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Abstract: 

Kinetic Monte Carlo simulations have been performed to investigate the evolution of 

ordered domains in model alloys under irradiation. The alloys investigated were 

equiatomic binary alloys on a simple square lattice with first and second nearest-neighbor 

interactions, chosen so that a 2×2 ordered structure is the equilibrium phase below a 

critical order-disorder transition temperature, Tc. The ratio of second to first nearest 

neighbor interactions, R was varied from 0 to 0.45 to explore the effect of the 

thermodynamic frustrations induced by the proximity of the 2×1 phase boundary, which 

occurs at R = 0.5 for T = 0. The atomic mixing produced by nuclear collisions was 

modeled by forcing the ballistic exchange of pairs of atoms at a controlled rate, Γb. This 

disordering process competed with thermodynamic re-ordering, resulting in non-

equilibrium steady states. Two trivial steady states were found, a disordered state at high 

Γb and low T, and a long-range ordered state at low Γb and low T. In the R=0.45 alloy, 

however, a third steady state was identified at intermediate Γb and T values, where 

multiple long-range ordered domains coexisted dynamically. It is shown that this state of 

patterning of order resulted from the coupling of the thermodynamic frustrations present 

in that alloy with the disorder introduced by irradiation. The practical relevance of this 
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novel mechanism for patterning of order under irradiation is discussed in the context of 

recent observations of domain co-existence in irradiated Cu3Au. 

 

I. Introduction 

Irradiation of hard matter with energetic projectiles such as electrons, ions, and 

neutrons, results in the formation of point defects and the creation of structural and 

chemical disorder (see for instance refs. [1-3] for reviews). A fraction of the energy 

deposited into the system is dissipated through relaxation processes involving the 

thermally activated migration of point defects. Under sustained irradiation, the 

competition between the continuous creation of disorder and its annealing by these 

relaxation processes can drive the materials into non-equilibrium steady states [2]. For 

alloy systems with moderate, positive heats of mixing, for instance, the forced atomic 

replacements generated by nuclear collisions tend to homogenize the composition field, 

whereas thermally activated atomic diffusion driven by thermodynamics promotes phase 

separation. In the case of alloy systems with negative heats of mixing, the chemical 

disorder created by nuclear collisions now competes with the chemical ordering 

promoted by thermodynamics. Using mean-field kinetic models, Martin showed that by 

assuming the forced atomic replacements are akin to a ballistic, i.e., athermal, diffusion, 

these alloy systems reach steady states that are equivalent, or nearly equivalent, to 

equilibrium states, albeit at a higher (effective) temperature [4]. This effective 

temperature captures the contribution of the non-equilibrium configurational entropy 

introduced by the forced atomic relocations. This model is however not general, and 

alloys under irradiation have been found to reach steady states that have no counterpart in 
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their equilibrium phase diagrams. A striking example is the case of self-organization 

reactions, yielding steady-state microstructures with self-selected length scales, often 

referred to as patterning states [5]. These self-organization reactions are similar to those 

often observed in other dynamical, dissipative systems such as fluid flows, chemical 

reactions, weather systems, or alloys undergoing solidification [5]. In the case of alloy 

evolutions described by the composition field, a conserved order parameter, modeling 

and atomistic simulations indicate that a competition between dynamic processes with 

distinct characteristic length scales can stabilize steady-state microstructure with finite 

length scales. This is the case for instance during energetic, heavy ion irradiations, where 

large displacement cascades force the relocation of atoms with a characteristic length 

scale Rb, which ranges from one atomic distance to a few nanometers [1], resulting in a 

non-local chemical mixing [6]. For alloys that phase separate in thermodynamic 

equilibrium, this forced finite-range mixing competes with thermally activated 

decomposition, which is short range, as point defects jump from atomic sites to nearest 

sites. The outcome of this scale-dependent competition can be summarized in a 

dynamical phase diagram in the (Rb, γb) space, where γb is a relative forcing intensity, 

defined as the ratio of the forced jumps over the thermal jumps. Continuum models and 

atomistic simulations predict that when Rb exceeds a critical value Rc compositional 

patterns become stable for a range of forcing intensities around γb ≈ 1 [6-9]. These 

predictions are in good agreement with the compositional patterning reported in several 

immiscible alloys subjected to ion irradiation, including several Cu-base alloys such as 

Cu-Ag, Cu-Co, Cu-Fe [10-13].  



