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Understanding the lattice thermal conductivity at high temperatures is important for many applications. We
characterize phonon quasiparticles numerically through a hybrid approach that combines first-principles molec-
ular dynamics and lattice dynamics. We find no lower-bound limits on phonon mean free paths in MgSiO3

perovskite. This contradicts the widely used minimal mean free path idea. The clear identification of phonon
quasiparticles validates the use of phonon gas model when phonon mean free paths are shorter than lattice con-
stants of solids. Using the phonon quasiparticle properties, we have calculated the lattice thermal conductivity
of MgSiO3 perovskite. The results are reasonable compared to recent experimental measurements.

PACS numbers: 63.20kg, 66.70.Lm, 91.60.Tn

Compared to electronic and photonic transport, lattice heat
conduction is more diverse and less well understood for many
materials1,2. At high temperature T , thermal conductivity κ(T )
often has a “saturated” behavior3–6. This is an upward devi-
ation from the well-known 1/T scaling7, suggesting a break-
down of the phonon quasiparticle gas model. The understand-
ing relies on a minimal mean free path (MFP) picture4,8–11,
added phenomenologically to the standard Peierls-Boltzmann
phonon gas treatment12,13. It is often used for practical in-
vestigations14–16. In this work, we investigate the phonon gas
model and the lattice thermal conductivity (κlat) of MgSiO3

perovskite (MgPv). We use a recent theoretical advance17, a
hybrid approach that combines first-principles molecular dy-
namics (MD) and lattice dynamics. MgPv, the most abundant
mineral component on Earth’s lower mantle, with significant
structural complexity, provides an excellent test bed for study-
ing thermal conduction with first-principles calculations. Sur-
prisingly, calculated phonon MFPs do not have the prescribed
minima and the computed κlat agrees reasonably with mea-
sured values from ambient pressure (P) to lower mantle P at
room temperature and obeys the typical linear dependence on
P seen experimentally18.

The phonon gas model gives the standard understanding
of lattice thermal conductivity of crystalline materials19–21,31.
Peierls-Boltzmann theory describes heat carried by phonon
quasiparticles. In relaxation-time approximation (RTA),

κlat =
1
3

∑

q,s

cq,svq,sℓq,s, (1)

where, cq,s, vq,s, and ℓq,s are heat capacity, group velocity, and
MFP, respectively, for mode (q, s) indexed with wave vector q

and branch s. The MFP is

ℓq,s = vq,sτq,s, (2)

where τq,s is the “single mode” phonon relaxation time. This
ignores the complication that other modes (q′, s′) (that cou-
ple to mode (q, s)) are also slightly out of equilibrium when

heat flows. The minimal MFP picture4,9–11 is the belief that a
phonon should propagate at least an interatomic distance, or
that ℓq,s > a, where a is the smallest crystal lattice constant.
If not, the minimal MFP idea claims that the phonon picture
breaks down and Eq. (1) is no longer valid. The minimal MFP
picture hypothesizes a minimum κlat,min = κlat(ℓq,s → a) when
MFPs reach their minimal values, ℓq,s ∼ a. The minimal
MFP idea has been regarded as valid phenomenology, use-
ful in various areas from semiconductor physics to mineral
physics14–16.

The fundamental quantity in our hybrid approach17 is the
mode-projected velocity autocorrelation function,

〈V(0)V(t)〉q,s = lim
t0→∞

1
t0

∫ t0

0
V∗q,s(t

′)Vq,s(t′ + t)dt′, (3)

The normal modes (q, s) have wave vectors q that are com-
mensurate with the supercell translations Am, m = 1, 2, 3.
That is, q · Am is an integer multiple of 2π for all q and m.
The mode-projected velocity for normal mode (q, s) is,

Vq,s(t) =
N∑

i=1

√
Mivi(t) · ǫiq,s exp(iq · Ri), (4)

where, vi(t)(i = 1, ...,N) is the atomic velocity produced by
first-principles MD simulations using a periodically repeated
supercell with N atoms. ǫiq,s(i = 1, ...,N) is the polarization
vector of normal mode (q, s) in harmonic approximation, ob-
tained from density functional perturbation theory32. Mi and
Ri are the atomic mass and coordinate of atom i in the super-
cell, respectively. Both Mi and ǫiq,s repeat periodically within
the supercell, with the periodicity of the primitive cell.

For a well-defined phonon quasiparticle, the correlator
〈V(0)V(t)〉q,s displays oscillatory decaying behavior. It can be
characterized by a renormalized phonon frequency, ω̃q,s, and a
linewidth, Γq,s, satisfying the condition |△ωq,s − iΓq,s| ≪ ωq,s,
where △ωq,s = ω̃q,s − ωq,s, with ωq,s being the harmonic fre-
quency21,33. The power spectrum of a well defined phonon
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quasiparticle,

Gq,s(ω) =
∫ ∞

0
〈V(0)V(t)〉q,sexp(iωt)dt, (5)

has a Lorentzian-type line shape. The concept of phonon
quasiparticles maps the complex anharmonic vibrations onto
a non-interacting picture. This enables kinetic gas (≡ Boltz-
mann equation) modeling21.

