagation, guided by the differential equations that
couple fields related to potential energy and those related
to kinetic energy, such as the conservation of momentum.

In bianisotropic or Willis media, however, the con-
stitutive relations are coupled and therefore contain

fields associated with both potential and kinetic en-
ergy. This coupling between constitutive relations im-
plies energy conversion in the material response to a
particular field, which is distinct from the exchange
of energy that occurs in wave propagation. Macro-
scopic coupled constitutive relations may result from
multiple microscale and mesoscale effects including chi-
ral inhomogeneities,17,20,21 asymmetric inhomogeneities
and substrate effects,5,7,14,22–28 nonlocal effects due to a
finite unit cell and multiple scattering,5,9,10,29,30 and in
the presence of nonreciprocal biases.15–17,28,31–33

Despite the prevalence of published work in bian-
isotropy and Willis coupling, the physical analogies be-
tween the origins of these effects in electromagnetic and
elastic systems have not been fully discussed. Addi-
tionally, while a few works have provided exact theo-
retical validations of Willis coupling,7,9,25,26 the meth-
ods used do not provide a clear picture of the under-
lying physics. Finally, in order to uniquely define the
macroscopic response of an inhomogeneous medium, one
must be able generate fields independently via sources.4–6

If one attempts to infer the macroscopic response only
from free waves (as in most experiments), the resulting
parameters are non-unique and may not be physically
meaningful.12–14 This work addresses these considera-
tions by (i) highlighting useful analogies between elec-
trodynamic, elastodynamic, and acoustic systems, (ii)
deriving a new source-driven, multiple scattering ho-
mogenization procedure demonstrating physical origins
of Willis coupling in acoustic metamaterials, and (iii)
providing numerical examples demonstrating that Willis
coupling must be taken into account in order for macro-
scopic parameters to be physically meaningful.

This work is organized as follows. Section II provides a
brief perspective on the connection between bianisotropy
in electromagnetism and Willis coupling in elastodynam-
ics and acoustics, highlighting important physical analo-
gies and qualitative examples. The remainder of this
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work focuses on Willis coupling in acoustic metamateri-
als, which was inspired and guided by the analogous work
in electromagnetism, particularly the works of Alù5 and
Simovski.12 In Sec. III, a source-driven, multiple scat-
tering homogenization procedure for acoustic metama-
terials provides an intuitive demonstration of the ori-
gins of macroscopic coupling in acoustic metamaterials.
The homogenization procedure results in exact solutions
for one-dimensional (1D) periodic media, which are dis-
cussed in detail in Sec. IV. Due to the non-uniqueness
of macroscopic parameters in the absence of sources, the
derived effective parameters are compared to two addi-
tional macroscopic descriptions that one might propose
to model free waves in the metamaterial: equivalent pa-
rameters which neglect Willis coupling, and Bloch pa-
rameters which relate microscopic fields rather than effec-
tive fields. Three example 1D periodic media are consid-
ered, and the effective, equivalent, and Bloch parameters
are discussed in light of physical restrictions on values.

II. BIANISOTROPY AND WILLIS COUPLING

This section provides an introduction to bianisotropy
in electromagnetism and analogous effects in acous-
tic/elastic wave systems and qualitatively demonstrates
field coupling using fundamental physics. Section II A
provides a brief introduction and history of the known
physical mechanisms leading to macroscopically observ-
able bianisotropy in electromagnetism and an example
of how bianisotropy may be introduced at the microscale
by an asymmetric inhomogeneity. Section II B provides
an overview of work in elastodynamics and acoustics in-
volving coupled constitutive relations, an example of a
coupled response from an asymmetric inhomogeneity in
an acoustic pressure field, and a qualitative discussion of
nonlocal coupling. Finally, Sec. II C reviews the general
restrictions on macroscopic material parameters through
the expressions of reciprocity, passivity, and causality in
homogeneous acoustic media.14

In order to clarify the discussion, the authors tried to
use common variables in each of the disciplines: elec-
tromagnetism, elastodynamics, and acoustics. As such,
variables only in Sec. II A will refer to the electromag-
netic definitions; variables only in Sec. II B will refer to
elastodynamics; and variables in the remainder of this
work will refer to acoustic definitions provided wherever
defined. Additionally, the forms of the constitutive rela-
tions presented in Eq. (1), (3), and (4) were chosen based
on convenience of comparison and tradition, rather than
being expressed in terms of the primary fields of their
corresponding disciplines.34,35

A. Bianisotropy in electromagnetism

The study of bianisotropic media in electromagnetism
has a long history, with inquiry stretching back over

200 years.17,20 The term “bianisotropic” was proposed in
1968 by Cheng and Kong15 to describe a material that
displays an electrical response resulting from both elec-
tric and magnetic excitation and a magnetic response re-
sulting from both magnetic and electric excitation, and in
general, the response is not parallel to either excitation.
This behavior is represented by the constitutive relations
provided in Eq. (1). A variety of physical effects may be
efficiently modeled in the frequency domain using bian-
isotropic constitutive relations, and knowledge of their
origins provides key insight into understanding the so-
called Willis coupling in elastodynamics and acoustics.

The general bianisotropic constitutive relations in elec-
tromagnetism can be expressed in indical notation as

Di = εijEj + ζijHj ,

Bi = ξijEj + µijHj ,
(1)

where the electric and magnetic field strengths, E andH,
and the electric and magnetic displacements, D and B,
are all vectors, and the four material parameters, electric
permittivity ε, magnetic permeability µ, and two cou-
pling parameters ζ and ξ, are all second order tensors.
Restrictions on the parameter tensors based on symme-
try, time and spatial inversion, reciprocity, and passivity
were formally expressed by Kong.16

The earliest observed effect that can be modeled with
bianisotropic constitutive relations dates back more than
200 years and is known as optical activity.17,20 This phe-
nomenon occurs naturally in some crystals and is marked
by the rotation of linearly polarized light as it propagates
through a material.17,20 Media with optical activity are
reciprocal, and materials demonstrating this response are
generally referred to as chiral media. (An often used al-
ternative formalism of optical activity presents the elec-
tric displacement as a function of the electric field and
its curl.36) In the mid-20th century, it was shown that
certain magnetic materials exhibit magnetization propor-
tional to electrical excitation. This became known as the
magnetoelectric effect, and it is nonreciprocal.17 Both of
these effects were demonstrated in engineered materials
in the first half of the 20th century, chirality by Lindman
in 1914 using subwavelength microstructures composed
of copper helices37 and the magnetoelectric effect by Tel-
legen in 1948 using the nonreciprocal circuit element he
called a gyrator.31 Propagation in general bianisotropic
media continued to be studied extensively throughout the
second half of the 20th century.17,20

For propagation in isotropic media with magnetoelec-
tric coupling (known as bi-isotropic media), all the ma-
terial parameters presented in Eq. (1) can be represented
by scalars, and the coupling coefficients take the form

ζ = κnr + κor + iκer,

ξ = κnr + κor − iκer.
(2)

In these expressions, κer contains the chirality of the
medium, and κnr contains the nonreciprocal magneto-
electric effect, also known as the Tellegen parameter.
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FIG. 1: Ω-particle demonstrating a microscopic origin
of even coupling κer in electromagnetism. (a) A

perfectly conducting Ω-particle with height h produces
electric Ds and magnetic Bs dipole scattering when
located at a local electric field Eloc maximum and

magnetic field null. (b) The operation of the Ω-particle
may be explained by its equivalent circuit,38,39 where
the response of the arms are modeled with reactance
XD, the response of the loop by XB , and the coupling

between the arms and loop by Xc. The resistances
represent the scattered fields by the electric RD and

magnetic RB dipoles due to the excitation by the local
electric field and current around the loop.

More generally, κnr describes coupling due to many other
nonreciprocal effects including modeling moving media in
a stationary reference frame and time-varying media.15,16

In contrast, κer contains contributions from coupling
mechanisms which are even in wavevector and recip-
rocal, hereafter referred to as even coupling. In ad-
dition to chirality, even coupling mechanisms common
in metamaterials include substrate effects23 and asym-
metric microstructures such as split-ring resonators and
Ω-particles.22 The third parameter contributing to cou-
pling, κor, accounts for reciprocal effects which are odd in
wavevector, hereafter referred to as odd coupling. κor was
recently demonstrated to occur in periodic lattices, and it
is due to the finite phase velocity over a unit cell and mul-
tiple scattering effects, i.e., nonlocal effects, which will
be discussed here as mesoscale effects. A major result of
these findings is that neglecting κor in the homogeniza-
tion of periodic arrays can result in effective properties
that do not satisfy the restrictions imposed by passivity
and causality on the response of a material when sub-
jected to external fields.4,5,13

As mentioned above, asymmetric microstructures can
lead to bi(an)isotropy at the macroscale. Since mi-
crostructural asymmetries lead to bianisotropy in elec-
tromagnetic metamaterials, which this paper will show
has an acoustic analog, it is informative to introduce an

example physical response at the microscale leading to
coupled field behavior. One such structure is the so-
called Ω-particle,22 which is illustrated in Fig. 1a and
described here. Given a perfectly conducting, Ω-shaped
microstructure located at a local electric field Eloc maxi-
mum and magnetic field null, the microscopic particle re-
sponds like the RLC circuit shown in Fig. 1b, where the
reactances XD, XB , and Xc are provided in Ref. 38 and
39. The local electric field induces a charge separation, or
a voltage source hEloc, in the arms of the Ω particle that
respond as a perfeclty conducting rod of length hmodeled
by XD. The charge separation in turn results in a current
around the loop, which may be modeled by XB , and Xc

models the coupling between the arms and loop. Energy
is dissipated through re-radiation in the form of a scat-
tered electric dipole Ds along the arms and a scattered
magnetic dipole Bs through the loop due to the time-
varying current. These two forms of radiation are repre-
sented by red vectors in Fig. 1a and as the resistances RD
and RB in Fig. 1b. In this manner, a microscopic particle
may have a magnetic response to an electrical stimulus
or an electric response due to a magnetic stimulus, i.e.,
the Ω-particle may be excited by an incident magnetic
field through the loop. Because this microstructure par-
tially converts a stimulus of potential (kinetic) energy to
a kinetic (potential) response, an inhomogeneous medium
composed of many such subwavelegnth microstructures
embedded in a background medium will exhibit macro-
scopic field coupling represented by constitutive relations
with the form of Eq. (1).22

In electromagnetism, materials are characterized by
their electric and magnetic responses, which are cou-
pled in the case of bianisotropic media. The analogous
responses in elastodymanics correspond to relations be-
tween stress and strain and between velocity and momen-
tum. In the following, a new class of materials known
as Willis media will be discussed, which are analagous to
bianisotropic media due to coupling between stress-strain
and momentum-velocity relations.19

B. Willis coupling in elastodynamics and acoustics

In the 1960s, several groups independently proposed
that “acoustical activity” (analog to optical activity)
would exist in non-centrosymmetric crystals.40–43 This
effect was measured in α quartz by Pine in 1970,44 and
acoustic chirality was later proposed and demonstrated in
engineered composites in the 1980s.20,21 Chirality, which
requires that the medium support transverse wave prop-
agation with rotationally polarized fields, can only occur
in elastic media, but will be absent in fluids which only
support longitudinal motion. In mechanics, the term chi-
rality also often refers to the related static effect whereby
a uniform strain results in a torque, and chiral geometries
can be used to achieve a negative Poisson’s ratio.45 Addi-
tionally, chiral elements have recently been used as spiral
phase plates to produce acoustic orbital momentum,46 in
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which case the emergent acoustic beam from the plate
has an azimuthal dependence, but the wave motion is
still longitudinal.

