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Abstract: 

An incommensurate phase refers to a solid state in which the period of a superstructure is 

incommensurable with its primitive unit cell. It was recently shown that an incommensurate 

phase, which displays a single chiral modulation of six domain variants, could be induced by 

applying an in-plane strain to a hexagonal manganite. Here we combine Landau theory 

description of thermodynamics and the phase-field method to investigate and understand the 

formation of the incommensurate phase in hexagonal manganites. It is shown that the 

equilibrium wavelength of the incommensurate phase is determined by both the temperature and 

the magnitude of the applied strain, and a temperature-strain phase diagram is constructed for 

graphically displaying the temperature and strain conditions for the stability of the 

incommensurate phase. Temporal evolution of domain structures reveals that the applied strain 

not only produces the force pulling the vortices and anti-vortices in opposite directions, but also 

results in the creation and annihilation of vortex-antivortex pairs.  
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I. Introduction 

Structural phase transitions in solids can generally be categorized into two types, i.e., 

order-disorder and displacive transitions [1]. Extra orders and relative atomic displacements give 

rise to superstructures, resulting in extra diffraction spots in addition to the fundamental ones in 

the reciprocal space. If the indices of the additional diffractions are all rational numbers, the 

phase is called a commensurate (C) phase [2]. For example, the diffraction spot with index (1/2, 

0, 0) indicates that the there exists a superstructure caused by unit cell doubling along the first 

axis. On the other hand, if at least one index of the additional reflection spots is an irrational 

number, the system totally loses its translational symmetry along that particular direction, and 

the phase is called an incommensurate (IC) phase [3]. IC phases are found to play significant 

roles in IC dielectrics, IC magnetics, charge-density wave systems, and spin-Pierls compounds 

[4-7]. In ferroelectrics, an IC phase can be induced by the size effect [8], flexoelectric effect [9], 

or an applied strain [10]. 

Hexagonal (h-) REMnO3 (RE, rare earths) have recently attracted enormous attention due 

to their intrinsic multiferroic properties and intriguing domain patterns [11,12]. REMnO3 are 

improper ferroelectrics in which the polarization is induced by the structural trimerization during 

the transition from space group P63/mmc to space group P63cm [13-15]. The structural 

trimerization results in three translational phase variants based on the different choices of the 

origin, and each variant has two options of polarization, i.e., either along +c or –c directions 

[11,16]. Thus, there are totally six C domain variants in REMnO3 systems. The six types of 

domains can cycle around vortex and anti-vortex cores resulting in vortex domains, as shown in 

Figs. 1(a) and 1(b) [11,12]. Another type of domain structures in REMnO3 is the single-chirality 

striped domains with a fixed sequence of the six domains (Figs. 1c and 1d), which is caused by 
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the coupling between an in-plane strain and the gradient of the trimerization [10,16]. The 

modulation of the six domain variants leads to a superstructure and the length ratio between the 

superstructure and the primitive unit cell can be an irrational number, i.e., the single-chirality 

striped domains can be treated as an IC phase. 

In this paper, we employ a combination of Landau theory and the phase-field method to 

investigate the stability and properties of the IC phase in h-REMnO3. Compared with the 

analytical results of the classical XY model, the effect of the energy anisotropy in the order 

parameter space of h-REMnO3 is demonstrated. Surprisingly, an unusual local enhancement of 

the trimerization is observed under a sufficiently large applied strain. The equilibrium 

wavelength of the IC phase is found to be determined by both the temperature and the magnitude 

of the applied strain. Based on extensive phase-field simulations, we constructed a temperature-

strain phase diagram for graphically displaying the stability of the IC phase as a function of 

temperature and strain. It is shown that the applied in-plane strain gives rise to an IC phase at 

high temperatures, which is frozen by the limited domain wall mobility at low temperatures. 

Phase-field simulations demonstrate that the evolution from vortex domains to the IC phase is 

caused by a combination of the antiparallel movement of the vortex and anti-vortex cores and the 

creation and annihilation of vortex-antivortex pairs.  
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FIG. 1. Domain patterns on the basal plane of h-REMnO3. (a) and (b) Vortex domains from (a) a 

phase-field simulation and (b) an optical microscope. (c) and (d) Single-chirality striped domains 

from (c) a phase-field simulation and (d) atomic force microscope scanning on a chemically 

etched sample. 