 4

In the case of chemically ordered alloys it is unclear whether irradiation can induce a 

similar patterning of order, as can be realized by the following kinetic equation 

describing the evolution of the long-range order parameter S: 

 

∂S
∂t

= − Mo

∂F
∂S

− ΓbS   (1) 

The first term on the right-hand side of Eq. (1), which captures the thermally activated 

part of the kinetics, is the standard “model A”, for the relaxation of non-conserved order 

parameters [14,15]. In this term, Mo represents a thermal mobility and F the free energy 

of the alloy. This free energy is usually decomposed into the free energy of an alloy with 

a homogeneous order S, typically a non-linear function of S, and contributions 

proportional ∇S
2
 and possibly higher order derivatives to capture excess energy due to 

spatial variations of S [15]. The second term on the right-hand side of Eq. (1) captures the 

disordering introduced by irradiation due to forced replacements, assumed here to be 

ballistic events taking place at a rate Γb[16,17]. In this simple approach, the disordering 

introduced by irradiation does not introduce any new length scale, and therefore it is not 

expected to induce patterning of the field S. This conclusion is supported by a simple 

linear stability analysis of Eq. (1) [18]. That equation, however, relies on several 

simplifications; for instance, it does not capture the fact that energetic displacement 

cascades introduce chemical disorder as large disordered zones [19,20]. Kinetic Monte 

Carlo simulations indicated that when the re-ordering of these zones promotes the 

nucleation of new ordered domains a steady state comprised of multiple, co-existing 

ordered domains is found in a region of the (T, Γb) parameter space where ordering and 
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disordering rates are of similar magnitude [21,22]. In this patterning state the maximum 

domain size is bounded by the size of the disordered zones, which ranges from 1 to 10 

nm [1,20] for typical alloys and ion irradiation conditions. Recently, it has been reported 

that 500 keV Ne irradiation of Cu3Au, which forms an L12 ordered structure [23], can 

indeed lead to the dynamical formation of new domains in a pre-existing single domain 

structure; an example is illustrated in Fig. 1 [24]. The largest size of these new domains, 

however, exceeds 10 nm, thus beyond the largest size for disordered zones, and contrary 

to the model just presented.  

 

Figure 1. Transmission electron microscopy imaging of ordered domains in L12 ordered 
Cu3Au irradiated with 500 keV Ne ions at 350 ˚C at a dose rate of 1.1 10-4 displacement 
per atom per second (dpa/s) (dark field image formed using L12 superlattice reflection). 
Notice the presence of many, small new domain, which nucleated within the initial single 
domain ordered state. 

 

In this work, we thus investigate alternative mechanisms that could lead to patterning 

of order under irradiation. For that purpose we consider a model 2D binary alloy and use 

kinetic Monte Carlo simulations to investigate the evolution of the alloy microstructure 
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under irradiation, assuming that irradiation does not produce cascades, but rather is 

restricted to the homogeneous pairwise switching of atoms to introduce atomistic 

disorder, as in Eq. (1). We find that for thermodynamic parameters positioning the system 

close to an order-order transition, this homogeneous disordering can also stabilize 

patterns of order at steady state. 

 

II. Simulations methods 

1. Energetics  

We consider here for simplicity a two-dimensional equiatomic alloy AB on a rigid 

square lattice, with pair interactions between first and second nearest neighbors. Phase 

equilibrium at finite temperature is determined by Ising-like interaction parameters Js, 

defined for s=1, 2 by 

  
Js = 1

4
2ε AB

( s ) − ε AA
( s ) − ε BB

( s )( )
   (2) 

where ε ij
( s ) is the energy of an i-j pair of atoms that are “s” nearest neighbors. With this 

definition, alloys tend to undergo phase separation for J1 > 0 and ordering for J1 < 0. 

Owing to the competition between J1 and J2, however, three ground states exist for this 

system [25], depending on the sign and relative amplitude of J1 and J2, as illustrated in 

Fig. 2. It is convenient to introduce the ratio R = J2 / J1. For J1 > 0 and R > -½, the ground 

state is analogous to a ferromagnetic state, with phase separation between pure A and 

pure B phases, while for J1 < 0 and R < ½, the ground state is analogous to an 

antiferromagnetic state, with a 2×2 ordered structure. This is the phase investigated here, 
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in analogy with Cu3Au. This ordered structure can be decomposed into two sublattices, 

and it possesses two variants, while the L12 ordered structure in Cu3Au has four 

sublattices and four variants.  For J1 < 0 and R > ½, the ground state is the so-called 

super-antiferromagnetic state, with a 2×1 ordered structure comprised of alternating rows 

of A and B atoms. The interactions considered in this study correspond to J1 = -0.05 eV 

and R = 0.45, 0.30, 0.1 and 0. We will show that, under irradiation, the alloy system with 

R = 0.45, which is close to the boundary between the 2×2 and 2×1 states, behaves very 

differently from the others. At finite temperature, the exact nature of the equilibrium 

boundary between the 2×2 and 2×1 states is complex, with a non-universal behavior [26-

28]. The work by Kalz et al. [29] suggests that this transition is a first order transition, 

with the critical temperatures of the 2×1 and 2×2 structures going to zero at the boundary. 

In this work, we avoid systems too close to that boundary by restricting ourselves to R ≤ 

0.45.  For R = 0.45, we determine the order-disorder transition temperature for the 2×2 to 

1×1 transition to be ≈ 373 K, i.e., 0.643 J1/kB, using the fourth-order cumulant method 

[30]. This value is consistent with previous reports [27,29,31], and it is significantly 

lower than the value for R = 0, 2/ln(1+√2) J1/kB ≈ 2.27 J1/kB [32], owing to the 

frustrations introduced by the second nearest neighbor interaction. 
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Figure 2. Ground state diagram for the 2D square lattice with first and second nearest 
neighbor interactions [25]. The four small open circles correspond to the systems studied 
in this work. 