Apart from the studies of chirality, J. R. Willis demon-
strated in the 1980s that field coupling is a general
result of dynamic homogenization of inhomogeneous
media.18,47,48 A surprising result of Willis’ work was the
prediction of coupled constitutive relations in the form
of Eq. (3) for both transverse and longitudinal waves, re-
gardless if media supports rotational fields.1,19,24 This
coupling as a result of dynamic homogenization has
therefore come to be referred to as Willis coupling. Given
that fluids only support longitudinal waves, one must
therefore conclude that the analog of bianisotropic cou-
pling exists in fluid acoustics. Recent work by Milton
and Willis19 outline the development of Willis’ theory,
and a recent review by Srivastava49 highlights much of
the work thus far in this area.

The so-called Willis constitutive relations are generally
presented as

σij = Cijklεkl + Sijk ξ̇k,

µi = S̃ijkεjk + ρ̃ij ξ̇j ,
(3)

where the Cauchy stress tensor σ is proportional to not
only the infinitesimal strain tensor ε via the fourth or-
der stiffness tensor C but also to the time derivative of
the displacement vector ξ̇ via a third order coupling ten-
sor S. Similarly, the momentum density vector µ is also
proportional to the strain via a third order coupling ten-
sor S̃ and the time derivative of the displacement vector
via the mass density tensor ρ̃.1,19 The general result pro-
vided by Willis was that dynamic homogenization leads
to coupled constitutive relations with material properties
that are temporally and spatially dispersive.1,6,19 Recent
work by Nassar et al.26 provides a detailed account of
the necessary conditions for the application of Willis’ ho-
mogenization theory to periodic media.

For 1D propagation, the constitutive parameters C,
S, S̃, and ρ̃ reduce to scalars, C, S, S̃, and ρ̃, and
for periodic media that are lossless and reciprocal, the
coupling coefficients have been shown to be related by
S̃ = −conj(S) for purely longitudinal propagation,25

purely shear propagation,7 and discrete systems26 (note
that constitutive relations in references may be in a com-
plementary form compared to Eq. (3), which will result

in slightly different expressions for C, S, S̃, and ρ̃). This
is consistent with the relation between the even and odd
reciprocal coupling parameters, κer and κor, in Eq. (2).
Additionally, Nemat-Nasser and Srivastava25 noted that
Im(S) is only non-zero when the unit cell is asymmet-
ric and that Re(S) is finite (except in the static limit)
regardless of unit cell symmetry. It has recently been
demonstrated that Re(S) in lossless composites is due to
nonlocal effects and has been shown to exist in periodic
media with symmetric unit cells in 1D29 and 2D30 for
acoustics and in 2D9 for elastic waves. This work will
show that for lossless composites Im(S) is due to asym-
metric microstructures (even coupling) and Re(S) is the

result of mesoscale effects associated with the finite phase
velocity across the unit cell and multiple scattering in the
lattice (odd coupling).

Independent of the works discussing Willis cou-
pling, Koo et al.27 recently demonstrated numerically
and experimentally the use of acoustic bianisotropy
to impedance match waveguides with different cross-
sectional areas and to independently control reflection
and transmission angles from a metasurface with a nor-
mally incident plane wave. Their demonstrations provide
the first experimental evidence of acoustic bianisotropy
and were inspired by the analogs to bianisotropy in elec-
tromagnetism. The experimental demonstrations were
recently explained in terms of Willis coupling by Muh-
lestein et al.50 who provided detailed theoretical and ex-
perimental evidence of Willis coupling in a small asym-
metric metamaterial sample. Also independently, Shui
et al.32 demonstrated nonreciprocal coupling for elastic
waves using a layered medium with time-varying prop-
erties, which appears to be analogous to nonreciprocal
coupling κnr in electromagnetism, though it was not de-
scribed in this manner. A similar effect was recently dis-
cussed by Nassar et al.33 who explained the effect as non-
reciprocal Willis coupling. Moving elastic media may also
be represented as a medium with nonreciprocal Willis
coupling in a stationary reference frame.28

The frequency domain coupled constitutive relations
for fluid acoustics may be expressed as

µ = ρ · u− ηp,
ε = γ · u− βp,

(4)

where vector fields are momentum density µ and acous-
tic particle velocity u and scalar fields are volume strain
ε and acoustic pressure p. The fields are related by the
anisotropic mass density tensor ρ, adiabatic compress-
ibility scalar β, and coupling vectors η and γ. Consistent
with the origins of bianisotropy in electromagnetism pre-
sented in Eq. (2) and the observation that S̃ = −conj(S)
in reciprocal, lossless, 1D elastodynamic studies,7,25,26

this work demonstrates that for reciprocal fluids

η = χo + iχe,

γ = χo − iχe,
(5)

where χo is odd coupling, i.e., odd in wavevector k such
that χo(k) = −χo(−k), and χe is even coupling, i.e.,
even in wavevector k such that χe(k) = χe(−k).

In Eq. (4) the momentum density and volume strain
have been expressed in terms of acoustic particle veloc-
ity and pressure, as opposed to being a limiting case
of Eq. (3) as was discussed in Ref. 14. Therefore, the
dynamic mass density tensors ρ̃ and ρ in Eq. (3) and
(4), respectively, are slightly different parameters. ρ̃ is
the dynamic density one would measure if inertial effects
were determined with the sample held at constant strain,
whereas ρ is the dynamic density of the same measure-
ment but with the sample under constant pressure.
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Although elastic material behavior is often described
using the kinematic field (usually ξ) as the independent
variable, the independent variable in acoustics is often
assumed to be the pressure, p. The difference is clearly
illustrated by the fact that the wave equations for elas-
tic media and fluids are usually derived for ξ and p, re-
spectively. This follows from the natural description of
the physical processes underlying wave motion in elas-
tic and fluid media. Stress is assumed to be related to
strain via Hooke’s law in linear elasticity through an ide-
alized quadratic strain energy density function (rather
than a stress energy density function), but in fluids, the
pressure variations are related to changes in density via
thermodynamic relations (isentropic pressure variations).
The description of wave propagation in terms of volume
strain as a dependent field of the pressure via the com-
pressibility β = ρ−1

0 ∂ρ/∂p
∣∣
s=0

is therefore the more nat-
ural representation for acoustic waves. Additionally, the
formulation presented in Eq. (4) is more convenient for
the homogenization derviation in Sec. III and is directly
analogous to the commonly used E-H form of electro-
magnetism presented in Eq. (1). However, despite the
convenience and tradition, we note that E and B are ac-
tually the fundamental fields in electromagnetism,34 and
fluctuating enthalpy has been suggested as the funda-
mental acoustic field.35

As discussed in the previous section, coupling in elec-
tromagnetism occurs between electric and magnetic ma-
terial responses, two distinct phenomena. The origins
of coupling in acoustics and elastodynamics are not as
obvious because all the fields are thermodynamic in na-
ture; however, the origins become more evident from the
acoustic constitutive relations, Eq. (4). In the absence of
coupling, i.e., γ = η = 0, the first expression of Eq. (4)
is the definition of momentum, a vector equation repre-
senting purely translational motion at a vanishingly small
material point. The velocity and momentum density at
this field point are related to the local kinetic energy. A
particle demonstrating this type of motion is associated
with acoustic dipolar radiation and is therefore often re-
ferred to as a dipole. Similarly, in the absence of coupling,
the second expression of Eq. (4) is a Hookean relation and
the equation of state for an isentropic fluid, which is a
scalar equation representing purely compressional motion
at a vanishingly small material point. The pressure and
volume strain at this field point are related to the local
potential energy. A particle demonstrating this type of
motion is associated with acoustic monopolar radiation
and is therefore often referred to as a monopole. It is the
coupling between monopole and dipole motion at the mi-
croscale and/or mesoscale of inhomogeneous fluids that
leads to macroscopic Willis constitutive relations.

In the previous section, it was demonstrated that
macroscopic even coupling can result from the asymme-
try present in microscopic inhomogeneities such as Ω-
particles due to their coupled scattering. Even coupling
has been demonstrated in Willis media using systems of
unequal masses and springs.14,28,51 It is shown here that

(a)

−+ Aploc

u1

R m1

1/s

m2 R

−+Aploc

u2

(b)

FIG. 2: Asymmetric acoustic inhomogeneity
demonstrating the microscopic origin of even coupling.

(a) Inhomogeneity with cross-sectional area A consisting
of two masses m1 and m2 separated by a spring with

stiffness s and located at a local acoustic pressure
maximum and particle velocity null. (b) Equivalent

circuit model demonstrating that the local pressure acts
as force sources Aploc in series with the masses m1 and
m2, separated by the compliance 1/s. The resistors R

represent the scattered acoustic field due to the motion
of the masses. For m1 6= m2, u1 6= u2 implying that the
inhomogeneity response is not purely monopolar despite
the monopole nature of the source. Thus, the scattered

wave will contain monopole and dipole components.

inhomogeneities consisting of unequal masses separated
by a spring produce the analogous effect of Ω-particles.
An asymmetric acoustic inhomogeneity and equivalent
circuit are presented in Fig. 2. Consider a microscopic
inhomogeneity with cross-sectional area A consisting of
two masses m1 and m2, separated by an ideal spring
with stiffness s, and located at a local acoustic pressure
maximum and particle velocity null as shown in Fig. 2a.
Scattered acoustic waves, represented by red curves, will
radiate from both masses. Since a pressure maximum
coincides with a particle velocity null, i.e., uloc = 0, then
the local field imposes a purely monopole excitation. The
monopolar excitation is indicated by force sources in se-
ries with the masses and in parallel with the compliance
1/s as shown in the equivalent circuit in Fig. 2b. In
the equivalent circuit, the velocities of the masses are la-
beled as u1 and u2, which are positive for the masses
moving towards each other with positive pressure, and
the resistances R represent the acoustic field radiated
into the background fluid from the motion of the masses.
Purely monopolar motion of the inhomogeneity requires
u1 = u2, and purely dipolar motion of the inhomogene-
ity requires u1 = −u2. From the equivalent circuit, for
a monopole excitation and m1 6= m2, the inhomogeneity
responds with a combination of monopolar and dipolar
motion, because u1 6= u2, and u1 6= −u2. This simple
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model demonstrates the origins of even coupling at the
microscale due to the presence of asymmetric microscopic
inhomogeneities. An inhomogeneous medium consisting
of many such microstructures will exhibit some amount
of coupling in effective parameters as in Eq. (3) and (4).

While even coupling can originate from asymmetry at
the microscale, odd coupling arises at the mesoscale. For
example, consider an array of inhomogeneities with fea-
ture size l and periodicity L in a background fluid with
wavenumber k0 = ω/c0 = 2π/λ0. Dispersion of the
acoustic waves propagating in this array can be described
with the macroscopic wavenumber k = ω/c = 2π/λ.
Even though the inhomogeneity may indeed be small
compared to the wavelength in the background media,
the phase change over a unit cell may be significant due
to resonances, i.e., even though k0l < 0.1 in many cases
kL > 1, which is often the case for metamaterials with
c→ 0, because for c→ 0 then λ→ 0 at finite frequency.
The finite phase change over the distance of a unit cell,
i.e., kL > 0, demonstrates that there is an exchange be-
tween kinetic and potential energy due to effective wave
propagation over the finite unit cell. In the macroscopic
constitutive relations, the phase change leads to odd cou-
pling; odd because the phase change over the unit cell
will change sign with the opposite propagation direc-
tion. This provides a qualitative argument for consider-
ing odd coupling, which quantifies the exchange between
monopolar and dipolar motion due to finite phase change
over the length of the unit cell. Odd coupling becomes
particularly profound in slow phase speed metamateri-
als. As c tends to zero, so does λ, and when λ becomes
comparable to L, the macroscopic description of the in-
homogeneous medium as a single homogeneous material
with effective properties begins to lose physical meaning.
The mesoscopic origins of odd coupling are demonstrated
in the homogenization procedure derived in Sec. III, and
the impact of neglecting odd coupling in 1D examples is
discussed in Sec. IV.