 

II. Results and discussion 

A. Incommensurate phase in the XY model 

We start our discussion on the IC phases from the classical XY model, which serves as 

the high temperature limiting case of h-REMnO3 [17]. In the XY model, the order parameter is a 

two-dimensional (2D) vector, which can be described by the magnitude Q and the phase φ in the 

polar coordinate system. In the Landau theory description, the total free energy density includes 
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contributions from: the bulk free energy, gradient energy, and Lifshitz invariant. The bulk free 

energy density describes the energy density with uniform order parameters. The gradient energy 

describes the energy penalty due to the variation of the order parameter, which is generally the 

quadratic function of the order parameter gradient. The Lifshitz invariant is a linear function of 

the order parameter gradient, and the presence of the Lifshitz invariant may lead to an IC phase 

[2]. For the XY model, the bulk free energy density is a function of Q and independent of φ, i.e., 

the bulk energy is isotropic in the order parameter space (Fig. 2a) [18]. Assuming that there 

exists an order parameter modulation along the x direction, the free energy density describing the 

IC phases is given by [2],  

2 4 2 2 2 21 1( ) ( )
2 4 2 2XY
a b Qf Q Q g gQ Q

x x x
φ φξ∂ ∂ ∂= + + + +

∂ ∂ ∂
,                                            (1) 

where a and b are the coefficients of the bulk free energy, g is the coefficient of the gradient 

energy, the term 2Q
x
φξ ∂

∂
 is the Lifshitz invariant, and ξ is the corresponding coefficient.  

The evolution of the system is described by the Euler–Lagrange equations, 

2
3 2

2[ 2 ( ) ] 0XYf QbQ Q a g g
Q x x x

δ φ φξ
δ

∂ ∂ ∂= + + + − =
∂ ∂ ∂

,                                                   (2) 

2

2[2 ( ) ] 0XYf QQ g gQ
x x x

δ φ φξ
δφ

∂ ∂ ∂= − + + =
∂ ∂ ∂

,                                                                (3) 

The solution of Eqs. (2) and (3) is 

2aQ
b bg

ξ= − + , 1 2C x Cφ = + ,                                                                                    (4) 
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where 1C  and 2C are the constants of integration. Without loss of generality, let 0φ =  at 0x = , 

and we obtain 2 0C = , i.e., 

2aQ
b bg

ξ= − + , 1C xφ = ,                                                                                          (5) 

Equation (5) indicates that the value of Q is larger than or equal to that with 0ξ = , since

0
aQ Q
b

≥ = − . Thus a nonzero Lifshitz invariant term increases the magnitude of Q.  In Eq. (1), 

only a is assumed to be dependent on temperature T, i.e., 0( )Ca a T T= − , where 0a  is a constant 

and CT  is the Curie temperature. By solving Q=0 in Eq. (5), we obtain the transition temperature  

2

0
0

CT T
a g
ξ= + ,                                                                                                             (6) 

Therefore, Eq. (1) with 0ξ =  describes a second-order phase transition with transition 

temperature 0 CT T= , and a nonzero Lifshitz invariant term increases the transition temperature.  
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FIG. 2. Comparison between the XY model and YMO. (a) and (b) Energy landscapes in the 

order parameter space for (a) the XY model and (b) YMO at 0 K. The magnitude and phase of 

the order parameter are labelled by Q and φ, respectively. (c) and (d) Distribution of the order 

parameter along the modulation direction for (c) the XY model and (d) YMO. In (c), λ denotes 

the wavelength of the modulation. 

 

Next the phase-field method based on a semi-implicit spectral numerical solution is 

employed to solve Eq. (1) [19,20]. In the phase-field simulation, the polar coordinates Q and φ 

are transformed into Cartesian coordinates ),( yx QQ , with cos , sinx yQ Q Q Qφ φ= =  [21]. Then 

Eq. (1) becomes 



Manuscript to be submitted to Physical Review B 

8 
 

2 2 2 2 2 2 2( ) ( ) [( ) ( ) ] ( )
2 4 2

y yx x
x y x y x y

Q Qa b g Q Qf Q Q Q Q Q Q
x x x x

ξ
∂ ∂∂ ∂= + + + + + + −

∂ ∂ ∂ ∂
,        (7) 

The coefficients a, b, and g use the same values as those of YMnO3 (YMO), as listed in 

Ref. [16], which are obtained from first-principles calculations at 0 K. It is assumed that 

0( )Ca a T T= −  with CT =1200 K. The solution to Eq. (7) is obtained by numerically solving the 

time-dependent Ginzburg-Landau (TDGL) equations  

δQx

δ t
= −LQ

δ f
δQx

,
δQy

δ t
= −LQ

δ f
δQy

,                                                                             (8) 

where QL  is the kinetic coefficient related to the domain wall mobility. The system size is 

1024 1 1x x xΔ × Δ × Δ with 0.30 x nmΔ = , i.e., essentially a one-dimensional system here. Periodic 

boundary conditions are applied to the system along three dimensions. The initial condition is the 

cosine modulation of Qx and the sine modulation of Qy with a certain period (we also try starting 

from small random noises, and the conclusions in the paper will be unchanged).  