 

2. Kinetics 

Two distinct kinetic processes are considered in this work. The first is thermally 

activated and allows the system to relax toward its equilibrium state at finite temperatures, 

while the second simulates the disorder introduced by energetic atomic collisions. For the 

thermally activated dynamics, vacancies are introduced in the 2D lattice, and atoms can 

migrate by exchanging positions with vacancies that are first or second nearest neighbors; 

second nearest neighbor jumps are included to suppress vacancy trapping on anti-site 

defects. For dilute vacancy concentrations, up to 2%, the kinetics is found to scale 

linearly with the vacancy concentration, and in the results described below, a 0.5% 

concentration is used to increase the efficiency of the kinetic algorithm.  The jump 
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frequency of one such exchange between atom X, X=A, B, and a vacancy V is calculated 

using transition state theory 

Γ XV = ν exp −
ΔEXV

kBT
⎛

⎝⎜
⎞

⎠⎟
   (2) 

where ν is an attempt frequency, set to a constant value of 1014 s-1 here for simplicity, and 

the activation energy is calculated using a broken bond model [33]: 

ΔEXV = Esp − ε XN
( 1 )

N

( 1 )

∑ + ε XM
( 2 )

M

( 2 )

∑
⎛

⎝⎜
⎞

⎠⎟
  (3) 

where Esp is a saddle point energy, assumed here to be independent of the jumping atom 

X, and the two summations in Eq. (3) run over the first and second shell of neighbors, 

respectively. The thermal jump frequencies defined by Eqs. (2,3) obey detailed balance. 

We restrict ourselves here to a symmetric alloy system, and without loss of generality we 

set ε AA
( 1 ) = ε BB

( 1 ) = ε AA
( 2 ) = ε BB

( 2 ) = 0  and Esp = 0, as these parameters only define the absolute 

energy scale and the diffusion coefficient time scale, both of which are irrelevant for the 

present work as it focuses on determining steady states. 

The second dynamic process in the model represent the atomic replacements 

generated by high-energy collisions [1]. As in previous works [4,34,35], these collisions 

are approximated by a random exchange between atoms with an imposed jump frequency 

Γb, and this process is assumed to be ballistic, i.e., athermal. The dynamics is thus 

equivalent to an infinite-temperature dynamics, and, when acting alone, drives the alloy 

into a random, disordered state. For simplicity, these exchanges are introduced one pair at 

a time, a situation close to high-energy electron irradiation conditions [1], between first 
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and second nearest neighbor sites (as for thermal jumps). This avoids, as noted above, 

possible complications associated with temporal and spatial correlations present in the 

displacement cascades created by ion and neutron irradiations [1]. . 

Kinetic Monte Carlo simulations are used to obtain the evolution of the system with 

the thermal and the ballistic dynamics acting in parallel. As reported for similar 

simulations of alloys under irradiation [21,36,37], the system is observed to reach a 

unique steady state for any given set of T and Γb values, and the present work focuses on 

building a map of steady states in the (T, Γb) control-parameter space. The lattice size 

used in the simulations is 128×128. A residence time algorithm is employed to evolve the 

system in the presence of both thermal and ballistic dynamics [38,39]. 

3. Order state characterization 

Three distinct steady states are identified by direct visualization of the alloy 

microstructure, namely a 1×1 disordered state, a single-domain 2×2 ordered state, and a 

multi-domain 2×2 ordered state. In order to identify and distinguish these three states we 

employ three measures of the state of chemical order present in the system. First, 

following Bethe [40] and Cowley [41], we define a short-range order parameter (SRO), η, 

based on the number of A-B bonds present in the system: 

η =
nAB − 2zX A X B

nAB
( 0 ) − 2zX A X B

   (4) 

where nAB  and nAB
( 0 )  are the number of A-B first nearest neighbor pairs in the current and 

perfectly ordered states, respectively;  is the coordination number of the first nearest 

neighbor shell, here 4; and XA and XB the A and B atomic fractions. This SRO parameter 
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is calculated globally, as well as locally, i.e., at every lattice site ri. Through Eq. (4) the 

SRO parameter is normalized so that η( rj ) = +1 for perfectly ordered sites, η( rj ) = 0 

for disordered sites, and η( rj ) = −1 for local phase separation, i.e., at anti-site defects 

where an atom is surrounded by 4 first nearest neighbor like-atoms. The second measure 

of order is a long-range order (LRO) parameter. For it, we calculate the intensity of the 

structure factor around a superlattice wavevector, ks,  

   
I = N −1 σ j − X A( )exp 2π i k - ks( ) ⋅rj

⎡⎣ ⎤⎦
j
∑   (5) 

where N is the number of lattice sites, σj takes a value of 1 if the site j at rj is occupied by 

an A atom and 0 otherwise, ks = (1/(2a), 1/(2a)) for the 2×2 ordered structure, a being the 

lattice parameter, and the brackets denote circular integration over (k-ks) of the structure 

factor, around k = ks, up to half the Brillouin zone. This structure factor intensity is also 

separately calculated for a perfectly ordered lattice and for a random structure, yielding 

values of I0 and Ib, respectively, so that a normalized LRO parameter S can be obtained 

through 

S =
I − Ib

I0 − Ib

   (6) 