Sections II A and II B have provided an overview and
simple examples illustrating the physical basis for cou-
pled constitutive relations. The next section provides
motivation for considering these more general constitu-
tive relations based on the desire for physically meaning-
ful macroscopic descriptions of inhomogeneous media.

C. Physically meaningful macroscopic parameters

The purpose of the previous sections was to provide a
background on the development and use of bianisotropy
and Willis coupling and to provide analogies between the
behavior in electromagnetic and elastic systems. In addi-
tion to understanding the origins of these coupling terms,
a primary motivation for this work is to derive macro-
scopic material parameters that satisfy restrictions based
on passivity, causality, and reciprocity for homogenized
systems. These restrictions have received considerable
attention in electromagnetism,12,13,16 and recent work by

Muhlestein et al.14 derived restrictions for Willis solids
with even coupling and considered the implications of
these restrictions for acoustics as a special limit of elas-
todynamics. Here, only restrictions on the acoustic pa-
rameters introduced in Eq. (4) and (5) are reviewed.

Reciprocity requires symmetry in the mass density ten-
sor ρij = ρji, if it has a local response. It also requires
that the coupling parameters take form of Eq. (5) when
odd and even components are considered. If the medium
can be assumed to be reciprocal and passive, restrictions
on the imaginary parts of material parameters are also
imposed. The imaginary parts of the mass density and
compressibility must satisfy

Im (ρij) ≥ 0, Im (β) ≥ 0, (6)

when using the e−iωt time convention, which is used
throughout this work. Passivity also places restrictions
on the magnitude of the imaginary parts of χo and
χe.14,52

Additionally, causality dictates that in a frequency
band with negligible loss and away from resonances,

∂ρij/∂ω ≥ 0, ∂β/∂ω ≥ 0. (7)

Although consistent with electromagnetism,12,13,53 this is
non-intuitive since usually in elastodynamics and acous-
tics one is confronted with a relaxing media for which
∂β/∂ω ≤ 0. The two limiting cases of low-loss media
with resonances and relaxing media are discussed in de-
tail by Muhlestein et al.14 Generally, low losses are as-
sumed in metamaterial models and applications, so the
inequalities in Eq. (7) are valid away from resonances.

It is important to note that metamaterial parame-
ters are often reported that do not satisfy the restric-
tions presented in Eq. (6) and (7), yet the combina-
tion of these parameters in the characteristic impedance
and wavenumber demonstrate passive and causal energy
propagation. In Sec. IV, we discuss the extraction of
the wave impedance Z =

√
ρeq/βeq and wavenumber

k = ω
√
ρeqβeq from an inhomogeneous sample, which

has been modeled as being equivalent to a homogeneous
fluid with parameters ρeq and βeq. Such a model does
not consider Willis coupling. If the sample is reciprocal
and passive, the extracted Z and k should be chosen such
that they satisfy passivity and causality. However, this
does not guarantee that ρeq and βeq will satisfy Eq. (6)
and (7), and if coupling is present one (or both) of the
equivalent parameters will likely not satisfy passivity and
causality. Because Z and k satisfy passivity and causal-
ity, it is a model that can still capture the wave motion,
but the homogenized properties lose physical meaning,
giving the appearance of local gain even when all of the
constituents are purely passive.

Koschny et al.54 pointed out in electromagnetism that,
due to nonlocal effects, antiresonant behavior was ob-
served in extracted metamaterial properties which vio-
lated passivity. Later, it was shown that the nonlocal ef-
fects could be accounted for with bianisotropy,4 and Alù
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discussed the relation between neglecting bianisotropy
and acausal metamaterial properties.5,13 If one wishes
to describe the overall response of inhomogeneous acous-
tic and elastic media with macroscopic parameters, it
is necessary that the resulting macroscopic parameters
strictly obey reciprocity, causality, and passivity on their
own, rather than in combination. This is one of the pri-
mary motivations of this work, and the implications of
the model developed in Sec. III on these restrictions will
be explored further in Sec. IV C for 1D lattices.

III. HOMOGENIZATION PROCEDURE

Acoustic wave propagation is described through the
appropriate application of the Navier-Stokes equation
(conservation of momentum), the continuity equation
(conservation of mass), entropy equation (internal en-
ergy), and an equation of state (constitutive equation).55

For a linear, locally reacting fluid, the conservation of
momentum expression simplifies to

∇p = −µ̇+ f . (8)

In this expression, the scalar p represents the acoustic
pressure. The vector µ = ρ0u is the momentum den-
sity with ρ0 representing the density of the fluid support-
ing the acoustic wave and the vector u representing the
acoustic particle velocity, and the overdot represents the
time-derivative operation. The vector f represents body
forces, which can also be described as dipole sources, at
the point of evaluation.

The linearized form of the continuity equation is usu-
ally expressed as ∂ρ/∂t = q − ρ0∇ · u,55 where ρ is
the instantaneous density and q represents volume, or
monopole, sources. However, from an analysis of strain
rate on a volume element, Hunt56 demonstrated that

∇ · u = ε̇+ q (9)

is an equivalent form of the equation of continuity, where
ε is the volume strain (dilatation56). For linear acous-
tics, volume strain is proportional acoustic pressure via
a Hookean relation ε = −β0p. Here, β0 is the adiabatic
compressibility of the fluid and the inverse of the bulk
modulus.

This section outlines a source-driven homogenization
theory based on multiple scattering modeled after analo-
gous work in electromagnetism.5 It differs from previous
acoustic multiple scattering homogenization approaches,
e.g., Twersky57,58 and Torrent and Sánchez-Dehesa59

and references therein, by taking a source-driven ap-
proach, which is necessary to guarantee a unique ef-
fective response through independently imposed pres-
sure and velocity fields,4–6 and by allowing for coupling
between monopole and dipole responses. The homog-
enization procedure will be introduced as follows. In
Sec. III A, equations of conservation of momentum (8)
and mass (9) will be used to determined microscopic

(a) p(x) = pexte
ik·x

(b) p(x) = ps(x) + pexte
ik·x

(c) p(x) = peffe
ik·x

FIG. 3: Conceptual illustration of source-driven
homogenization procedure: (a) background fluid with
externally controlled body forces and volume velocity

sources imposing an arbitrary (ω,k) pair. (b) The
introduction of inhomogeneities result in a total field

that is a combination of scattered and externally
imposed fields. The scattered fields are not shown to

minimize clutter, and the unit cell analyzed in Sec. III
is denoted by the red box. (c) The effective media can

be described with dynamic effective properties and
same imposed (ω,k) dependence.

and macroscopic fields due to a source distribution with
an eik·xe−iωt dependence, with and without inhomo-
geneities. In Sec. III B, macroscopic effective fields will
be related to the scattering properties of inhomogeneities
(microscopic effects). The relation of macroscopic fields
to mesoscopic effects due to finite phase velocity along
the array and inhomogeneity interaction from multiple
scattering will be introduced in Sec. III A and III C, re-
spectively. The responses of the inhomogeneities, their
long range interaction, and finite unit cell effects will be
expressed in terms of monopole, dipole, and coupled coef-
ficients. The homogenized, effective material parameters
will be explicitly solved for in the cases of periodic arrays
of identical inhomogeneities for 1-, 2-, and 3D space in
Sec. III E. The procedure may be generalized to random
arrays and the point of departure from general arrays to
periodic arrays will be highlighted in Sec. III C.

A. Source driven homogenization theory

Consider an homogeneous fluid characterized by mass
density, ρ0, and adiabatic compressibility, β0, which con-
tains an arbitrary, externally controlled source distri-
bution. The acoustic pressure field that results from
such a source distribution is shown in Fig. 3a. The
source distribution exists at every point and can be mod-
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eled with time-harmonic body forces (dipole sources)
with strength fext and time-harmonic volume velocity
(monopole sources) with strength qext. The source dis-
tribution imposes an arbitrary eik·xe−iωt dependence in
the background medium. Although fictitious in practice,
a continuous source distribution permits the ability to in-
dependently impose acoustic pressure and velocity fields
with any desired (ω,k) pair, which makes it possible to
uniquely determine the constitutive properties for any
(ω,k) combination.4–6 This is the basis of the so-called
“source-driven” homogenization approach.

The inhomogeneous linear acoustic equations for con-
servation of momentum (8) and mass (9) under an
eik·xe−iωt driven condition become

ikpext = iωρ0uext + fext,

ik · uext = iωβ0pext + qext,
(10)

where pext and uext are the complex amplitudes of the
acoustic pressure and particle velocity fields, respectively,
that result from the externally controlled dipole fexte

ik·x

and monopole qexte
ik·x source distributions. The space

and time dependences, eik·xe−iωt, have been suppressed
in Eq. (10).

Introducing a random array of small inhomogeneities
into the fluid with the same externally controlled source
distribution, as illustrated in Fig. 3b, the conservation
equations can be expressed as

∇p(x) = iωρ0u(x) + iωD(x) + fexte
ik·x,

∇ · u(x) = iωβ0p(x)− iωM(x) + qexte
ik·x.

(11)

These relationships determine the microscopic fields at
every point in the medium in terms of the dipole polariza-
tion, D(x) = [ρ(x)− ρ0]u(x), and monopole polariza-
tion, M(x) = − [β(x)− β0] p(x). The polarizations ac-
count for the contrast in density and compressibility be-
tween the background medium and the inhomogeneities.

Using continuous source distributions to impose an ar-
bitrary (ω,k) pair, one may assume that the effective
field amplitudes for a representative unit cell are uniquely
determined4–6 by

ikpeff = iωρ0ueff + iωDeff + fext,

ik · ueff = iωβ0peff − iωMeff + qext,
(12)

whereDeff andMeff are the effective dipole and monopole
polarizations, respectively. This form is guaranteed for
periodic arrays. An effective field distribution in the ho-
mogenized media is shown in Fig. 3c, which has the same
spatial dependence as the homogeneous background me-
dia, Fig. 3a, however the field amplitudes are different,
i.e., pext 6= peff, due to the presence of microscale inhomo-
geneities. By comparing Eq. (12) and the conventional
continuity expressions (8) and (9), the constitutive rela-
tions relating effective fields in the homogenized medium
can be written as

µeff = ρ0ueff +Deff,

εeff = −β0peff +Meff,
(13)

where µeff and εeff are the effective momentum density
and volume strain field amplitudes, respectively. The
challenge of determining the effective parameters of the
homogenized medium, therefore, lies in relating the po-
larizations, Deff and Meff, to the properties of the inho-
mogeneities, their distribution in the background fluid,
and the effective fields peff and ueff.

A number of procedures to reduce Eq. (11) to a set
of macroscopic dynamic equations, Eq. (12), which de-
scribe an effective medium, involve field averaging over
a representative unit cell, illustrated by the red box in
Fig. 3b, have been proposed in the literature.1–7,9–11,25,26

Of particular interest, Alù5 demonstrated in the analo-
gous case in electromagnetism that a simple volume av-
erage removing the dominant Fourier components from
Eq. (11) is not sufficient to account for nonlocal effects.
Since nonlocal effects are important in determining the
effective dynamic properties of metamaterials, a Taylor
expansion procedure was developed that does account
for nonlocal effects. An important result of this proce-
dure is that it demonstrates explicitly that D(x) = 0
does not imply Deff = 0, likewise M(x) = 0 does not
imply Meff = 0. If the analogy holds for acoustic wave
phenomena, one would expect, for example, an uniform
waveguide lined with array of shunt Helmholtz resonators
will result in an effective compressibility and density dif-
ferent from the fluid in the waveguide, contrary to what
is commonly presented in the literature. This is a result
of nonlocal effects, which is demonstrated in the deriva-
tion and results that follow in this work. The Taylor ex-
pansion method has recently been partially adopted for
acoustic systems to demonstrate acoustic bianisotropy.27

A relation between effective and externally imposed
fields is found by subtracting Eq. (10) from Eq. (12) and
by solvimg for the effective field amplitudes, which yields

ueff = uext +Kd ·
Deff

ρ0
−Kc

1

Z0

Meff

β0
,

peff = pext +Kc · Z0
Deff

ρ0
−Km

Meff

β0
,

(14)

where polarization weights (K-terms) are defined by

Kd =

(
k2

0 − k · k
)
I + k ⊗ k

k · k − k2
0

,

Km =
k2

0

k · k − k2
0

, Kc =
k0k

k · k − k2
0

.