Figure 2(c) presents the result from a phase-field simulation with T=1000 K and 

0.75 /eV nmξ = . The result is consistent with Eq. (6), i.e., the magnitude Q is a constant and 

the phase φ can be transformed to be a linear function of the spatial coordinate. In Fig. 2(c), the 

value of φ is chosen to be between -π to π, and φ becomes a periodic function of the spatial 

coordinate. The period is the wavelength of the modulation, labelled as λ in Fig. 2(c).  

B. Incommensurate phase in hexagonal REMnO3 

Here we employ h-YMO as an example of h-REMnO3. In YMO, the primary order 

parameters Q and φ characterize the structural trimerization [16], and the bulk energy at low 

temperatures possesses six-fold anisotropy in the order parameter space (Fig. 2b), in contrast to 
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the isotropic energy landscape in the XY model (Fig. 2a). Meanwhile, the trimerization induces a 

secondary order parameter, i.e., polarization Pz. For the Lifshitz invariant, we consider the 

coupling between strain and the order parameter gradient, since it is experimentally observed that 

the applied strain induces the IC phase in h-REMnO3 [10]. The lowest-order coupling between 

strain and inhomogeneous trimerization is given by 2
ijk ij

k

t Q
x
φε ∂

∂
 [22]. Based on the 

transformation properties of different order parameters under the generators of the high-

temperature space group as summarized in Table I, we can obtain the total free energy density as 

a function of polar coordinate Q and φ [16]. Rewritten as a function of the Cartesian coordinates 

),( yx QQ , the total free energy density is given by 

2 2 2 2 2 2 2 3 6 4 2 2 4 6

3 2 2 2 2 2 2 2 2

2 2 2 2 2

( ) ( ) ( ) ( 15 15 )
2 4 6 6

( 3 ) ( ) [( ) ( ) ( )
2 2 2

( ) ] [( ) ( ) ] [( ) ( ) ]
2 2

YMO x y x y x y x x y x y y

yP x x
x x y z x y z z

zx
y Q yP z z x

a b c cf Q Q Q Q Q Q Q Q Q Q Q Q

Qh a g Q Qh Q Q Q P Q Q P P
x y x

Q s Qs P P Q
y x y z z

′
= + + + + + + − + −

∂′ ∂ ∂− − + + + + + +
∂ ∂ ∂

∂ ∂∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂

2

0

( )
2

1 [( )( ) 2 ( )]
2

z
P z

z z

y yx x
b z z xx yy x y xy x y

s P E P
z

Q QQ QE E G Q Q Q Q
x x y y

ε κ ε ε ε

∂+ −
∂

∂ ∂∂ ∂− + − − − −
∂ ∂ ∂ ∂

,  (9) 

where , , , , ,a b c c h h′ ′ , and Pa  are the coefficients of the bulk free energy, ,z x
Q Ps s , and z

Ps  are the 

coefficients of the gradient energy, 0ε  is the vacuum permittivity, bκ  is the background dielectric 

constant [23], zE  is the electric field calculated by 
z

Ez ∂
∂−= ϕ with ϕ the electrostatic potential, 

ijε is the strain tensor, and G is the coupling coefficient between the applied strain and the 

gradient of the trimerization. The coefficients of the bulk free energy and gradient energy use the 

values from Ref. [16], which are obtained from first-principles calculations at 0 K. Based on this 
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parameter setting, the domain wall width at 0 K is ~0.5 nm [16], which agrees with the results of 

direct first-principles calculations [24] and high-resolution transmission electron microscopy 

measurements [10]. It is assumed that 0( )Ca a T T= −  with CT =1200 K. The background 

dielectric constant bκ  takes the typical value of 50 [25]. For simplicity, we assume that 0xyε =  

and ( )xx yyGξ ε ε= − . Since G is a constant and ξ is proportional to the applied strain, the energy 

contribution from the Lifshitz invariant can be controlled by the magnitude of the applied strain. 

 

TABLE I. Transformation properties under the generators of the P63/mmc space group. The 

generators of the P63/mmc space group are given by translation Sa, three-fold axis 3c, two-fold 

screw axis 2c
% , mirror plane my, and inversion I. (x,y) are the Cartesian coordinates in the ab 

plane. 