There is no unique definition of a quasiparticle. They are
excitations which do not decay too rapidly. A desirable def-
inition is that some scattering experiment can measure a cor-
relation function with a peaked energy distribution. The mea-
sured spectrum should agree with the counting rules of the
analog non-interacting system. Phonons in simple insulators,
measured with momentum-resolved neutrons, are good exam-
ples. Insulators with many atoms N per primitive translational
cell have 3N harmonic vibrations at each q. This can defeat
the ability of neutrons to resolve separate excitations. A com-
putational example is Fig. 1 of our earlier paper17. It shows
three harmonic normal modes of MgPv, all with the same q,
and closely spaced energies ωq,s, blurred into a single spectral
peak because of anharmonic broadening. No known experi-
ment can resolve separate peaks and satisfy the 3N counting
rule. Then we should ask, are there hidden, unmeasureable
quasiparticles? Computation indicates yes, because, unlike
experiment, it can project onto separate harmonic eigenstates.
Further discussion is in the Supplemental Materials.

An important property of quasiparticles is that the time and
space evolution of their density distributions Nqs is given by a
Boltzmann equation. Solution of this equation gives transport
coefficients. Two things are missing, and one benefit is added.
First, the scattering term in linearized Boltzmann theory is

(
dNq,s

dt

)
= −

Nq,s − nq,s

τq,s

−

q′,q∑

q′ ,s′

Ωq,s;q′,s′[Nq′ ,s′ − nq′,s′] (6)

The off-diagonal scattering terms Ωq,s;q′,s′ are not available in
our approach, forcing the RTA (which usually works well ex-
cept at low T 34). Second, the velocity autocorrelation func-
tion, when projected onto harmonic basis states, has off-
diagonal terms that describe anharmonic mode mixing. These
should be computed, and the quasiparticle states should be
found by unitary transformation into the basis which has the
cleanest diagonal spectrum (least weight in off-diagonal cor-
relations). Fortunately, our investigation of this effect in
MgPv indicates that even at T up to 1500K and beyond,
such effects are unimportant. The added benefit is higher
order anharmonicity. The forces used in our MD computa-
tions come from accurate density-functional theory (DFT),
with no restriction to lowest order anharmonic forces. The
Boltzmann scattering operator is restricted to third order
forces35,36. But Boltzmann theory uses a formula for the
current

∑
~ωq,svq,sNq,s which lacks anharmonic corrections31,

and our method adopts this also.
To demonstrate the ideas described above, we do Born-

Oppenheimer molecular dynamics (BOMD)37 of MgPv us-
ing the LDA and pseudopotentials that have been extensively

FIG. 1: (a) and (b) show the mode-projected velocity autocorrelation
functions of one optical mode (q, s) at q = (0, 0, 1

2 ) obtained at 300 K
and 1500 K, respectively, of MgPv with a volume of 24.1 cm3/mol.
(c) and (d) show the corresponding power spectra. The vertical
dashed lines at 884 cm−1 in (c) and (d) indicate the harmonic fre-
quency of this phonon mode. For (c) and (d), the frequency shifts
△ωq,s are respectively 2 cm−1 and 10 cm−1, and linewidths Γq,s are
respectively 7.3 cm−1 and 34.5 cm−1.

used in previous studies of MgPv17,38. Initial atomic struc-
tures with Pbnm symmetry are first fully relaxed to P =

0, 10, 40, 80, and 120 GPa, via variable-cell-shape molec-
ular dynamics (VCS-MD)39. The resulting volumes V are
24.1, 23.2, 21.3, 19.6 cm3/mol, respectively. Next, BOMD
simulations of 2×2×2 (160 atom) supercells are done at each
V for temperatures from 300 to 4000 K, using Nosé-Hoover
dynamics40. The simulations run for 60 ps with a 1 fs time
step, sampling k = (0, 0, 0) of the supercell Brillouin zone. To
improve phase-space sampling, 5 independent runs of 60 ps
each are made. In the BOMD simulation, the MgPv crystals
are further stabilized by a thermal pressure at high T 41. The
thermal ∆P can be as high as 31 GPa at 4000 K, causing an
actual P up to 151 GPa. The wide range of T and P allows
systematic study of κlat. Both BOMD and VCS-MD are im-
plemented with the Quantum Espresso code42, using the plane
wave pseudopotential method43. We also do simulations with
a 3 × 3 × 3 supercell (540 atoms), and compare the phonon
lifetimes with those from the 2 × 2× 2 supercell (see the Sup-
plementary Material for details22). The good agreement indi-
cates that the 2 × 2 × 2 supercell is sufficient to converge the
relaxation time τq,s.