(15)

Here, I is the identity matrix, and k0 = ω
√
ρ0β0 and

Z0 =
√
ρ0/β0 are the characteristic wavenumber and

impedance of the background medium, respectively.
In Eq. (14), peff is a function of dipole polarization due

to the presence of Kc, and ueff is a function of monopole
polarization because of Kc. For k → 0, the quasi-static
limit, Kd = −I, Km = −1, and Kc = 0. Only in this
limit, the effective velocity field is proportional to only
the dipole polarization, and the effective pressure field
is proportional only to the monopole polarization. As
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pointed out by Alù5 in electromagnetism, “an inherent
form of [Willis] coupling at the unit cell level stems from
weak spatial dispersion effects when [k 6= 0], associated
with finite phase velocity across each unit cell.” As dis-
cussed in Sec. II B, Willis coupling in acoustics is coupling
between monopole and dipole motion in the material re-
sponse, which for metamaterials is the unit cell. Noting
that Kc is odd in k, it will contribute to the macroscopic
parameters accounting for odd coupling.

Beginning with the polarization weights in Eq. (14)
and throughout the paper, subscript ‘d’ will be used
to identify dipole quantities that relate dipole response
contributions to particle velocity (dipole) fields, sub-
script ‘m’ will be used to identify monopole quantities
that relate monopole response contributions to pressure
(monopole) fields, and subscript ‘c’ will be used to iden-
tify coupling quantities that relate monopole response
contributions to dipole fields and dipole response contri-
butions to monopole fields.

The analysis above has shown that Willis coupling will
exist in acoustics if the coupled polarization weightKc 6=
0, which is due to the non-zero phase across the unit cell.
However, neither the composition nor the locations of the
inhomogeneities has been investigated. The response and
interaction of the inhomogeneities will be considered in
the sections that follow in order to derive the effective
material parameters of the acoustic metamaterial.

B. Microscale effects: inhomogeneity response

Beginning with the microscale, inhomogeneities will be
assumed (i) to satisfy reciprocity, (ii) to be acoustically
small, i.e., k0l � 1, where l is its representative length,
and (iii) to be well represented by point dipole, dn, and
monopole, mn, moments, i.e., quadrapole and higher or-
der responses are negligible. The subscript n is a vector
identifying a particular inhomogeneity. The dipole mo-
ment, dn, represents the dipole scattering strength of
the nth inhomogeneity, and the monopole moment, mn,
represents its the monopole scattering strength.

Consider the inhomogeneity located at the origin. The
local fields, ploc and uloc, are defined as the pressure and
velocity fields that would exist at the origin in the ab-
sence of the inhomogeneity. The dipole and monopole
moments of the inhomogeneity are related to the local
fields via polarizabilities, which depend on the composi-
tion and geometry of the inhomogeneity. The dipole and
monopole moments of this inhomogeneity are given by

d0
ρ0

= αd · uloc − iαc
1

Z0
ploc,

m0

β0
= −iαc · Z0uloc − αmploc,

(16)

where αd is the dipole polarizability that relates the lo-
cal particle velocity to the dipole moment, αm is the
monopole polarizability that relates the local pressure to

the monopole moment, and αc is the coupled polarizabil-
ity that relates the local particle velocity to the monopole
moment and the local pressure to the dipole moment.
The polarizabilities αd and αm represent the pure dipole
and monopole responses of the inhomogeneity, respec-
tively. The coupled polarizability αc is only non-zero
when the inhomogeneity has some form of asymmetry
(parameter distribution or geometric) and embodies the
coupled scattering demonstrated in Fig. 2 and discussed
in Sec. II B for an isolated inhomogeneity. The polar-
izabilities have units of volume and can be determined
from the scattering matrix of a single inhomogeneity.

In order to solve for effective material properties,
Eq. (16) must be inverted, such that the local fields are
expressed as

uloc = α̃d ·
d0
ρ0
− iα̃c

1

Z0

m0

β0
,

ploc = −iα̃c · Z0
d0
ρ0
− α̃m

m0

β0
,

(17)

where complementary polarizabilities are defined as

α̃d = α−1
d [I +αc ⊗ α̃c] ,

α̃m = α−1
m /∆α,

α̃c = αc · (αmαd)
−1
/∆α,

(18)

and ∆α = 1− αc · (αmαd)
−1 · αc. If the inhomogeneity

is symmetric, α̃c = αc = 0, α̃d = α−1
d , and α̃m = α−1

m ,
and only in the symmetric case, α̃d and α̃m represent
pure dipole and monopole responses, respectively. For
α̃c 6= 0, dipole and monopole responses are not separable,
as indicated by the presence of ∆α in Eq. (18).

Like the polarizabilities, the components of the com-
plementary polarizabilities, α̃d, α̃m, and α̃c, are func-
tions of the geometry and the material parameters that
make up the inhomogeneities. The complementary po-
larizabilities are therefore independent of the direction of
the imposed wavevector, k, and thus even in k. As one
may therefore expect, the sections that follow demon-
strate that α̃c is directly related to macroscopic even
coupling as described in Sections II A and II B.

C. Mesoscale effects: multiple scattering

Having defined the monopole and dipole moments of a
single inhomogeneity in the previous section, their con-
tributions to the local fields of all other inhomogeneities
must be determined in order to accurately represent the
response of the entire inhomogeneous medium. This is
very difficult in general since the local fields are the re-
sult of summations of the scattered fields from all inho-
mogeneities and the imposed fields, pext and uext. In
order to make it possible to calculate the local fields,
inhomogeneities are assumed to be acoustically small
(k0l� 1) and spaced sufficiently far apart such that near
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field scattering effects between inhomogeneities are neg-
ligible. For the initial formulation, the locations of the
inhomogeneities are arbitrary, but the inhomogeneities
are assumed to be identical in composition and orienta-
tion with respect to the global coordinate system. The
latter assumptions (identical inhomogeneities) allow one
to assume that the polarizabilities defined in the previ-
ous section are the same for each inhomogeneity. The
derivation of the local fields as a function of the imposed
and scattered fields up to Eq. (21) is otherwise general
and may be specialized to 1-, 2-, or 3D depending on
the choice of scalar Green’s function g(x|xn), which are
defined in App. A. The results of this section will be
specialized to periodic lattices in Sec. III D.

For acoustically small inhomogeneities in the presence
of an incident acoustic field, the scattered fields at a point
xm due to an inhomogeneity located at xn maybe ex-
pressed in terms of the dipole and monopole moments of
the nth inhomogeneity and modified Green’s functions
with the following expressions,

us(xm) = Gmn
d · dn

ρ0
−Gmn

c

1

Z0

mn

β0
,

ps(xm) = Gmn
c · Z0

dn
ρ0
−Gmn

m

mn

β0
.

(19)

In Eq. (19), the modified Green’s functions are defind
in Eq. (20) in terms of the scalar Green’s function for a
reciprocal background medium, g(x|xn),

Gmn
d = −∇∇g(x|xn)|x=xm

= Gnm
d = (Gmn

d )T,

Gmn
m = k2

0g(xm|xn) = Gnm
m ,

Gmn
c = −ik0∇g(x|xn)|x=xm

= −Gnm
c .

(20)

In the expressions above, the dipole modified Green’s
tensor Gmn

d relates the inhomogeneity’s dipole moment
to the scattered particle velocity; the monopole mod-
ified Green’s scalar Gmn

m relates the inhomogeneity’s
monopole moment to the scattered pressure; and the
coupled modified Green’s vector Gmn

c relates the inho-
mogeneity’s dipole moment to the scattered pressure and
monopole moment to the scattered particle velocity.

The exchange of locations xn ↔ xm represents scat-
tering in the oppposite direction. The corresponding
changes to the modified Green’s functions are expressed
in Eq. (20). Gmn

d and Gmn
m are unchanged; however,

Gmn
c undergoes a sign change due to the gradient op-

eration. The sign change for a corresponding change
in scattering direction indicates that this component of
mesoscale interaction will be odd in wavevector. It will
be shown in the following sections that Gmn

c contributes
to macroscopic odd coupling.

The local fields may now be determined by the summa-
tion of the externally imposed fields and the fields scat-
tered from all other inhomogeneities. It is most straight-
forward to consider an inhomogeneity located at the ori-
gin, n = 0, where the local particle velocity and pressure,

uloc and ploc, may be expressed as

uloc = uext +
∑
n 6=0

(
G0n

d ·
dn
ρ0
−G0n

c

1

Z0

mn

β0

)
,

ploc = pext +
∑
n6=0

(
G0n

c · Z0
dn
ρ0
−G0n

m

mn

β0

)
.

(21)

In order to quantify the scattering interaction between
unit cells, one must determine the relation between mo-
ments of a pair of inhomogeneities, i.e., the relations be-
tween the moments of the ith and jth inhomogeneities:
di and dj , di and mj , and mi and mj . For an arbitrary
array, this requires knowledge of the local fields at every
inhomogeneity location, which is not possible in general.
However, as demonstrated in the next section, the case of
periodic arrays results in converging lattice sums, which
significantly simplifies the procedure to quantify unit cell
interaction.

D. Periodic array

The existence an infinite periodic lattice of inhomo-
geneities significantly reduces the problem of quantifying
the interaction between unit cells, and it suffices to pro-
ceed with the analysis on a single unit cell, which for
simplicity will be centered on the origin. For the case
of periodic arrays, the dipole and monopole moments of
the nth inhomogeneity are directly related to the mo-
ments of the inhomogeneity at the origin through ap-
plication of the Floquet condition: dn = d0e

ik·xn and
mn = m0e

ik·xn . Equations (21) are then given by

uloc = uext +Cd ·
d0
ρ0
−Cc

1

Z0

m0

β0
,

ploc = pext +Cc · Z0
d0
ρ0
− Cm

m0

β0
,

(22)

where the interaction coefficients are defined by

Cd =
∑
n6=0

eik·xnG0n
d ,

Cm =
∑
n6=0

eik·xnG0n
m ,

Cc =
∑
n6=0

eik·xnG0n
c .

(23)

Each interaction coefficient in Eq. (22) quantifies a dif-
ferent contribution to the local fields from the fields scat-
tered by an infinite periodic array of inhomogeneities.
The dipole interaction tensor of coefficients Cd quanti-
fies the contributions to the local velocity at the origin
related to the dipole moments dn resulting from the local
fields at locations xn of all other inhomogeneities. Sim-
ilarly, the monopole interaction coefficient Cm quantifies
the contributions to the local pressure at the origin re-
lated to the monopole moments mn resulting from the lo-
cal fields at locations xn of all other inhomogeneities, and
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the coupled interaction vector of coefficientsCc quantifies
the contributions to the local velocity at the origin related
to the monopole moments mn and contributions to the
local pressure at the origin related to the dipole moments
dn resulting from the local fields at locations xn of all
other inhomogeneities. It is important to note that these
interaction coefficients are purely a function of the modi-
fied Green’s functions, the periodic spatial distribution of
the inhomogeneities, and the imposed wavevector. One
can therefore determine these coefficients for any given
lattice arrangement assuming that a convergent lattice
sum can be found.