 Sa 3c 2c
%   my I 

φ φ+2π/3 φ -φ -φ π-φ 

Pc Pc Pc Pc Pc -Pc 

x 3
2

x +   
1 3
2 2

x y− +   - x x - x 

y 
1
2

y +  3 1
2 2

x y− −  - y - y - y 

x
φ∂

∂
  

x
φ∂

∂
 1 3

2 2x y
φ φ∂ ∂− +

∂ ∂
 

x
φ∂

∂
 

x
φ∂

∂
 

x
φ∂

∂
 

y
φ∂

∂
 

y
φ∂

∂
 3 1

2 2x y
φ φ∂ ∂− −

∂ ∂
 y

φ∂
∂

 
y
φ∂−

∂
 

y
φ∂

∂
 

xxε  xxε  1 3 3
4 4 2xx yy xyε ε ε+ −  xxε  xxε  xxε  

yyε  yyε  3 1 3
4 4 2xx yy xyε ε ε+ +  yyε  yyε  yyε  

xyε  xyε  3 3 1
4 4 2xx yy xyε ε ε− −  xyε  xyε−  xyε  
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The system is evolved by numerically solving the TDGL equations  

δ Pz

δ t
= −LP

δ f
δ Pz

,
δQx

δ t
= −LQ

δ f
δQx

,
δQy

δ t
= −LQ

δ f
δQy

,                                                (10) 

where PL  is the kinetic coefficient related to the domain wall mobility. The system setting is the 

same with that of the XY model, which is specified after Eq. (8). 

Although the value of Pz is solved in Eq. (10), its specific value is not significant for the 

IC phase, and thus we only show the profiles of the primary order parameter, i.e., Q and φ. 

Figure 2(d) shows the modulation of Q and φ from a phase-field simulation for T=1000 K and 

0.75 /eV nmξ = , the same parameter setting as that of Fig. 2(c). In contrast to the linear 

distribution of φ in the XY model, φ in YMO exhibits staircase-like plateaus at the values of 

20, , ,
3 3
π π π± ± ± , which correspond to the six energy minima in Fig. 2(b). These plateaus can be 

treated as six C domains, and the transition regions between neighboring plateaus correspond to 

domain wall regions in the C phase. Different from being a constant as in Fig. 2(c), Q in Fig. 2(d) 

takes its minima at the transition region, which is similar to the situation at domain walls of the C 

phase [16]. 

C. Order parameter profiles under different T and ξ 

In this section we investigate the effect of T and ξ on the order parameter profiles of 

YMO. In Figs. 3(a)-3(c), the value of ξ  is fixed at 0.75 /eV nm , and T is varied. When T equals 

1195 K, just below TC, the distribution of the phase φ is almost a straight line, close to the 
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situation of the XY model (Fig. 3a). This is because the energy anisotropy in the order parameter 

space is reduced near TC and the continuous symmetry of the XY model emerges at TC 

[17,26,27]. The magnitude Q is modulated similar to a sine function with the maxima obtained at 

phase ( 0 3)
3

i iπφ = = −  and minima at phase ( 1,3,5)
6
i iπφ = = . Note that the variation of Q at 

this temperature is small, ~0.3% of the total magnitude. Figure 3(a) corresponds to the sinusoidal 

regime of the IC phase, which shows a sinusoidal modulation of Qx and Qy [2]. At a lower 

temperature 1170 K, the phase φ develops staircase-like plateaus, and near the transition regions, 

Q shows valley-shape decrease (Fig. 3b). When the temperature is further decreased to 1100 K, 

the plateaus becomes wider, and the transition regions are narrower (Fig. 3c). Note that the 

variation of Q at 1100 K is ~6% of the total magnitude, larger than that at 1195 K. In Fig. 3(c), 

the transition regions between neighboring plateaus can be treated as solitons or 

discommensurations, separating an array of C domains, and this case corresponds to the 

multisoliton regime [2]. Therefore, with a decreasing temperature, the profiles of Q and φ evolve 

from those of the sinusoidal regime to those of the multisoliton regime.  