The third measure of order is introduced to distinguish ordered states containing a 

single domain and multiple domains. For that purpose, we calculate the net 

“magnetization” of a configuration, M, by assigning “spin” values of +1 and -1 to atoms 

based on their nature and the sublattice they belong to. Specifically, decomposing the 2×2 

lattice into two simple square sublattices α and β, rotated by 45˚ with respect to the initial 
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square lattice, A atoms on the α sublattice and B atoms on the β sublattice are given a +1 

“spin” value, while B atoms on the α sublattice and A atoms on the β sublattice are given 

a -1 “spin” value. These “spin” values are then summed over the lattice and normalized 

by the number of atoms to obtain a net magnetization, M, varying between -1 and +1. In 

order to obtain a measure that is independent of the choice made in labeling the 

sublattices, we use |M| to determine the imbalance between the two variants of the 2×2 

state. Specifically, a perfectly long range ordered 2×2 state with a single domain will be 

characterized by |M| ≈ 1, whereas in the case of a microstructure with multiple ordered 

domains resulting in similar volume fractions for the two variants of order |M| ≈ 0. The 

values of η, S, and |M|, are essentially unaffected by the small amount of vacancies 

present in the simulation cell. 

III.  Results 

We first contrast the steady states observed in the alloy system R = 0 and R = 0.45. In 

the case R = 0, i.e., far from the 2×2-to-2×1 boundary, at any given temperature below Tc, 

the system reaches a steady state with a single-domain long range ordered 2×2 state at 

low enough ballistic jump frequency, Γb. As Γb is increased, the LRO and SRO values at 

steady-state are continuously reduced, until at large enough Γb, the steady state becomes 

disordered, as illustrated in Fig. 3 for T = 0.8 Tc. This progressive disordering of the 

steady state is consistent with the random disorder introduced by the ballistic exchanges. 

In contrast, in the R = 0.45 alloy, see Fig. 4, a sequence of three steady states is observed 

as Γb is increased, starting with a single-domain long range ordered 2×2 state at low Γb, 

to a multi-domain long range ordered 2×2 state at intermediate Γb, to a disordered state at 
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high Γb. The multi-domain long range ordered 2×2 steady state is identified as a steady 

state with large values of the LRO parameter, here we imposed S ≥ 0.4, but small values 

of the absolute net magnetization, here |M| ≤ 0.1. The existence of this steady state does 

not correspond to any equilibrium state for this alloy, and owing to the presence of a self-

selected, finite domain size, we refer to it as a state of patterning of order.  

Figure 3. Short range order η maps at steady state for the R = 0 alloy at T = 0.8 Tc and 
for ballistic frequency, Γb = 0, 6×107, 2×108, and 1×109 s-1, from left to right. The color 
scale ranges from yellow (light gray) for η=1 to red (dark gray) for η=0. 

Figure 4. Short range order η maps at steady state for the R = 0.45 alloy at T = 0.8 Tc 
and for ballistic frequency, Γb = 0, 1.2×103, 4.15×103, and 3×104 s-1, from left to right. 
The color scale ranges from yellow (light gray) for η=1 to red (dark gray) for η=0. 

 

Two additional points are worth noticing regarding the multi-domain steady state. 

First, the microstructure of the alloy in this state contains many ordered domains, and 

larger domains often contain several embedded, smaller domains of the opposite variant. 

Direct visualization of the temporal evolution of the system shows that this domain 

structure is a dynamical one, continuously evolving. In particular, some domains coarsen, 

but with new domains nucleating within these larger domains, preventing the system 
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from reaching a single-domain steady state. These new domains nucleate by the 

migration and aggregation of anti-sites that are randomly introduced by ballistic 

exchanges. In the R = 0.45 alloy, the nucleation rate is high, as suggested from Fig. 4, 

while new domains are rarely observed in the R = 0 alloy, see Fig. 3. The second point is 

that for the R = 0.45 alloy the domain (or anti-phase boundaries, APBs) tend to be faceted 

along the <10> directions, suggesting that the excess energy of these APBs is low in this 

alloy. These two points are in fact related, as will be discussed in Section IV.  

In order to determine possible influences of the initial state on the steady state 

microstructure, for all parameter reported here, simulations were initiated with two 

opposite states of order, a single-domain perfectly ordered 2×2 state and a fully random, 

disordered state. For these two initial states, the systems always reach the same steady 

state values of order parameters η and S, as illustrated in Fig. 5 for the alloy R = 0.45, T = 

0.8 Tc and Γb = 3 × 103 s-1. This invariance of the steady state indicates that the 

dissipative systems studied here are ergodic. We used this property to determine when 

systems had reached their steady state for building the steady-state maps presented below. 
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Figure 5. Temporal evolution of the short-range order (SRO) parameter η and the long 
range order (LRO) parameter S for R = 0.45 alloy, T = 0.8 Tc and Γb = 3 × 103 s-1. 
Systems initially ordered and initially disordered reached the same steady state. As 
expected, the SRO reaches steady state at shorter times than the LRO, and fluctuations 
are larger for the LRO evolution than for the SRO one. 