The externally imposed field amplitudes may now be
expressed in terms of the complementary polarizabili-
ties, interaction coefficients, and dipole and monopole
moments by eliminating the local fields in Eq. (17) and
(22) to yield

uext = (α̃d −Cd) · d0
ρ0
− (iα̃c −Cc)

1

Z0

m0

β0
,

pext = (−iα̃c −Cc) · Z0
d0
ρ0
− (α̃m − Cm)

m0

β0
.

(24)

In the absence of the imposed fields, i.e., pext = 0 and
uext = 0, Eq. (24) can be rearranged into the following
transcendental equation

det [(α̃m − Cm) (α̃d −Cd)

− (iα̃c −Cc)⊗ (−iα̃c −Cc)] = 0.
(25)

The solutions to Eq. (25) provide the eigenmodal pairs
(ω,k) for any periodic array described by complementary
polarizabilities and interaction coefficients. Though this
expression is compact, it is important to re-iterate that it
includes both microscale and mesoscale effects to deter-
mine macroscopic eigenmodal pairs. In other words, both
the local response of the inhomogeneity and the nonlo-
cal multiple scattering lattice contributions are included
in this formulation. Only a few assumptions have been
made to achieve the compact representation in Eq. (25):
(i) the background medium satisfies reciprocity, and the
inhomogeneities (ii) satisify reciprocity, are (iii) acous-
tically small, (iv) identically oriented, and (v) arranged
periodically. Complementary polarizabilities and interac-
tion coefficients are not trivial to find, but the derivation
up to this point is exceptionally general.

Though the interaction coefficients contain infinite
summations, they all have analytic representations for
1D periodic systems. To the authors’ knowledge, rapidly
convergent series have been found for Cm and Cd for
2- and 3D cubic arrays,60 but are yet to be determined
for Cc or more general periodic lattices. For simplicity,
the results presented here will be restricted to the 1D
case, leaving more general cases for future work. It is im-
portant to emphasize, however, that the model derived
here is completely general for 1-, 2-, and 3D periodic
lattices, and therefore, the observations and the physi-
cal phenomena they illustrate apply to all cases where
inhomogeneities are acoustically small and periodically
distributed in a background medium.

E. Effective material parameters

As discussed in Sec. III A and exemplified by the con-
stitutive relations, Eq. (13), the effective polarizations,
Deff and Meff, demonstrate how the effective media dif-
fers from the background fluid, where Deff is the ad-
ditional momentum density and Meff is the additional
volume strain of the unit cell. The total response of the
inhomogeneity quantifies this additional momentum den-
sity and volume strain. It was assumed in Sec. III B that
this total response could be represented by monopole and
dipole motion, Eq. (16), which were quantified in terms
of the composition and geometry of the inhomogeneity
via polarizabilities and the total local field due to exter-
nally imposed fields and scattered fields via interaction
coefficients. Generally, Deff is the density of dipole mo-
ments in the unit cell, implying Deff = d0/V ; Meff is the
density of monopole moments, or Meff = m0/V ; and V
is the volume of the unit cell.

Combining Eq. (14) and (24) and eliminating the im-
posed fields, the effective fields in terms of the polariza-
tions are given by

ueff = Λ̃d ·
Deff

ρ0
−
(
Λ̃o

c + iΛ̃e
c

) 1

Z0

Meff

β0
,

peff =
(
Λ̃o

c − iΛ̃e
c

)
· Z0

Deff

ρ0
− Λ̃m

Meff

β0
,

(26)

where

Λ̃d = V α̃d − VCd +Kd,

Λ̃m = V α̃m − V Cm +Km,

Λ̃o
c = −VCc +Kc,

Λ̃e
c = V α̃c.

(27)

The tensor Λ̃d only consists of terms relating dipole

fields, and the scalar Λ̃m only consists of terms relating
monopole fields. All of the components of Λ̃d and Λ̃m

are even with respect to propagation direction. Noting
the signs in front of the two vectors containing coupling
terms, Λ̃o

c and Λ̃e
c, in both Eqs. (26), one might natu-

rally separate the terms comprising these vectors. How-
ever from the detailed analysis of the preceding sections,
the components of Λ̃o

c are both mesoscale effects and odd

with respect to a reversal of propagation, whereas Λ̃e
c is

due asymmetry at the microscale and even with respect
to propagation, as presented in Eq. (27).

To determine effective parameters, Eq. (26) must be
inverted, expressing effective polarizations in terms of ef-
fective fields as

Deff

ρ0
= Λd · ueff − (Λo

c + iΛe
c)

1

Z0
peff,

Meff

β0
= (Λo

c − iΛe
c) · Z0ueff − Λmpeff,

(28)
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where

Λd = Λ̃
−1

d

[
I +

(
Λ̃o

c + iΛ̃e
c

)
⊗ (Λo

c − iΛe
c)
]
,

Λm = Λ̃−1
m /∆Λ̃,

Λo
c = Λ̃o

c ·
(

Λ̃mΛ̃d

)−1

/∆Λ̃,

Λe
c = Λ̃e

c ·
(

Λ̃mΛ̃d

)−1

/∆Λ̃,

(29)

and ∆Λ̃ = 1− (Λ̃o
c − iΛ̃e

c) · (Λ̃mΛ̃d)−1 · (Λ̃o
c + iΛ̃e

c).
Equations (16) and (28) may be thought of as macro-

micro pairs where the macroscopic expression, Eq. (28),
contains information about the micro- and mesoscale
physics. Substituting the polarizations provided by
Eq. (28) into the constitutive relations, Eq. (13), yields

µeff = ρ
eff
· ueff − (χo

eff + iχe
eff) peff,

εeff = (χo
eff − iχe

eff) · ueff − βeffpeff,
(30)

where

ρ
eff

ρ0
= I + Λd,

βeff

β0
= 1 + Λm,

c0χ
o
eff = Λo

c , c0χ
e
eff = Λe

c.

(31)

Equation (30) demonstrates the same coupled form as
the bianisotropic relations in electromagnetism, Eq. (1),
and the Willis relations in elastodynamics, Eq. (3). The
effective density tensor ρ

eff
relates the effective velocity

to the effective momentum; the effective compressibility
scalar βeff relates the effective pressure to the effective
volume strain; and the odd and even effective coupling
vectors, χo

eff and χe
eff, relate the effective pressure to the

effective momentum and the effective velocity to the ef-
fective volume strain.

Due to the inversion required to derive Eq. (28), all
the effective parameters are, to some order, a func-
tion of every microscale response and mesoscale inter-
action. Although to first order, ∆Λ̃ ≈ 1, which leads

to Λd ≈ Λ̃
−1

d , Λm ≈ Λ̃−1
m , Λo

c ≈ Λ̃o
c · (Λ̃mΛ̃d)−1, and

Λe
c ≈ Λ̃e

c · (Λ̃mΛ̃d)−1. Therefore, in this limit, the ef-
fective density is only related to dipole effects; effective
compressibility only related to monopole effects; odd cou-
pling is related to mesoscale effects and monopole and
dipole effects; and even coupling is related to microscale
effects and monopole and dipole effects. As discussed in
Sec. III B, a symmetric inhomogeneity results in α̃c = 0,
and therefore, from Eqs. (27), (29), and (31), χe

eff = 0.
However, there will still be odd coupling, χo

eff 6= 0, due
to unit cell interaction and finite phase speed across the
unit cell, which in general may not be neglected. If it
is neglected, the calculated effective parameters may lose
physical meaning,5,13 which is demonstrated in the fol-
lowing section.

The homogenization procedure presented in this sec-
tion was quite general, with only a few simplifying as-
sumptions. The polarizabilities of a few canonical ge-
ometries are available analytically, and for more complex

FIG. 4: Schematic of source-free 1D periodic medium
with plane wave propagation along the x-axis, period L,
background parameters β0 and ρ0, total inhomogeneity
size l, and inhomogeneity properties ρj(ω) and βj(ω).

inhomogeneities, polarizabilities may be calculated from
full-wave simulations. Also, the interaction coefficients
are available in closed-form for only a few periodic lattice
geometries. In Sec. IV, exact solutions for polarizabili-
ties and interaction coefficients are obtained for 1D, and
examples are considered that demonstrate the utility of
the approach and the need to include effective material
properties with coupled constitutive relationships.

IV. SOURCE-FREE 1D INSIGHTS

A primary drawback of multiple scattering models is
the difficulty in evaluating the polarizabilities introduced
in Eq. (16) and the interaction coefficients introduced in
Eq. (23). However, for 1D periodic media, these fea-
tures have exact, closed-form expressions that reveal the
odd and even nature of coupling. Additionally, 1D acous-
tics experiments may be easily developed, simulated, and
solved analytically using scalar transmission line tech-
niques, such as transmission and scattering matrices.61

An example, source-free, 1D periodic medium with pe-
riod L is depicted in Fig. 4, where longitudinal plane
wave propagation is assumed along the x-axis, which is
indicated by the unit vector x̂. The background me-
dia has properties ρ0 and β0 and representative cross-
sectional area A, and the inhomogeneities are composed
of N -layers with the jth layer characterized by ρj(ω) and

βj(ω), length lj , and cross-section Aj , where
∑N
j=1 lj = l.

The cross-sectional area A cancels out in the parame-
ters derivation, and the cross-section of the inhomogene-
ity layers are allowed differ from the background region
because changes of cross-section are commonly used in
acoustic waveguide experiments.

This section proceeds as follows. Section IV A intro-
duces the 1D effective parameters based on the derivation
of the previous section. In the absence of sources, the
macroscopic parameters are non-unique,4–6 and there-
fore, Sec. IV B serves to introduce two alternative macro-
scopic descriptions referred to as equivalent and Bloch.
In Sec. IV C, parameters are numerically calculated for
three example periodic media, and the effective, equiv-
alent, and Bloch macroscopic descriptions are presented
and discussed in light of the restrictions on macroscopic
material parameters, which were introduced in Sec. II C.
The results are summarized in Sec. IV D.
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A. 1D effective material parameters

The following sections provide insight into effective
material parameters derived in Sec. III. The even and
odd natures of the two coupling parameters stemming
from the polarizabilities and interaction coefficients are
verified; the specific acoustic impedance and effective
wavenumber are defined in terms of effective parameters;
and leading order terms are derived.

1. Polarizabilities and interaction coefficients

The polarizabilities for a 1D, N -layer inhomogeneity
may be exactly determined from the scattering matrix of
a single inhomogeneity in the background medium. The
derivation is outlined in App. B, and the polarizabilities
defined in Eq. (16) are given by

αd =
S12 − eik0l − (S22 + S11) /2

ik0/A
e−ik0l,

αm =
S12 − eik0l + (S22 + S11) /2

ik0/A
e−ik0l,

αc = x̂
(S22 − S11) /2

k0/A
e−ik0l = x̂αc,

(32)

where x̂ is the unit vector for the propagation axis. There
are two important takeaways from Eq. (32). First, be-
cause l is finite, the presence of e−ik0l demonstrates that
polarizabilities map the exact scattered fields from a fi-
nite inhomogeneity to its center thereby representing the
inhomogeneity as an infinitesimal point scatterer. Rep-
resenting the finite inhomogeneity as a point introduces
a violation of causality for the polarizabilities, which can
be corrected;62 however this effect is negligible for small
inhomogeneities compared to the violations of causality
introduced by ignoring even and odd coupling.5 The anal-
ysis of the causality of the polarizabilities is beyond the
scope of this work. Secondly, the expression for αc ex-
plicitly shows that the vector nature of this term is de-
fined by the coordinate system, and that it is even in
wavevector. This confirms the statements made in the
previous section. Using Eq. (18), the 1D complementary
polarizabilities are given by

α̃d = α−1
d /

(
1− α−1

d α−1
m α2

c

)
,

α̃m = α−1
m /

(
1− α−1

d α−1
m α2

c

)
,

α̃c = x̂αcα
−1
d α−1

m /
(
1− α−1

d α−1
m α2

c

)
= x̂α̃c.