As illustrated in Figs. 3(a)-3(c), when ξ is small, the profiles of Q generally behave as 

expected, i.e., Q takes its minima at the transition regions. When ξ is large, however, the profiles 

of Q show unexpected behaviors. When T equals 1195 K, Q appears like a sine function with its 

minima at phase ( 0 3)
3

i iπ = −  and maxima at phase ( 1,3,5)
6
i iπ = , as plotted in Fig. 3(d). This 

means that Q at the transition regions is larger than that within a region corresponding to the 

energy minima in Fig. 2(b). The abnormal enhancement of Q near the transition regions arises 

from the fact that when dQ
dx

 is small and ξ is large, the contribution from the gradient energy 
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21 ( )
2

Qg
x

∂
∂

 can be ignored. By neglecting the higher-order terms and the coupling with 

polarization, Eq. (9) can be approximated as, 

2 2 41[ ( ) ]
2 2 4XY
a bf g Q Q

x x
φ φξ ∂ ∂= + + +

∂ ∂
,                                                                   (11) 

which leads to 2( 2 ( ) ) /Q a g b
x x
φ φξ ∂ ∂= + +

∂ ∂
. Since ξ  and 

x
φ∂

∂
 have the same sign from Eq. (14) 

as shown below, Q is larger under a larger 
x
φ∂

∂
, i.e., near the transition regions. When T is 

decreased to 1170 K, dQ
dx

 becomes larger, and the contribution from 21 ( )
2

Qg
x

∂
∂

 cannot be 

ignored. The profile of Q demonstrates complex behaviors due to the competitions between 

21 ( )
2

Qg
x

∂
∂

 and the Lifshitz invariant 2Q
x
φξ ∂

∂
. As shown in Fig. 3(e), Q has two types of local 

minima, i.e., in the middle of a plateau of φ and in the middle of a transition region. The maxima 

of Q are obtained near the boundaries of the plateaus. When T is further decreased to 1100 K, Q 

becomes flat within the plateaus of φ while small overshoots are observed near the transition 

regions (Fig. 3f). The overshoots near the transition regions are also reported in earlier works 

[2,28]. Therefore, when ξ is large, i.e., when the applied strain is large, due to the significant 

energy contribution from the Lifshitz invariant, the magnitude of the order parameter Q shows 

abnormal behaviors near the transition regions.  
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FIG. 3. Profiles of the order parameters Q and φ in h-YMO at different temperatures and under 

different strains. (a)-(c) Profiles of Q and φ with 0.75 /eV nmξ =  at (a) 1195 K, (b) 1170 K, and 

(c) 1100 K. (d)-(f) Profiles of Q and φ with 2.83 /eV nmξ =  at (d) 1195 K, (e) 1170 K, and (f) 

1100 K. 

D. Equilibrium wavelength of the incommensurate phase 

In this section we investigate the equilibrium wavelength of the IC phase, which is 

labelled as λ0. As a limiting case with an isotropic energy landscape, the analytical solution of 

the XY model is studied first. Substituting Eq. (5) into Eq. (1), we obtain 
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2 2 2
2
1 12

( ) ( 2 )
4 4 2XY

a agf gC C
bg b bg
ξ ξ ξ−= − + + ,                                                              (12) 

From the relation 1
2C π
λ

= , the free energy can be written as a function of the wavelength, 

 
2 2 2

2
2

2( ) [ ( ) ]
4 4XY

a agf g
bg b bg
ξ ξ π πξ

λ λ
−= − + + ,                                                         (13) 

XYf  as a function of λ  at 1100 K with ξ=2.39 eV/nm is plotted as a pink line in Fig. 4(a), 

which shows an energy minimum at equilibrium wavelength λ0. From 0XYf
λ

∂ =
∂

 in Eq. (13), λ0 is 

expressed by 

0
2 gπλ

ξ
= ,                                                                                                                 (14) 

which is shown as a pink line in Fig. 4(b). As indicated by Eq. (14), λ0 in the XY model is a 

function of ξ, and independent of temperature.  
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FIG. 4. Equilibrium wavelength of the IC phase. (a) Free energy as a function of wavelength for 

the XY model and YMO. The pink line denotes the free energy of the XY model at 1100 K with 

ξ=2.39 eV/nm. The blue line, cyan line, and green line are the results of YMO at 1100 K with 

ξ=2.39 eV/nm, 1.64 eV/nm, and 0.90 eV/nm, respectively, which represent the energy profiles of 

the IC phase, intermediate state (IM), and C phase, respectively. (b) Equilibrium wavelength as a 

function of ξ for the XY model and YMO at different temperatures.  

Then the equilibrium wavelength in h-YMO is investigated. When ξ equals 2.39 eV/nm 

at 1100 K, YMO is in the IC phase. As shown by the blue line of Fig. 4(a), the energy profile of 

YMO is similar to that of the XY model, and there exists an equilibrium wavelength λ0. The IC 

phase can be stabilized over the C phase since the self-energy of the solitons is negative [22,29]. 

On the other hand, the interaction between adjacent solitons is repulsive [2,22]. Therefore, the 

balance of the two energies gives rise to the equilibrium density of solitons, and consequently 

equilibrium wavelength. 