Figs. 1(a,b) show mode-projected velocity autocorrelation
functions 〈V(0)V(t)〉q,s obtained at T = 300 and 1500 K, of
one optical mode at q = (0, 0, 1

2 ) (primitive cell coordinates)
for MgPv. The harmonic frequency ωq,s is 884 cm−1, at
V = 24.1 cm3/mol. Initial amplitudes∼ kBT indicate equipar-
tition. Because many modes are excited and frequent scat-
tering occurs at high T , 〈V(0)V(t)〉q,s decays much faster at
1500 K than at 300 K. More details of the vibrational decay
with T are in the power spectra. Figs. 1(c,d) show that both
spectra have a single peak, allowing identification of the fre-
quency shift △ωq,s and linewidth Γq,s. At 300 K (1500 K),
△ωq,s ≃2 cm−1 (10 cm−1) and Γq,s ≃ 7.3 cm−1 (34.5 cm−1).
The criteria for well-defined phonon quasiparticles is satis-
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fied for all 480 modes sampled by our MD. The lifetime
τq,s ≡ 1/2Γq,s

31 for this mode is ∼ 0.36ps at 300 K, compa-
rable with the experimental values extracted from the infrared
spectra33, and decreases rapidly to ∼ 0.07ps at T = 1500 K.

Characterization of phonon quasiparticles provides a foun-
dation for investigating vibrational properties using phonon
gas theory. The frequency shift △ωq,s can be used to cal-
culate the anharmonic free energy17. Here, the lifetime τq,s

is used to study the phonon MFP and κlat within the phonon
gas model, given that τq,s should hardly differ from the trans-
port relaxation time34. Fig. 2 shows that the phonon MFP
|ℓq,s|, extracted for the mode depicted in Fig. 1, follows the
1/T law, as predicted also by the lowest order many-body
perturbation theory21. This confirms that MgPv is weakly
anharmonic 17,44,45. The small deviation within uncertainty
may originate from several factors, such as incomplete phase
space sampling in BOMD. What is surprising is, that at T ∼

500 K, |ℓq,s| can be shorter than lattice constants, even though
this is the fastest of the optical modes at q = (0, 0, 1

2 ), with
vq,s = 3174m/s. In particular, |ℓq,s| is similar in size to the
Mg−O bond length, ≃ 3.0Å for MgPv at the volume studied
here, when T > 1200 K. The MFP |ℓq,s| of all the phonon
modes at T = 1200 K is shown in Fig. 2(b).

It is worth noting that BOMD, with 2 × 2 × 2 supercells,
samples only zone center and high symmetry (primitive cell)
zone edge q-points. Therefore, we have carried out a BOMD
simulation with a 3 × 3 × 3 supercell at the same volume of
24.1 cm3/mol at T = 1200 K. The larger supercell samples
some non-special q-points inside the primitive Brillouin zone.
The extracted MFPs summarized in Fig. 2(b) display similar
behavior as those extracted from 2 × 2 × 2 supercells. This
shows that the size effect of BOMD simulation on phonon life-
time τq,s is sufficiently converged (see the Supplementary Ma-
terial22 for more detailed comparison between the results ob-
tained with 2×2×2 and 3×3×3 supercells). More importantly,
it can be seen that once more, the MFPs are shorter than prim-
itive lattice constants for many modes. Therefore, we argue
that this applies for most of the q-points which are not sam-
pled in the current BOMD simulation. Since phonon quasipar-
ticles are well-defined throughout the temperature range of in-
terest, this shows that it is unphysical to assume a lower bound
ℓmin comparable to lattice parameters. Therefore Eq. (1) does
not suggest that κlat has a lower limit.

These observations validate the phonon gas model such that
calculation of κlat with Eq. (1) is still physically meaningful
even when MFPs are shorter than lattice constants. They also
demonstrate the importance of ab initio atomistic simulations.
Computed 〈V(0)V(t)〉q,s depicts the decay dynamics of nor-
mal modes due to anharmonic phonon-phonon interactions.
Quasiparticles acquire a renormalized frequency ω̃q,s, and a
linewidth, Γq,s from anharmonic forces. Their accuracy has
been verified by reproducing17 other anharmonic effects, i.e.

measured thermal shifts for IR active modes. This success
enables first-principles calculation of temperature-dependent
phonon dispersions and anharmonic free energies. MgPv de-
termines many properties of the Earth’s lower mantle. We
have previously extracted thermoelasticity44. Now we show
that our extracted phonon lifetimes enable theoretical predic-