(33)

The interaction coefficients defined in Eq. (23) also
may be solved exactly in 1D. If inhomogeneities are lo-
cated at positions xn = x̂nL, where n is an integer
(−∞,∞), interaction coefficients (23) reduce to

Cd = Cm =
k0

2A

sin (k0L)

cos (k0L)− cos (x̂ · kL)
− i k0

2A
,

Cc = x̂
k0

2A

sin (x̂ · kL)

cos (k0L)− cos (x̂ · kL)
,

(34)

as shown in App. C. The dependencies on kL in Eq. (34)
clearly demonstrate that monopole and dipole interac-
tion coefficients are independent of propagation direction,
whereas the coupled interaction coefficient is indeed odd
in k. Additionally, the expressions for Cd and Cm are
always complex, but Cc is purely real for real k0 and k.

For passive inhomogeneities, Im(α̃d) ≤ −k0/2A and
Im(α̃m) ≤ −k0/2A, where equality occurs when the in-
homogeneity is lossless and in this case Im(α̃c) = 0 (see
App. D). The the factor −k0/2A in Im(α̃d) and Im(α̃m)
represents the re-radiation from the inhomogeneity, and
for lossless inhomogeneities in a periodic array, this term
cancels the identical term in the interaction coefficients
due to coherent scattering in Eq. (24). In fact, the imag-
inary parts of the complementary polarizabilities and in-
teraction coefficients cancel for any lossless periodic me-
dia in 1-, 2-, or 3D. For non-periodic inhomogeneous me-
dia, the imaginary parts will not cancel and scattering
losses57 will be present in effective parameters, even if all
constituents are lossless.

2. Wavenumber and impedance

For periodic media in the absence of sources, the (ω,k)
solutions are the eigenvalues of Eq. (25), and for 1D,
k = x̂k, where k is the Bloch wavenumber of the array.
Suppressing the unit vector x̂, the constitutive relations
for 1D become

µeff = ρeffueff − (χo
eff + iχe

eff) peff,

εeff = (χo
eff − iχe

eff)ueff − βeffpeff.
(35)

The relation between the effective parameters and the
wavenumber may be determined from the conservation
equations, Eq. (8) and (9), which leads to

(k/ω + χo
eff)

2
= ρeffβeff − (χe

eff)
2

(36)

in the absence of sources, and therefore,

k±/ω = ±
√
ρeffβeff − (χe

eff)
2 − χo±

eff , (37)

where ± correspond to waves traveling in ±x̂-directions.
Notice that for the representation of constitutive rela-
tions in Eq. (35), the wavenumber is a function of all
effective parameters (this is not the case for other forms
of the constitutive relations, e.g., Ref. 7, 14, and 50), and
odd coupling is direction-dependent.

The specific acoustic impedance, derived from the con-
servation of momentum, may be expressed as

Z± =
peff

ueff
=

ρeff

(k/ω + χo
eff) + iχe

eff

,

= ±

√
ρeff

βeff
−
(
χe

eff

βeff

)2

− iχ
e
eff

βeff
,

(38)

which for a passive medium must satisfy Re(Z+) ≥ 0 and
Re(Z−) ≤ 0. Surprisingly, Eq. (38) indicates that if even
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coupling exists the impedance will be complex, even if the
medium is lossless, and that the phase angle changes with
direction; all of which is not intuitive. However, periodic
media with asymmetric unit cells are known to have com-
plex Bloch impedances,63 which will be discussed in more
detail in Sec. IV B, and it has previously been demon-
strated that the specific acoustic impedance must always
be complex in Willis materials with even coupling.27,50,64

The complex nature of the impedance make Willis mate-
rials with even coupling ideal for impedance matching ap-
plications, as demonstrated by Koo et al.27 Additionally,
Eq. (37) and (38) demonstrate that one cannot deter-
mine density and compressibility from only impedance
and wavenumber when there exists non-zero coupling,
i.e., ρeff 6= Z±k±/ω and βeff 6= k±/ωZ±, which is counter
to general assumptions in reflection/transmission acous-
tical parameter extraction methods.65

3. Leading order terms

At this point it is informative to provide some insight
into the relationships between the effective material pa-
rameters and the volume averaged parameters, which are
often used to estimate the overall response of an inhomo-
geneous medium. Specifically, it is of interest to under-
stand how the coupling terms relate to the volume av-
eraged density and compressibility to demonstrate that
these terms may not be negligible in the long wavelength
limit. Leading order terms for the quasi-static limit
k0L → 0 and kL → 0 were determined for the effective
material parameters from Taylor expansions of polariz-
abilities and interaction coefficients. In this limit, the
jth material of a multi-material inhomogeneity may be
described by the lumped acoustic mass, MA

j = ρj lj/Aj ,

and acoustic compliance CA
j = βj ljAj . For this case,

leading order terms of the effective parameters in terms
of acoustic mass and compliance are

ρeff/ρ0 → 1− l/L+

N∑
j=1

MA
j

MA
0

=
〈ρ〉
ρ0
,

βeff/β0 → 1− l/L+

N∑
j=1

CA
j

CA
0

=
〈β〉
β0

,

c0χ
e
eff →

k0L

2

N−1∑
i=1

N∑
j=i+1

MA
i C

A
j −MA

j C
A
i

MA
0 C

A
0

,

c0χ
o
eff →

(k0L) (kL)

12

(
〈ρ〉
ρ0
− 1

)(
〈β〉
β0
− 1

)
,

(39)

where MA
0 = ρ0L/A and CA

0 = β0LA are the acoustic
mass and compliance of the unit cell in the absence of
the inhomogeneity, i.e., a volume V = LA of the back-
ground media. As might be expected, the effective den-
sity and compressibility are constants in the quasi-static
limit given by their volume averaged quantities. How-
ever, the leading terms of the coupling parameters are not

constants. Even coupling is proportional to frequency,
k0L = ω

√
ρ0β0L, and odd coupling is proportional to

frequency multiplied by the macroscopic wavenumber,
(k0L)(kL). Because χo

eff provides a metric of the influ-
ence of nonlocal effects on the effective response, when
the product (k0L)(kL) is small, nonlocal effects are likely
to be negligible. In Sec. IV C, the examples presented
suggest that for (k0L)(kL) < 0.1 nonlocal effects are neg-
ligible. The leading terms in Eq. (39) verify that odd and
even coupling are indeed higher order effects.

Additionally, the frequency dependence of even cou-
pling suggests that time derivative, −iω, has been ab-
sorbed into χe

eff, due to the way the constitutive relations
are expressed in Eq. (35). Nassar et al.26 and Muhlestein
et al.14 noticed similar results and suggested that modi-
fied constitutive relations would be more meaningful for
time-domain studies. Additionally, the frequency and
wavenumber dependence of odd coupling suggests that
both time and spatial derivatives have been absorbed into
χo

eff. As suggested by Muhlestein et al.,14 causality would
suggest that parameters be constant in the quasistatic
limit. Thus a more meaningful form of the constitutive
relations for time domain study may be

µeff = ρ
eff
· ueff −

(
φ

eff
· ∇ṗeff − θeffṗeff

)
,

εeff =
(
φ

eff
: ∇u̇eff + θeff · u̇eff

)
− βeffpeff,

(40)

which are related to the previously defined coefficients
by χe

eff = ωθeff and χo
eff = ωφ

eff
· k, and θeff and φ

eff
are both even functions in wavenumber and constant in
the quasistatic limit. Often in the frequency domain,
the form of the constitutive relations is chosen out of
convenience. For this work, constitutive relations were
expressed in terms of p and u because these variables
are most commonly used in acoustics, and this form is
analogous to the E-H convention in electromagnetism.36

B. Alternative macroscopic descriptions

In the absence of sources, the constitutive relations are
non-unique, allowing for alternative macroscopic descrip-
tions. The following sections provide a description that
relates effective fields but neglects coupling, referred to
as equivalent parameters and a description related to the
microscopic fields, referred to as Bloch parameters.

1. Equivalent parameters

The constitutive relations for equivalent parameters
have the same form as a traditional homogeneous fluid
(as briefly introduced in Sec. II C), i.e.,

µeff = ρequeff, εeff = −βeqpeff, (41)
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and correspondingly,

k±/ω = ±
√
ρ±eqβ

±
eq, (42)

Z± = ±
√
ρ±eq/β

±
eq. (43)

As indicated, the equivalent parameters are directionally
dependent. This can be seen more clearly by considering
the relation between effective and equivalent parameters,
which by using Eq. (35) and (41) and the conservation
equations leads to

ρ±eq = ρeff

(
1 +

χo±
eff + iχe

eff

k±/ω

)−1

= Z±k±/ω,

β±eq = βeff

(
1 +

χo±
eff − iχe

eff

k±/ω

)−1

= k±/ωZ±.

(44)

Equation (44) provides several insights. First, equiva-
lent parameters are determined directly from wavenum-
ber and impedance. Second, in the absence of even cou-
pling, equivalent density and compressibility are not di-
rectionally dependent but still differ from the effective
properties due to finite odd coupling. However, for non-
zero even coupling, both equivalent density and com-
pressibility will be directionally dependent and complex
even for lossless media, in which case the imaginary part
of one will be greater than zero (normally indicative of
loss) and the imaginary part of the other will be less than
zero (normally indicative of gain) depending on the sign
of χe

eff in Eq. (44).
These observations suggest that, while equivalent pa-

rameters provide knowledge of wave propagation by their
relation to impedance and wavenumber, the equivalent
parameters themselves lack physical meaning by violat-
ing passivity and possibly causality (Sec. II C).

2. Bloch parameters

Transmission line analogs have been widely used in the
development and understanding of 1D periodic acoustic
metamaterials, e.g., Ref. 64, 66, and 67. Because they
maintain the microscopic fields at the boundary of a de-
fined unit cell,64 transmission line models lend themselves
well to measurement via the reflection/transmission
method popularized by Fokin et al.,65 which was re-
cently extended to account for asymmetry.27,50 How-
ever, homogenization schemes, such as those developed
in Sec. III, determine effective fields that do not equal mi-
croscopic fields at any point in general. Therefore, the pa-
rameters determined using transmission line techniques
and reflection/transmission measurements are not effec-
tive or equivalent parameters, as defined in this work, but
are Bloch parameters relating the fields at the boundary
of a unit cell defined by a transmission matrix64 or mea-
surement sample.50,65 As Bloch parameters do not relate
effective fields but instead microscopic fields at a point,

they cannot account for nonlocal effects, and will not gen-
erally satisfy restrictions based on causality, Eq. (7).12

It was demonstrated in the classic work by Brillouin63

that the Bloch impedance changes with position, and
if the position results in an asymmetric unit cell, it
will be complex. In 1D periodic acoustic media, the
microscopic field patterns due to time-harmonic waves
are Bloch waves.63 This was demonstrated in 1D peri-
odic acoustic media by Bradley both theoretically68 and
experimentally.69 Therefore, one may express the Bloch
impedance, which is the ratio of the microscopic pressure
and particle velocity at a point, as12,63,64

Z±B(x) =
p(x)

u(x)
= ±

√
ρB(x)

βB(x)
−
(
χe

B(x)

βB(x)

)2

− i
χe

B(x)

βB(x)
. (45)

In periodic media, the Bloch wavenumber is the solution
to the transcendental equation, Eq. (25), and is related
to Bloch parameters via

k±/ω = ±
√
ρB(x)βB(x) −

(
χe

B(x)

)2

. (46)

In summary, unlike effective and equivalent properties,
Bloch properties (i) only exist for periodic media (ii) re-
late the microscopic fields at a point rather than effective
fields. While it is convenient for measurements to relate
parameters to boundary fields, such an approach does
not necessarily lead to physically meaningful parameters
that satisfy passivity and causality, as is demonstrated
in the following section.