When ξ is equal to 0.90 eV/nm at 1100 K, YMO is in the C phase. As shown by the 

green line in Fig. 4(a), the energy profile is a monotonically decreasing function of the 

wavelength, and the corresponding self-energy of solitons, i.e., the domain wall energy, is 

positive [22]. The IC and C phases are separated by an intermediate state, and the corresponding 

energy profile is plotted as the cyan line in Fig. 4(a), where the slop is small for a large λ. In the 

intermediate state, the self-energy of solitons is zero, and the energy monotonically decreases 

due to the repulsive interaction between adjacent solitons [2]. 

The equilibrium wavelength λ0 as a function of ξ in YMO at different temperatures is 

demonstrated in Fig. 4(b). The evolution of λ0 at 1199 K is almost the same as that of the XY 

model, since the energy landscape of YMO near TC is close to that of the XY model [27]. When 

T equals 1100 K, the value of λ0 deviates from that of the XY model with a decreasing ξ. 
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Eventually when ξ decreases to a critical value, the value of λ0 approaches infinity, which 

corresponds to the intermediate state in Fig. 4(a). With ξ below the critical value, the C phase is 

stable, and there exists no λ0. Also, the equilibrium wavelength at 1000 K is plotted as the olive 

line in Fig. 4(b), which shows a larger critical value of ξ than at 1100 K. Note that λ0 is close to 

that of the XY model when ξ is sufficiently large for the three temperatures, which is caused by 

the dominant energy contribution from the Lifshitz invariant. 

E. Temperature-strain phase diagram 

As shown in Fig. 4(b), there exists a critical value of ξ, below which the IC phase loses 

its stability. By calculating the critical values of ξ at different temperatures, a T-ξ phase diagram 

for the stabilities of the IC and C phases is constructed, as shown by the solid lines in Fig. 5. 

Based on Eq. (14), when ξ changes its sign, λ0 also switches its sign, i.e., the system flips its 

modulation direction to accommodate the sign change of ξ. Therefore, the IC-C boundary is 

symmetric with respect to ξ=0. Also, Fig. 5 shows that the transition temperature from the high-

symmetry phase to the IC phase increases with an increasing ξ, which is consistent with the 

conclusion of Eq. (6). Since ( )xx yyGξ ε ε= − , the T-ξ phase diagram is also a temperature-strain 

T- ( )xx yyε ε−  phase diagram.  

The XY model with the free energy density given by Eq. (1) has no IC-C phase transition. 

To obtain the IC-C phase transition, the anisotropic term 
6

( 'cos6 )
6

Q c c φ+ should be added, i.e., 

the free energy is expressed by 

6
2 4 2 2 2 21 1( ' cos6 ) ( ) ( )

2 4 6 2 2XY
a b Q Qf Q Q c c g gQ Q

x x x
φ φφ ξ∂ ∂ ∂= + + + + + +

∂ ∂ ∂
,           (15) 
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In fact, when the polarization Pz is ignored, Eq. (9) is also reduced to Eq. (15). It is 

difficult to obtain the analytical solutions for Q and φ at the same time. However, if we assume 

that the modulation of Q can be ignored, we can just focus on the modulation of φ, so called the 

“phase-modulation-only” approximation [2]. The free energy that depends on φ can be written as 

6
2 2 21( ' cos6 ) ( )

6 2XY
Qf c gQ Q

x x
φ φφ ξ∂ ∂= + +

∂ ∂
,                                                         (16) 

From the Euler–Lagrange equation with respect to φ, we can obtain the following 

solution [30,31] 

2 6sin 3 sn( | )c xQ k
g k

φ ′
= ,                                                                                       (17) 

where sn( | )u k is the Jacobi elliptic function with 2(1 1)k k< <  being the elliptic modulus. Based 

on the properties of the Jacobi elliptic function, when 2 0k ≈ , the distribution of φ is similar to 

that of the sinusoidal regime, as shown in Figs. 3(a) and 3(d). On the other hand, when 2 1k ≈ , 

the distribution of φ is similar to that of the multisoliton regime, as shown in Figs. 3(c) and 3(f). 