 

The overall evolution of these driven alloys can be captured by building steady-state 

maps of η, S, and |M| in the (T, Γb) control parameter space, as seen in Fig. 6 for R = 0 

and Fig. 7 for R = 0.45.  
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Figure 6. For alloy R = 0, steady state values of (a) long range order parameter, S; (b) 
absolute net magnetization, |M|; and (c) short range order parameter, η, as function of 
temperature and replacement rate Γb. Initial condition is fully ordered 2x2 state. Maps 
are constructed from 540 (T, Γb) points. White contour lines are added to highlight 20% 
decreases in the parameters. Overall phase diagram is displayed in (d) using criteria 
given in text. 
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Figure 7. For alloy R = 0.45, steady state values of (a) long range order parameter, S; (b) 
absolute net magnetization, |M|; and (c) short range order parameter, η, as function of 
temperature and replacement rate Γb. Initial condition is fully ordered 2x2 state. Maps 
are constructed from 340 (T, Γb) points. White contour lines are added to highlight 20% 
decreases in the parameters. Overall phase diagram is displayed in (d) using criteria 
given in text. 

 

The most notable result of Figs. 6 and 7 is the existence of a region in the (T, Γb) 

space where the alloy with R = 0.45 stabilizes into a multi-domain long-range ordered 

2×2 steady state. This domain, moreover, exists for a broad range of ballistic jump 

frequencies, especially as the temperature approaches Tc. The transition from the multi-

domain state to the disordered state is more difficult to locate, as the domain size is 
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gradually reduced when Γb is increased. This transition is estimated here using a 

threshold value for the long-range order parameter of Sth = 0.1. This choice is based on 

observations that the equilibrium value of S drops below 0.1 for T above ≈ 1.2 Tc. More 

accurate determinations are possible, for instance by deconvolving the superlattice 

intensity into SRO and LRO contributions [22], but the present criterion is sufficient for 

establishing the existence of the patterning of order, and determining the mechanisms 

responsible for its stabilization. 

The non-equilibrium phase diagrams in Figs. (6,7) were calculated in the (T, Γb) 

control-parameter space. For dissipative systems at steady state, it is however physically 

insightful to evaluate the forcing conditions by using a reduced forcing intensity γ [4]. In 

systems described by Eq. (1), for instance, the driven steady state is equivalent to the 

thermodynamic equilibrium state of an effective alloy described by the effective free 

energy Feff = F +γ S 2 2 , with γ = Γb / M . In the present KMC simulations, the forcing 

intensity is directly obtained by measuring the ratio of ballistic jumps to vacancy jumps 

[36]. It is interesting in particular to determine this forcing intensity near the transition 

between different steady states. For the R = 0 alloy, at T = 0.8 Tc for instance, the 

transition between ordered to disordered steady states occurs for Γb ≈ 2.6 × 108 s-1, and 

the corresponding forcing intensity is measured to be 5.0 × 10-2. This forcing intensity is 

similar to values reported for other order-disorder transitions driven by ballistic 

exchanges [36]. In contrast, in the R = 0.45 alloy, the forcing intensity at the transition 

between the single-domain to the multiple-domain steady state is significantly lower. For 

T = 0.8 Tc, this transition takes place for Γb ≈ 3 × 103 s-1, resulting in a forcing intensity 
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of ≈ 5.2 × 10-3. The fact that such a low forcing intensity is sufficient to destabilize a 

long-range ordered state to the benefit of a patterning of order steady state adds further 

support to our previous observation that, in the R = 0.45 alloy, the disorder introduced by 

ballistic exchanges couples very strongly with thermally activated relaxation processes, 

in particular those controlling nucleation of new domains and APB migration. This point 

is further discussed in the next section. 

 

IV. Discussion 

The primary result of this work is that the atomic-scale disorder introduced by 

isolated ballistic events can stabilize a steady state microstructure where multiple long-

range ordered domains dynamically coexist. In contrast to past studies where the ballistic 

events were introduced in the form of large disordered zones, which could promote 

directly the nucleation of new domains, the present work introduces ballistic events one 

pair of antisites at a time. All prior simulations using this latter irradiation condition 

concluded that below Tc the system should stabilize into a single-domain long-range 

ordered state at low ballistic jump frequency and a disordered state at high ballistic jump 

frequency [21,22,36,42]. These past results are in fact in good agreement with the present 

simulations when the ratio of first to second nearest neighbor interactions, R, is such that 

the system is well inside the stability region of the 2×2 “antiferromagnetic” ordered state, 

i.e., R = 0 to R = 0.3. Patterning of order is observed, on the other hand, when R is such 

that the alloy is close to the boundary between the 2×2 ordered state and the 2×1 “super-

antiferromagnetic” ordered state, e.g., R = 0.45. Analysis of the system microstructure 
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and evolutions reveals that in this alloy antisite migration can lead to their clustering and 

to the formation of new, anti-phase domains. Furthermore, antiphase domain boundaries 

(APBs) are faceted along the <10> directions. 