FIG. 2: (a) MFP |ℓq,s | of the mode at q = (0, 0, 1
2 ) with harmonic fre-

quency 884 cm−1 (open circles), and averaged MFP ℓ̄, for all modes
at q = (0, 0, 1

2 ) (open squares), calculated in the 2 × 2 × 2 MD super-
cell. Solid curves are 1/T fits. (b) MFP |ℓq,s | at 1200 K for all modes
with non-zero group velocities calculated in the 2 × 2× 2 MD super-
cell (open circles) and in the 3 × 3 × 3 MD supercell (solid squares).
The insert shows |ℓq,s | of some acoustic modes at q = (0, 0,±1/3).
In both (a) and (b), the horizontal dashed lines represent the lattice
parameters of MgPv, a0, b0, and c0, which define the Pbnm primitive
cell with a volume of 24.1 cm3/mol.

tion of κlat of MgPv. This has important geophysical implica-
tions. Heat transport in the mantle is dominated by convec-
tion, but conduction plays a role 46. Conduction is believed
to be the main mechanism of heat transport across the core-
mantle boundary (CMB) where mass transport is impeded 47.
Thermal conduction properties of the lower mantle are poorly
known. Experimental determination of κlat relies on extrapo-
lation of existing data obtained at low P, T , to high P, T 48.
The reliability of this extrapolation is not yet verified. Recent
progress has enabled measurements of κlat of MgPv to CMB
pressures at room temperature18. However, available data at
ambient conditions do not suffice to give κ at lower mantle
conditions.

Fig. 3 shows our calculated κlat versus T and P of MgPv
covering the range from ambient to CMB conditions. Relax-
ation times τq,s are found for 60 modes at each sampled q in
our 2× 2× 2 supercell BOMD simulations at various T ’s. We
note that BOMD simulations with a similar supercell size have
generated satisfactory results for MgO periclase51. More dis-
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FIG. 3: (a) κlat versus T of MgPv at 5 volumes (solid symbols). Con-
tinuous lines show the 1/T dependence. (b) κlat versus P of MgPv
at 5 temperatures. The shaded areas indicate uncertainties calculated
from five parallel BOMD runs. The experimental data (open sym-
bols: �18, ◦49, ^16, △48 ) and theoretical results of other investigators
(dashed line35, dashed dot line36, and dashed dot dot line50) at room
temperature are shown for comparison. Error bars are also shown
for experimental data. Results under the grey shaded area are not
covered in these simulations. They are linear extrapolations to 0 K.

cussion regarding size effect on τq,s and κlat can be found in the
Supplemental Material. Phonon velocities vq,s are first calcu-
lated from the harmonic phonon dispersion, and then thermal
renormalization is added 17. Availability of thermal renormal-
ization is another advantage of the present approach.

Fig. 3(a) shows that the calculated κlat follows the typi-
cal 1/T scaling at constant volume. The small deviations lie
within the uncertainties. Results at several volumes allow
quantitative characterization of the volume (density) depen-
dence of κlat in terms of the parameter52

g =
∂ln(κlat/κ

0
lat)

∂ln(V0/V)
, (7)

where κ0lat is the value at a reference volume V0. Calculation
of g at T = 300, 600, 1000, 2000, and 4000 K, indicates that
g is nearly temperature-independent, with a value of 5.4±0.2.
This agrees well with the experimental value g = 5.618 at 300
K, see Table I.

Since important experimental data were collected at ambi-
ent temperature, we have converted κlat (T,V) into κlat (T, P)
using a well-established quasiharmonic equation of state45

obtained using the same techniques employed in this work.
Fig. 3(b) shows that the calculated κlat (T, P) agrees well with
experimental results from ambient P to lower mantle P at
300 K18. The κlat measured by Manthilake et al.16 is larger
than other experimental reports18,48 and larger than our pre-
diction (see the Supplementary Material22 for more analysis).
Our κlat (T, P) has a linear P dependence, as also seen in exper-
imental studies of MgPv18 and MgO53. Prediction of κlat for
MgPv by other recent first-principles calculations35,36,50 are
less consistent with experimental data, as shown in Fig. 3(b)
and Table I.

To summarize, using the hybrid method combining first-
principles molecular dynamics and lattice dynamics, we have
studied vibrational properties and calculated κlat of MgSiO3

perovskite over wide T and P ranges. Investigation of phonon
quasiparticles in this system produced unexpected results.
Calculated mean free paths are found to have no lower bound
limits as prescribed by the minimal mean free path theory.
This, together with the well characterized phonon quasiparti-
cles, extends the regime of validity of the phonon gas model.
Our finding is based on a thorough analysis of phonon quasi-
particles, and is further supported by the agreement of our
calculated κlat with experiments. Our study may shed light on
heat transport for a wide range of materials, such as minerals
under the extreme conditions of Earth’s interior, and semicon-
ductors used for thermoelectric applications.
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