C. Numerical examples

This section presents three 1D periodic media exam-
ples without embedded sources. Therefore, macroscopic
parameters are non-unique, and wavenumbers are the
eigenvalues of the lattice, which may be determined from
Eq. (25) or using transmission matrices.61 Under these
conditions, the effective material parameters (Sec. IV A)
may be directly compared to the alternative descriptions
(Sec. IV B) referred to as equivalent material parame-
ters, which relate effective fields but neglect coupling,
and Bloch material parameters, which relate microscopic
fields at a particular point that defines a specific unit
cell and cannot account for nonlocal effects. The solu-
tions are presented for longitudinal plane wave propaga-
tion normal to the layers, in the x̂-direction, as indicated
in Fig. 4. For this case, tranverse-to-longitudinal field
coupling elastic wave motion may be neglected, and the
longitudinal elastic wave behavior can be described by a
plane wave compliance βPW = (ρc2L)−1, which is consis-
tent with the acoustic analysis of this work. Therefore,
the 1D homogenization derived in Sec. IV A can be used
to compare with the results of Ref. 7 and 25.

Figures 5–8, 10, and 11 present normalized macro-
scopic material parameters plotted versus normalized fre-
quency, k0L = ω

√
ρ0β0L, and obtained using the effec-

tive (solid lines), equivalent (dash-dot lines), and Bloch
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(dashed lines) models for forward propagation in the +x̂-
direction. In all of these figures, the background shad-
ing highlights frequency ranges of interest: (i) white
for |Re(kL)| < 1 corresponding to wavenumbers for
which dynamic homogenization is generally accepted;12

(ii) light gray for 1 ≤ Re(kL) < π corresponding to
wavenumbers that some suggest26,70 are reasonable to
apply dynamic homogenization; and (iii) dark gray cor-
responding to stop bands. Unless otherwise noted, mate-
rial properties were obtained from App. A of Ref. 55, and
material compressibility was calculated using β = 1/ρc2.
The results are discussed in light of the physical restric-
tions introduced in Sec. II C.

1. Lead inhomogeneities in aluminum

The first example was a two-phase composite consist-
ing of lead inhomogeneities (ρPb = 11300 kg/m

3
, cPb =

2050 m/s) embedded in aluminum (ρAl = 2700 kg/m
3
,

cAl = 6300 m/s) with filling fraction l/L = 0.1. Addi-
tionally, both lead and aluminum are assumed lossless;
therefore in propagating bands, all macroscopic material
parameters should be purely real.

Figure 5 presents the normalized wavenumber (top),
density (middle), and compressibility (bottom). Two
unit cell configurations were used to calculate Bloch pa-
rameters, which were depicted in the insert in the top
panel of Fig. 5. Configuration (1) corresponded to the
inhomogeneity being centered in the unit cell, and con-
figuration (2) corresponded to an asymmetric cell con-
figuration with the inhomogeneity on the right. As sug-
gested in Sec. IV A, the dependence of odd coupling on
the product (k0L)(kL) suggest that when this product is
small nonlocal effects may be neglected. For the present
example, the macroscopic density and compressibility for
the four models converged to volume-averaged quanti-
ties for k0L < 0.3, which approximately corresponds to
(k0L)(kL) < 0.1, but the models diverge for k0L > 0.3
due to the influence of nonlocal effects. Additionally, neg-
ative slopes were observed in the density computed using
the Bloch (2) model and in the compressibility computed
using the the equivalent and Bloch (1) models, even in
the quasi-static limit. Therefore, only the effective model
satisfied causality for this medium, as defined in Eq. (7).

Normalized even and odd coupling are presented in the
top and bottom panels of Fig. 6, respectively. Because
the presence of asymmetry in a two-phase medium is a
feature of a particularly defined unit cell, χe = 0 for
the effective and Bloch (1) models but is finite for the
Bloch (2) model. Only the effective model can account
for nonlocal effects, and even though χo

eff is small, it is
non-zero and grows rapidly for k0L > 2.

FIG. 5: Normalized macroscopic wavenumber (top),
mass density (middle), and compressibility (bottom)

plotted versus normalized frequency for a 1D periodic
medium with lead inhomogeneities in an aluminum
background, and l/L = 0.1. Two different unit cells
were used to determine Bloch parameters: Bloch (1)

corresponds to the inhomogeneity being centered in the
unit cell, and Bloch (2) corresponds to the

inhomogeneity at the unit cell boundary, as depicted in
the insert of the top panel.

2. Steel and rubber inhomogeneities in water

The second example was a three-phase composite con-
sisting of steel (ρst = 7700 kg/m

3
, cst = 6100 m/s)

and rubber (ρru = 1100 kg/m
3
, cru = 2400 m/s) in-

homogeneities embedded in water (ρw = 998 kg/m
3
,

cw = 1481 m/s), where all materials were assumed to
be lossless. The inhomogeneities consisted of equal parts
steel and rubber, i.e., lst = lru, and the total size of the
inhomogeneities, l = lst + lru, was varied from l/L = 0.01
to l/L = 0.5. A 1D three-phase composite always has an
asymmetric unit cell regardless of where the unit cell is
drawn, and therefore, even coupling should be observed.

The normalized wavenumber (top), density (middle),
and compressibility (bottom) for l/L = 0.2 are presented
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FIG. 6: Normalized macroscopic coupling, even (top)
and odd (bottom), plotted versus normalized frequency
for a 1D periodic medium with lead inhomogeneities in

an aluminum background, and l/L = 0.1.

in Fig. 7, and the Bloch parameters were calculated with
inhomogeneity centered in the unit cell as depicted in the
insert in the top panel. Similar to the first example, the
product (k0L)(kL) < 0.1 approximately corresponded to
k0L < 0.3, and again, the models converged on the same
values for the macroscopic density and compressibility
and diverged for k0L > 0.3 due to odd coupling from
nonlocal effects. The only apparent causality violation,
denoted by a negative slope, occurred in the compress-
ibility calculated using the Bloch model.

Because the equivalent model does not account for
even coupling, it appears through complex parameters,
which is counter to the fact that the composite is loss-
less. The insert between the middle and bottom panels of
Fig. 7 demonstrates that the imaginary parts of equiva-
lent density and compressibility are non-zero. Addition-
ally, Im(βeq) < 0 which violates passivity, as shown in
Eq. (6), but the combination of equivalent density and
compressibility result in passive k and Z, as discussed in
Sec. II C. Again, only the effective density and compress-
ibility satisfy causality and passivity for this composite.

Figure 8 presents normalized even (top) and odd (bot-
tom) coupling plotted versus normalized frequency. The
Bloch even coupling determined from the unit cell cen-
tered on the inhomogeneity matches the effective even
coupling in the quasi-static limit but diverges for k0L >
0.3 similar to density and compressibility. Again, χo

eff is
small, but non-zero, and grows rapidly for k0L > 1.5.

Figure 9 presents normalized effective even (top) and
odd (bottom) coupling plotted versus volume fraction,

FIG. 7: Normalized macroscopic wavenumber (top),
mass density (middle), and compressibility (bottom)

plotted versus normalized frequency for a 1D periodic
medium with inhomogeneities consisting of equal parts

steel and rubber in an aqueous background, and
l/L = 0.2. The Bloch parameters correspond to the

inhomogeneity being centered in the unit cell, as
depicted in the insert of the top panel. Additionally, the
insert between the middle and bottom panels presents

the normalized imaginary parts of the equivalent
density and compressibility. The presence of even

coupling results in complex ρeq and βeq despite the
composite being lossless.

l/L, for several wavenumbers. Both coupling parameters
increase in magnitude as (l/L)2, and normalized forms
are relatively constant for kL ≤ 1, suggesting that the
limits for χe

eff and χo
eff in Eq. (39) may be valid for kL ≤ 1.

To be consistent in this range, one must also consider
second order effects, (k0L)2 and (kL)2, in ρeff and βeff,
which are not included in the expressions in Eq. (39).
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FIG. 8: Normalized macroscopic even coupling (top)
and odd coupling (bottom) plotted versus normalized

frequency for a 1D periodic medium with
inhomogeneities consisting of equal parts steel and
rubber in an aqueous background, and l/L = 0.2.

FIG. 9: Normalized effective even coupling (top) and
odd coupling (bottom) plotted versus inhomogeneity
size for a 1D periodic medium with inhomogeneities

consisting of equal parts steel and rubber in an aqueous
background. Different colored lines correspond to

coupling calculated for different wavenumbers:
kL = 0.25, 0.5, 1, 2.

FIG. 10: Normalized macroscopic wavenumber (top),
mass density (middle), and compressibility (bottom)

plotted versus normalized frequency for a 1D periodic
medium with inhomogeneities consisting of a Helmholtz

resonator in shunt, a section of waveguide, and a
flexible plate plate in series in an air background, and
l/L = 0.25. The Bloch parameters correspond to the

inhomogeneity being centered in the unit cell, as
depicted in the insert of the top panel.

3. Double negative inhomogeneities in air

Lastly, a four-phase composite exhibiting a double neg-
ative frequency band was considered and modeled such
that it could be implemented with a rigid-walled waveg-
uide with Helmholtz resonators in shunt and flexible
plates in series, similar to the study by Seo et al.67 The in-
homogeneities consisted of three layers: (i) a region with
dynamic compressibility, which modeled a Helmholtz res-
onator in shunt, (ii) a segment of air-filled waveguide,
and (iii) a region with dynamic density, which modeled
a flexible plate in series with the waveguide.

A Helmholtz resonator in shunt can be modeled as a re-
gion with dynamic compressibility71 with properties de-
fined by ρH = ρair, lH/L = 0.075, and βH = β0vH/[1 −
iωH/(ωQH) − ω2/ω2

H], where vH = 10, ωHL/c0 = 0.25,
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FIG. 11: Normalized macroscopic even coupling (top)
and odd coupling (bottom) plotted versus normalized

frequency for a 1D periodic medium with
inhomogeneities consisting of a Helmholtz resonator in
shunt, a section of waveguide, and a flexible plate plate

in series in an air background, and l/L = 0.25.

and QH = 20. The waveguide segment was modeled as
air-filled (ρair = 1.21 kg/m

3
, cair = 343 m/s) and lair/L =

0.173. The dynamic density region modeled a Kapton R©

plate66 with 1/βpl = E/[3(1−ν)] = 1.3929 GPa, lpl/L =
0.002, and ρpl = ρk[1 + iωpl/(ωQpl) − ω2

pl/ω
2], where

ρk = 1420 kg/m
3
, ωplL/c0 = 0.5 and Qpl = 80. The

total relative size of the inhomogeneity was l/L = 0.25,
where l = lH + lair + lpl.

The normalized wavenumber (top), density (middle),
and compressibility (bottom) are presented in Fig. 10,
and Bloch parameters were calculated with the inhomo-
geneity centered in the unit cell as depicted in the insert
in the top panel. Two passbands existed for this example:
a double negative passband for 0.258 < k0L < 0.334, and
a double positive passband for k0L > 0.419. The inequal-
ity (k0L)|Re(kL)| < 0.1 was satisfied in passband por-
tions of the frequency range 0.3 < k0L < 0.45. Again, it
is near these bounds that the Bloch model diverges from
the effective model for both density and compressibility.
Additionally, as observed in the middle panel of Fig. 10,
the equivalent density differed from the Bloch and effec-
tive densities in the double negative band even for small
wavenumbers. This was not the case in the double posi-
tive band, k0L > 0.419, and might suggest that in highly
dynamic bands, which inevitably include double negative
bands, even and odd coupling are not negligible.