A first rationalization of these results can be obtained by analyzing the energetics 

of a perfectly ordered 2×2 state containing a few antisites. Simple bond counting 

indicates that the excess energy of one Aβ antisite, i.e., an A atom occupying a β 

sublattice site, is given by   
ΔEAS

( 1 ) = 4 ε AA
( 1 ) − ε AB

( 1 )( ) + 4 ε AB
( 2 ) − ε BB

( 2 )( ) , see Fig. 8(a). For alloys 

with symmetric interaction parameters as considered here, the excess energy is the same 

for Aβ and Bα antisites, so it can be directly expressed in terms of the coupling constants 

J1 and J2 as ΔEAS
( 1 ) = −8J1 + 8J2 = −8J1(1− R ). Turning then to one pair of antisites, one 

finds that two second-nearest neighbor Aβ antisites repel each other for R ≥ 0. Opposite 

antisites Aβ and Bα, in contrast, can form stable first nearest neighbor pairs, as the excess 

energy per antisite of one such pair is calculated to be 

ΔEAS
( 2 ) = −6J1 + 8J2 = −6J1(1− 4R / 3), which is always less than ΔEAS

( 1 ) . More generally, 

in the case of n first nearest neighbor antisites (n ≥ 1) aligned along a <10> direction, the 

excess energy per antisite becomes ΔEAS
( n ) = −4 n +1

n
J1(1− 2n

n +1
R ) . The excess energy 

per antisite therefore decreases as n increases, and in the limit n → ∞, it reaches the limit 

ΔEAS
( ∞ ) = −4J1(1− 2R ). The remarkable result is that this excess energy goes to zero at R 

= ½. As R approaches ½, there is thus a strong energetic bias for pairs of opposite 

antisites Aβ-Bα to form bound pairs. Opposite antisites could also recombine, of course, 

but this recombination requires a sequence of correlated vacancy jumps. It is thus also 
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expected for R approaching ½ that the rate of formation and the stability of bound pairs 

greatly increase as the concentration of antisites increases, i.e., as the ballistic jump 

frequency Γb increases.  

 

Figure 8: Various configurations of antisites and disorder on the 2×2 square lattice, here 
decomposed into α and β sublattice sites, represented by circles and squares, 
respectively, with A atoms and B atoms shown as black and white symbols, respectively. 
(a) isolated Aβ antisite; (b) pair of first nearest neighbor Aβ-Bα antisites; and (c) (10) 
antiphase boundary. 

It is also interesting to relate the excess energy of bound antisites to the excess 

energy of antiphase boundaries. As illustrated in Fig. 8(c), it is readily seen that the 

excess energy per unit length a of an infinite {10} APB is directly related to ΔEAS
( ∞ )

through γ APB
{ 10 } = ΔEAS

( ∞ ) / ( 2a ) = −2J1(1− 2R ) / a . The presence of low-energy APBs as R 

approaches ½ is thus fully consistent with the {10} faceting of APBs observed in the 

simulations, see for instance Fig. 4(c,d). We also note that atoms in the core of these 

APBs are organized in motifs that are embryos of the 2×1, “super-antiferromagnetic” 

state. The fact that γ APB
( 10 ) → 0 as R →  ½ is thus directly related to the degeneracy of the 
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ground state between the 2×1 and 2×2 ordered structures for R = ½. The net conclusion 

of this discussion is that a simple consideration of the energetics of antisite interactions 

provides a reasonable rationalization for the observations reported in Section III that, for 

R = 0.45, antisites can cluster and form nuclei for antiphase domains. 

We next illustrate how the kinetic stabilization of bound antisites can lead to the 

patterning of order. For this purpose we modify a model previously introduced to account 

for patterning of order under irradiation conditions that result in the formation of 

disordered zones by displacement cascades [43]. The model relies on the idea that in the 

patterning state there is an equal volume fraction of the antiphase domains allowed by the 

symmetry of the ordered phase, whereas in a single-domain LRO state, the microstructure 

contains only one macroscopic variant. The transition from one steady state to another 

can thus be captured by monitoring the area fraction occupied by one variant, A1. This 

evolution is coupled to that of the APB length per unit area, LAPB, and to the 

concentration of antisites. We derive in Appendix A, the defining equations for how 

irradiated system will evolve and provide steady-state solutions. The key results are: At 

low ballistic jump frequency, A1 = ½ is an unstable solution, just as it is in the absence of 

irradiation. The order microstructure is thus expected to coarsen in such a way that one 

ordered domain, say belonging to variant 1, overruns the whole volume, i.e., A1 → 1. At 

higher ballistic jump frequency, however, A1 = ½ becomes a stable solution, and the APB 

length per unit area stabilizes at a non-zero value. This solution thus corresponds to the 

patterning of order steady state. While the above model is phenomenological, it provides 

direct support for the conclusion reached earlier that the clustering of antisites and the 

ensuing nucleation of new domains, as observed in the simulations, are processes that can 
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stabilize patterns of order. Returning to Eq. (1), it suggests that the patterning observed 