The situation with 1k =  corresponds to the IC-C transition. From the conclusion of Ref. [30], 

1k =  leads to the following relation 

2 3
2 6

Q
c g

π ξ
=

′
,                                                                                                           (18) 

Let us assume that in the vicinity of the IC-C phase transition, the magnitude of Q in the 

IC phase has the temperature dependence as that in the C phase. Based on the Landau theory 

with the six order polynomial, the magnitude of Q is a function of temperature 
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−
,                                                                       (19) 

From Eqs. (18) and (19), the relation between the transition temperature and applied 

strain is given by   

2 2

0

3 ( ) 2 6
8C

c c b c g
T T

a c g
π ξ π ξ′ ′− +

= −
′

,                                                                     (20) 

Using the same coefficients as in the phase-field method, the results based on Eq. (20) are 

plotted as the dashed lines in Fig. 5. An obvious difference can be observed between the results 

from the phase-field simulation and from Eq. (20). This is because the polarization order 

parameter is neglected in Eq. (15). Based on the conclusion of Ref. [16], the anharmonic 

coupling term 3 2( 3 )x x y zh Q Q Q P−  results in a strong φ dependence of the bulk free energy. 

Without the polarization zP , the φ dependence of the bulk free energy is highly reduced. Since 

the φ dependence of the bulk free energy favors the C phase, while the Lifshitz invariant favors 

the IC phase, the required strain to induce the IC phase becomes smaller with zP  ignored. 

As shown by the IC-C boundary in Fig. 5, the critical value of ξ, i.e., the critical strain, 

increases with a decreasing temperature. We expect that it is challenging to induce the IC phase 

from the C phase at room temperature by applying a strain since the crystal may break down 

before reaching the critical strain. Therefore, to induce the C to IC phase transition, we need to 

anneal the sample at high temperatures while applying the strain. If the applied strain is fixed, 

and the temperature is cooled down, the induced IC phase will evolve from the sinusoidal regime 

to the multisoliton regime and lose its thermodynamic stability when crossing the IC-C phase 

boundary indicated by the solid lines in Fig. 5. However, if the domain wall and vortex core 

mobility is limited at this temperature [26,32], the domain patterns will be frozen in the 
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multisoliton regime, and the striped IC domains can be observed at room temperature. In fact, a 

single-domain C state possesses the smallest energy in h-YMO at room temperature, and both 

the striped IC domains and vortex domains are frozen by the limited domain wall mobility at low 

temperatures [32,33].  

 

FIG. 5. Temperature-Lifshitz invariant coefficient (T-ξ) phase diagram of h-YMO. In the high-

symmetry (HS) phase, all the order parameters are equal to zero. The solid lines are from the 

phase-field method, and the dashed lines are from Eq. (20). 

F. Domain structure evolution from vortex domains to incommensurate phase 
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In this section, we investigate how the domain structures evolve from vortex domains to 

the IC domains in YMO. The simulation grid is modified to 1024 624 1x x xΔ × Δ × Δ  with 

0.30 x nmΔ = , which is a pseudo-2D system on the basal plane. To simulate the boundary 

condition with two free surfaces, an insulating layer with grid 1024 400 1x x xΔ × Δ × Δ is added on 

top of the YMO layer, and the order parameters in the insulating layer are maintained as zero. 

Periodic boundary conditions are applied to the combined (YMO + insulating layer) system 

along three directions. The temperature is chosen at 1199 K, at which temperature the driving 

force from vortex domain to the IC phases is large. Note that the length scale of the phase-field 

simulations is much smaller than that of experiments, as demonstrated in Figs. 1(a) and 1(c) and 

in Figs. 1(b) and 1(d). As discussed in Section D, the wavelength of the IC phase is determined 

by temperature and the applied strain. The difference of the length scales between the 

simulations and experiments indicates that the temperature at which the domain patterns are 

frozen is lower than 1199 K. Also, the difference may be caused by that the applied strain in the 

experiments is smaller than that in the simulations. Note that the domain pattern and its evolution 

discussed in this section are independent of the length scale. 
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FIG. 6. Temporal evolution of the domain structures on the basal plane in h-YMO at 1199 K. (a) 

Initial domain structure. (b) Intermediate domain structure with ξ=1.49 eV/nm for the upper half, 

and ξ=0.00 eV/nm for the lower half. (c) Final domain structure with ξ=1.49 eV/nm for the 

upper half, and ξ=0.00 eV/nm for the lower half. (d) Final domain structure with ξ=2.98 eV/nm 

for the upper half, and ξ=0.00 eV/nm for the lower half. The colors are assigned based on the 

nearest C domains. 