That even and odd coupling are not negligible is con-
firmed in Fig. 11. In the double negative band, both

coupling terms significantly exceed values observed in
the previous two examples. Again, the Bloch even cou-
pling determined from the unit cell centered on the
inhomogeneity matches the effective even coupling for
k0L|Re(kL)| < 0.1.

D. Summary of 1D examples

Three macroscopic descriptions of 1D periodic media
were considered: (i) effective parameters which were de-
rived in Sec. III, relate macroscopic effective fields, and
account for Willis coupling due to microscopic asym-
metry and mesoscale effects, (ii) equivalent parameters
which relate macroscopic effective fields but neglect cou-
pling and exist due to non-uniqueness in the absence of
sources, and (iii) Bloch parameters which relate micro-
scopic Bloch fields at a point in periodic media. The com-
parison of effective parameters to equivalent and Bloch
parameters was important, because it is often assumed
that metamaterials may be described by the same pa-
rameters as homogeneous media leading to equivalent pa-
rameters and parameters are often determined by reflec-
tion/transmission from a single unit cell or transmission
matrices, which result in Bloch parameters.12

For symmetric examples near the quasi-static limit, all
three macroscopic descriptions provided similar results,
as shown in Fig. 5, and for asymmetric examples, Bloch
parameters converged to effective parameters when non-
local effects are negligible, i.e., (k0L)|Re(kL)| < 0.1, as
shown in Fig. 7, 8, 10, and 11. Within these limits, re-
flection/transmission measurements of a single unit cell
will lead to meaningful parameters of an infinite periodic
medium consisting of the unit cell measured, if the in-
homogeneity is centered in the unit cell. Indeed, recent
experiments verified that even coupling can be measured
for an isolated element with negligible odd coupling, and
under these experimental constraints, even coupling is
given by its leading order expression in Eq. (39).50

The dynamic features observed for effective, equivalent,
and Bloch parameters are consistent with other numer-
ical results in the published literature. When coupling
parameters are included in the homogenization models of
Willis24 and Nemat-Nasser and Srivastava25, the macro-
scopic compliance, inverse of stiffness C−1 in Eq. (3),
and density both increase with increasing frequency, but
when coupling parameters are absorbed into density and
compliance (similar to the equivalent parameters) one of
these slopes becomes negative indicating a violation of
causality. The homogenization model of Yang et al.8 re-
lies on reproducing surface fields and does not account
for bianisotropy (similar to the Bloch parameters), and
the results include parameters whose imaginary parts and
slopes change sign, indicating causality and passivity vi-
olations.

The results of Section IV C demonstrate that even
though equivalent and Bloch parameters are useful to
describe wave propagation in metamaterials they do not
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always satisfy fundamental restrictions due to causal-
ity and passivity on macroscopic parameters, and there-
fore, these parameters lack physical meaning. This sug-
gests that the equivalent and Bloch parameters may not
be useful to describe the metamaterial response in the
presence of more complex fields, such as in a resonator,
and that the use of these parameters could unnecessarily
complicate the interpretation of data from experiments
or numerical simulations. Therefore, while all three of
the models capture wave propagation in inhomogeneous
media, one should expect that macroscopic parameters
strictly obey reciprocity, causality, and passivity on their
own, rather than in combination, to describe the overall
response of inhomogeneous media.

V. CONCLUSIONS

This work provided a brief introduction to bianisotropy
in electromagnetism and Willis coupling in elastodynam-
ics in order to highlight physical analogies and promote
a qualitative understanding of the origins of Willis cou-
pling in acoustic metamaterials. The qualitative discus-
sions were then verified by deriving a source-driven, self-
consistent, multiple scattering homogenization procedure
that highlighted the microscale and mesoscale origins of
Willis coupling. The resulting effective parameters were
then compared to two alternative macroscopic descrip-
tions in light of physical constraints based on assump-
tions of passive and causal macroscopic wave propaga-
tion, which only the effective parameters satisfied. While
it is meaningful to have parameters that satisfy physical
restrictions, the direct determination of nonlocal effects
is beyond the scope of current measurement techniques.
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Appendix A: Green’s functions

The volumetric Dirac delta may be defined for 1-, 2-,
and 3D space as

δn =

 δ(x− xn)/A 1D,
δ(x− xn)δ(y − yn)/Lz 2D,
δ(x− xn)δ(y − yn)δ(z − zn) 3D,

(A1)

where A is a representative cross-sectional area and Lz
a representative out-of-plane length such that δn has
units of inverse volume in all three cases presented. The
scalar free space Green’s function in the reciprocal back-
ground medium, g(x|xn), which evaluates the scalar field
at the point x due to a unit impulse at xn, is defined by(
∇2 + k2

0

)
g(x|xn) = −δn.

The fields due to body force, f , and mass source, q,
distributions in a volume V are expressed in terms of the
scalar Green’s function as

u(x) = − 1

iωρ0

∫
y

f(y) · ∇∇g(x|y)dV

−
∫
y

q(y)∇g(x|y)dV,

p(x) = −iωρ0

∫
y

q(y)g(x|y)dV

−
∫
y

f(y) · ∇g(x|y)dV.

(A2)

From these expressions, the scattered fields at a point xm

due to an inhomogeneity located at xn maybe expressed
by Eq. (19) in terms of the dipole and monopole moments
of the nth inhomogeneity by relating the dipole moment
to the body force, f = iωdnδn, and monopole moment to
the volume source, q = −iωmnδn. The modifed Green’s
functions are defined in Eq. (20).

The scalar Green’s functions for 1-, 2-, and 3D are

g(x|xn) =


ieik0|x−xn|/2k0A 1D,

iH
(1)
0 (k0R2)/4Lz 2D,

eik0R3/4πR3 3D,

(A3)

where H
(1)
0 is the zero order Hankel function of the

first kind, R2 =
√

(x− xn)2 + (y − yn)2, and R3 =√
(x− xn)2 + (y − yn)2 + (z − zn)2. Then for 1D, the

modified Green’s functions reduce to

Gmn
d = x̂x̂

ik0

2A
eik0L|m−n| = x̂x̂Gmn

m ,

Gmn
c = ±x̂ ik0

2A
eik0L|m−n|,

(A4)

where +x̂ corresponds to m > n and −x̂ to m < n.

Appendix B: Scattering matrix

Consider incident and outgoing acoustic waves at the
boundaries of an inhomogeneity. The pressure ampli-
tudes are related via the scattering mattrix as[

pout
1

pout
2

]
=

[
S11 S12

S21 S22

] [
pin

1

pin
2

]
, (B1)

where the superscripts distinguish incident and outgo-
ing and the subscripts indicate which boundary with p1

evaluated at x = −l/2 and p2 evaluated at x = l/2. A
reciprocal inhomogeneity exhibits S12 = S21, and if the
inhomogeneity is also symmetric, then S11 = S22. Out-
going waves may also be expressed in terms of incident
and scattered pressures,

pout
1 = pin

2 e
ik0l + ps(−l/2) = S11p

in
1 + S12p

in
2

pout
2 = pin

1 e
ik0l + ps(l/2) = S21p

in
1 + S22p

in
2 .

(B2)
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In the absence of the inhomogeneity, local fields at x = 0
are given by the incident fields

ploc = pin
1 e

ik0l/2 + pin
2 e

ik0l/2

uloc =
x̂

Z0

(
pin

1 e
ik0l/2 − pin

2 e
ik0l/2

)
.

(B3)

For 1D, evaluating Eq. (19) at x = ±l/2 leads to

i
k0

A
eik0l/2

d0
ρ0

= us(l/2) + us(−l/2),

−ik0

A
eik0l/2

m0

β0
= ps(l/2) + ps(−l/2)

(B4)

The polarizablities may be determined using Eq. (B2)
and (B3) in Eq. (B4) to express the monopole and
dipole moments in terms of local fields and comparing
to Eq. (16).

Appendix C: Interaction coefficients

Substituting the 1D modified Green’s functions in
Eq. (A4) into Eq. (23), the interaction coefficients be-
come

Cm =
ik0

2A

∞∑
n=1

(
e−ik·x̂nL + eik·x̂nL

)
eik0nL,

Cd = x̂x̂
ik0

2A

∞∑
n=1

(
e−ik·x̂nL + eik·x̂nL

)
eik0nL,

Cc = x̂
ik0

2L

∞∑
n=1

(
e−ik·x̂nL − eik·x̂nL

)
eik0nL.

(C1)

Equation (34) may be obtained using the geometric series
rule

∞∑
n=1

xn =
x

1− x
, (C2)

where |x| < 1. As discussed by Shore and Yaghjian,60

this approach is valid assuming some small imaginary

part of k and k0, i.e., damping, which is present in all
real systems.

Appendix D: Scattered power relations

The derivation here is based on the work of Strickland
et al.72 for cylindrical scatterers. The restrictions on the
complementary polarizabilities will be derived for a sin-
gle inhomogeneity placed at the origin based on power
conservation, i.e., the scattered power cannot exceed the
power extracted from the local fields. The power ex-
tracted by the inhomogeneity must be positive and is
given by

Pe = −1

2
Re (iωd0 · u∗loc + iωm∗0ploc)

=
ω

2
Im (d0 · u∗loc +m∗0ploc) ,

(D1)

which for 1D and using Eq. (21) simplifies to

Pe = −ω
2

[
d0 m0

]
·

[
Im(α̃d)
ρ0

Im(α̃c)
−i/c0

Im(α̃c)
i/c0

Im(α̃m)
β0

]
·
[
d0

m0

]∗
. (D2)

The total power radiated from the inhomogeneity, de-
termined from the scattered fields, Eq. (19), may be ex-
pressed as

Pr =
1

2
<
(
− psu

∗
s |x=−l/2 + psu

∗
s |x=l/2

)
· x̂A

=
ω

2

k0

2A

[
d0 m0

]
·
[
1/ρ0 0

0 1/β0

]
·
[
d0

m0

]∗
.

(D3)

For a passive inhomogeneity, Pe ≥ Pr, which leads
to Im(α̃d) ≤ −k0/2A and Im(α̃m) ≤ −k0/2A, where
equality only occurs for a lossless inhomogeneity, and
Im(α̃c) = 0 for a lossless inhomogeneity. Additionally,
since Pe − Pr ≥ 0, the matrix[

−
(
k0
2A + Im(α̃d)

)
/ρ0 −ic0Im(α̃c)

ic0Im(α̃c) −
(
k0
2A + Im(α̃m)

)
/β0

]
must be positive definite, requiring

Im(α̃c)2 ≤
(
k0

2A
+ Im(α̃d)

)(
k0

2A
+ Im(α̃m)

)
. (D4)
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54 T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis,
Phys. Rev. E 68, 065602 (2003).

55 D. T. Blackstock, Fundamentals of Physical Acoustics (Wi-
ley, New York, 2000) pp. 65–98,511–512.

56 F. V. Hunt, J. Acoust. Soc. Am. 27, 1019 (1955).
57 V. Twersky, J. Acoust. Soc. Am. 36, 1314 (1964).
58 V. Twersky, J. Acoust. Soc. Am. 64, 1710 (1978).
59 D. Torrent and J. Sánchez-Dehesa, New J. Phys. 13,

093018 (2011).
60 R. A. Shore and A. D. Yaghjian, Radio Sci. 42, RS6S21

(2007).
61 D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, New

York, 2004) pp. 174–185,371–378.
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