here results from a coupling between the dissipation of the excess free energy due to 

nonequilibrium antisites and the domain boundary dynamics, a coupling that cannot be 

captured by Eq. (1) in its present form. One possible path to address this limitation would 

be to replace the scalar order parameter S by a two-dimensional order parameter that 

would describe the 2×2 and the 2×1 structures at once, since APBs of the 2×2 structure 

can be seen as very small elements with a 2×1 ordered state, and to take into account that 

thermally activated jumps are mediated by vacancies. This extended model would capture 

key thermodynamic and kinetic couplings between the disorder introduced by irradiation 

and the relaxation rates of this two-dimensional order parameter, and, as such, it might be 

able to generate patterning of order at steady state.  

 The results presented in this work focused on a simple 2D model alloy near a 

degenerate state. The analysis of these results indicate that ordering frustrations near this 

degenerate state biased the energy dissipation of the disorder introduced by ballistic 

jumps, leading to the kinetic stabilization of APBs and to patterning of order. This 

suggests that patterning of order under irradiation could be found in more complex alloy 

systems where the above requirements are met. The present results also indicate that, 

unlike the compositional patterning induced by finite-range mixing [6] and the order 

patterning induced by disordered zones [21,22], this novel patterning reaction does not 

rely on a finite length scale introduced by the external forcing. The possibility of 

irradiation-induced patterning without such an external length scale has been established 

for phase separating systems [44,45] but, to our knowledge, this is the first time that it is 

proposed by systems undergoing chemical ordering. 
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In the context of the recent findings of spontaneous domain formation in L12 ordered 

Cu3Au alloys during Ne ion irradiations [24] shown in Fig. 1, it is interesting to consider 

whether the above requirements could be met in Cu3Au. We first note that {100} APBs 

in Cu3Au exhibit strong faceting at equilibrium, thus suggesting that these APBs carry 

very low excess free energy. While it is problematic to calculate APB energies from 

standard first principles techniques [46,47] in Cu3Au, mean-field models provide simple 

expressions for the energy of an L12 ordered state and its APBs as linear combination of 

the pairwise interaction parameters J1, J2, J3 [48]. It is commonly assumed (and observed) 

that the strength of these pairwise interactions decrease with the interaction range, so that 

J1 should play a dominant role. Remarkably, J1 is absent from the expression of {100} 

APBs, thus providing further support to the idea that {100} APBs carry low excess 

energy. Lastly, for J1 < 0, the ground state is degenerate between the L12 and D022 

ordered structures for J2 = 0 [23]. The energetics of an L12 alloy with J2 ≪ J1  therefore 

shares key characteristics with the 2D square lattice model considered here when R 

approaches ½. It thus appears possible that under irradiation stable antisite clusters would 

form, and then contribute to the nucleation of new ordered domains, as observed in Fig. 1. 

Further work is needed, however, to test this hypothesis for Cu3Au, especially since 

nonequilibrium point defects play an important role in ordering and disordering kinetics 

under irradiation [49]. In the present model, the description of point defects has been 

simplified by ignoring interstitials and by treating vacancies as a conserved species. 

Additional simplifications were made in the parametrization of the kinetic model, 

including allowing vacancies to jump to first and second nearest neighbor sites to avoid 

vacancy trapping and using symmetric energy interaction parameters. Since these settings 
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affect the dependence of the thermal mobility, Mo in Eq. (1), with the local order 

parameters, they can modify the steady state reached by the system, as well as the 

transitions from one steady state to another. Overall, a predictive kinetic model for 

Cu3Au under irradiation should therefore not only be based on the L12 ordered structure, 

but include realistic treatment of point defect creation, migration, recombination and 

annihilation on sinks [50-52], along with a fuller account of irradiation-induced chemical 

disorder in nuclear collisions, as done for instance in ref. [8]. 

 

V. Conclusion 

Kinetic Monte Carlo simulations were employed to investigate the effect of 

ballistic disordering on the order microstructure of a 2D binary alloy on a square lattice, 

with first and second nearest neighbor interactions chosen to stabilize a 2×2 ordered 

structure at thermodynamic equilibrium. When the ratio R of second to first interaction 

energies approaches ½, a value where a degenerate state would exist at 0 K in the absence 

of ballistic jumps, it is observed that three possible steady states exist in the presence of 

ballistic jumps, namely disordered, long-range ordered with a single domain, or long-

range ordered with multiple domains that coexist dynamically. The stabilization of this 

third steady state, which corresponds to a self-organization of the driven alloy into 

patterns of order, is discussed by considering the dynamics of antisites and APBs under 

irradiation. In the R = 0.45 alloy, it is shown that pairs of antisites can form stable bound 

complexes, which then serve as nuclei for the formation of antiphase domains embedded 

in larger domains. From this analysis, it is proposed that this novel mechanism of 

patterning of order under irradiation can take place in more complex alloy systems, 
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including Cu3Au, for which recent experiments suggest that ion irradiation can lead to the 

continuous formation of antiphase domains. 
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Appendix A. Phenomenological model for patterning of order under irradiation 

We detail here a simple model to capture the transition from a single-domain long range 

ordered state to a state of patterning of order where multiple ordered domains coexist. 