Fig. 6(a) shows a vortex domain structure, which is obtained starting from small random 

noises with ξ=0.00 eV/nm for the whole system [21]. Next we apply an external strain with 
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ξ=1.49 eV/nm to the upper half while no strain is applied to the lower half. As shown in Fig. 6(b), 

in the upper half of the system, the vortices are pulled down whereas the anti-vortices are pulled 

up under the effect of the applied strain [10]. Finally, the anti-vortices are pulled out of the top 

surface of the system, and we obtain single-chirality striped domains in the upper half of the 

system (Fig. 6c). The vortices are lined up in the middle of the system, which form the IC-vortex 

boundary separating the IC domains and vortex domains. If the initial domain structure remains 

the same as in Fig. 6(a), while the strain applied to the upper half is doubled to ξ=2.98 eV/nm, 

the final domain structure is given in Fig. 6(d), which shows a smaller wavelength in the upper 

half than that in Fig. 6(c). Thus, a larger ξ results in a smaller wavelength of the IC domains, 

which is consistent with the conclusion of Fig. 4(b). 

In Eq. (9), we only consider the interaction between strain and the gradient of the primary 

order parameter. The interaction with strain gradient, introduced in previous report to explain the 

vortex density at the IC-vortex boundary [10], is not included in this paper. In fact, Figs. 6(c) and 

6(d) demonstrate that the vortex density at the IC-vortex boundary is determined by the value of 

ξ, i.e., by the magnitude of applied strain ( )xx yyε ε− . This is because, as discussed below, the 

applied strain not only produces the Magnus-type force pulling the vortices and anti-vortices in 

opposite directions [10], but also leads to the creation and annihilation of vortex-antivortex pairs. 

The detailed temporal evolution of domain structures with ξ=1.49 eV/nm for the upper 

half is demonstrated in Supplementary Movie I, and several zoomed-in snapshots are given in 

Figs. 7(a)-7(d). In Fig. 7, we label a vortex with an even number followed by a + sign, and an 

anti-vortex with an odd number followed by a – sign. As shown in Figs. 7(a) and 7(b), under the 

effect of the applied strain, a vortex-antivortex pair (3- and 4+) is created near two bubble-like 
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domains. A typical process for the creation of a vortex-antivortex pair is sketched in Figs. 7(e)-

7(g), i.e., the nucleation of two bubble-like domains within two neighboring domains, followed 

by the nucleation of another two domains. The phase-field simulation for the vortex-antivortex 

creation is shown in Movie II, which is the reverse process of the vortex-antivortex annihilation 

demonstrated in an earlier report [21]. The driving force for the domain nucleation is that in this 

case the self-energy of solitons is negative, which favors more solitons, i.e., more domain walls, 

as discussed in Section D. Also, the evolution from the vortex domains to the IC phase is 

accompanied by the annihilation of vortex-antivortex pairs, as shown in Figs. 7(b)-7(d). Through 

the creation and annihilation of vortex-antivortex pairs, the wavelength of the IC phase in the 

final domain structure is close to the equilibrium wavelength as indicated in Fig. 4(b), and 

independent of the initial vortex density. Therefore, the vortex density at the IC-vortex boundary 

is determined by the magnitude of the applied strain, and independent of the initial vortex density.  
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FIG. 7. Creation and annihilation of vortex-antivortex pairs under the effect of the applied strain. 

(a)-(d) Zoomed-in snapshots from a phase-field simulation. (a) and (b) show the creation of the 

vortex-antivortex pair (3- and 4+) near two bubble-like domains. The circled out region in (a) 

indicates the position where the vortex-antivortex pair is created. (b)-(d) demonstrate the 

annihilation of the vortex-antivortex pair (2+ and 3-). (e)-(g) Schematics for the creation of a 

vortex-antivortex pair from a domain wall. 

III. Conclusions 

We investigated the stability and properties of the single-chirality stripe domains, i.e., the 

incommensurate phase, in hexagonal REMnO3 (RE, rare earths) induced by an applied strain. By 

comparing the numerical results of REMnO3 with the analytical solution of the XY model, we 

demonstrated the effect of the energy anisotropy in the order parameter space. Surprisingly, in 

REMnO3, when the applied strain is large, abnormal enhancement of the order parameter 

magnitude is observed near the transition regions between the plateaus corresponding to the 

commensurate domains. The equilibrium wavelength is studied as a function of the applied strain 

at different temperatures, and a temperature-strain phase diagram is constructed for the stabilities 

of the incommensurate phase, commensurate phase, and high-symmetry phase. Phase-field 

simulations are employed to demonstrate the temporal evolution of the domain structures under 

the applied strain. It is found that the applied strain not only produces the force separating the 

vortices and anti-vortices, but also results in the creation and annihilation of vortex-antivortex 

pairs. The study can serve as a guidance for the manipulation and engineering of domains and 

associated topological defects in hard crystalline materials. 
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