Following the derivation in ref. [43] for an ordered state with 2 variants, the evolution of 

the APB length per unit area, LAPB, and of the variant area fraction, A1, in the absence of 

irradiation, can be written as: 

  

dLAPB

dt
= −g1M APB LAPB( )3

   (A1a) 

dA1

dt
= −g2 M APB LAPB( )2 1

2
− A1

⎛
⎝⎜

⎞
⎠⎟

  (A1b) 

where MAPB is a mobility of antiphase boundaries, and g1 and g2 geometric factors. The 

first equation is the standard Allen-Cahn equation [15]. The second equation indicates 

that A1 = ½ is an unstable steady state under thermal annealing, consistent with the fact 

that one variant should progressively invade the whole microstructure in this case. As 
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discussed in Section IV, the key irradiation effect for patterning is the formation of bound 

pairs of antisite. By analogy with rate equation models for point defects under irradiation 

[53], we introduce a simple rate equation to describe the evolution of the site fraction of 

antisites, Canti, 

  

dCanti

dt
= 1

2
Γb − KrCanti

2 − KbCanti
2    (A2a) 

where Kr and Kb are rate constants for recombination and for the formation of bound 

pairs, respectively. In the above equation, the absorption of antisites by APBs has been 

neglected for simplicity. The formation of bound pairs of antisites leads to the creation of 

new APBs and new domains, and paralleling again the derivations from ref. [43], these 

effects can be captured by modifying Eqs. (A1a,b) 

   

dLAPB

dt
= −g1M APB LAPB( )3

+ ℓKbCanti
2   (A3a) 

dA1

dt
= −g2 M APB LAPB( )2 1

2
− A1

⎛
⎝⎜

⎞
⎠⎟

+ 2A KbCanti
2 1

2
− A1

⎛
⎝⎜

⎞
⎠⎟

  (A3b) 

where ℓ  and A are respectively the APB length per unit area and the specific domain area, 

generated by the clustering of pairs of antisites. We set the irradiation term in Eq. (A3b) 

proportional to (1/2-A1) since the generation rate of new domains, e.g., of variant 1, 

increases as the overall fraction of the variant 2 increases. As the coefficient for this term 

is positive, it tends to stabilize microstructures with A1 = A2 = ½. 

 The evolution of the domain area fraction is the main point of interest here, and in 

the case of patterning of order it is expected that at steady state A1 = ½ be a stable 

solution, whereas in the case of a single-domain 2×2 ordered state, A1 should evolve 
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toward 0 or 1. We thus focus now on the stability of the A1 = ½ solution in Eq. (A3b). 

This stability is determined by the relative magnitude of the coefficients for the first and 

second terms in the right-hand side of Eq. (A3b) since these two terms are linear in (½ - 

A1). These two coefficients are however functions of Canti and LAPB and so, in principle, 

one would need to solve for the coupled evolution of the three Eqs. (A2, A3a, A3b). A 

first simplification is obtained by performing an adiabatic elimination of Canti, using its 

steady state value in Eqs. (A3a, A3b), since the antisite population reaches its steady state 

much faster than LAPB and A1. Second, Eq. (A3a) yields a unique, stable steady state for 

LAPB, which is finite and positive for finite ballistic jump frequency Γb. In order to assess 

the competition between the two terms in the domain area equation, Eq. (A3b), it is thus 

sufficient to replace the time-dependent LAPB by its steady state value, yielding  

  
dA1

dt
= − g2 M APB

ℓ
2g1

Kb

Kb + Kr

Γb

M
⎛

⎝⎜
⎞

⎠⎟

2 /3

− A Kb

Kb + Kr

Γb

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

− A1

⎛
⎝⎜

⎞
⎠⎟

= λ 1
2

− A1

⎛
⎝⎜

⎞
⎠⎟

  (A4) 

Analysis of the two terms in the bracket of the right-hand side in Eq. (A4) indicates that, 

at low ballistic jump frequency Γb, the first term dominates, so that λ is positive, and A1 = 

½ is an unstable steady state, i.e., the system forms a single domain 2×2 ordered state. As 

Γb increases, there is a critical value where λ changes sign and becomes negative, thus 

transforming the A1 = ½ into a stable steady state, i.e., stabilizing a multi-domain 2×2 

ordered state. This simple analysis assumes that Γb is small enough for the alloy to 

remain long range ordered over this whole range. While the above continuum model 

could be improved in many ways, it captures the transition from single-domain to multi-

domain 2×2 ordered states and provides a simple physical picture for some of the 
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parameters controlling this transition. In the case of an alloy system where the rate of 

formation of bound pairs of antisites is negligible compared to the antisite recombination 

rate, e.g., R = 0, 0.1 and 0.3, the ratio Kb/(Kb + Kr) become negligible, and LAPB and A1 

evolve then similarly to equilibrium systems, with a single-domain 2×2 ordered state, 

until Γb is so large that the steady state transitions to a disordered state. 
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