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Abstract: We propose a route towards creating a metamaterial that behaves as a photonic Chern 

insulator, through homogenization of an array of gyromagnetic cylinders. We show that such an 

array can exhibit non-trivial topological effects, including topologically non-trivial band gaps and 

one-way edge states, when it can be homogenized to an effective medium model that has the Berry 

curvature strongly peaked at the wavevector k=0. The non-trivial band topology depends only on the 

parameters of the cylinders and the cylinders’ density, and can be realized in a wide variety of 

different lattices including periodic, quasi-periodic and random lattices. Our system provides a 

platform to explore the interplay between disorder and topology and also opens a route towards 

synthesis of topological meta-materials based on the self-assembly approach. 
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The classification of band structure in terms of band topology in classical waves has led to the newly 

emerging field of topological photonics and phononics. [1-32] The majority of previous works on 

topological photonics and phononics consider periodic structures, where the non-trivial topology 

arises from the scattering of waves by the periodic structure. Complementary to the developments of 

topological photonic and phononic crystals, however, there have also been significant recent works 

on topological meta-materials. [29-33] In these designs of topological metamaterials, one considered 

a uniform system as characterized by an electromagnetic susceptibility such as a permittivity or 

permeability tensor, and identified nontrivial topological features in the band structure associated 

with such a susceptibility.  

  

Since the possible susceptibilities of naturally occurring materials are rather limited, for the vast 

majority of works on meta-materials, one considers an inhomogeneous system consisting of an array 

of meta-atoms, and obtains its effective susceptibility, which defines the corresponding effective 

medium through a homogenization procedure. Therefore, a question that is central to the 

development of topological metamaterial naturally arises: to what extent does the homogenization 

procedure preserve topological properties? This is to say, for a given effective medium that has 

topological features, can one construct a physical system consisting of an array of meta-atoms, which 

homogenizes to such an effective medium, and exhibits some of the non-trivial topological properties? 

This question, which is of central importance to the physical implementation of topological 

metamaterial, has not been addressed in previous literature on topological metamaterial and in fact is 

quite subtle. In spite of the existence of standard homogenization procedure, it is far from obvious, a 

priori, that the topology of a physical metamaterial system consisting of an array of sub-wavelength 

elements can be understood in terms of its effective medium, no matter whether such an effective 

medium is local or nonlocal. For an effective medium model to work, the effective wavelength, 

which is the length scale at which the field varies, should be much larger than the size of the unit cell. 

Since at the Brillouin zone boundary, the effective wavelength is always comparable with the size of 

the unit cell, there is no guarantee that effective medium model can be used to obtain the information 

about the band structure over the entire first Brillouin zone. And yet such information is necessary to 

determine the topology (such as the Chern number) of the band structure. 
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In this paper, we address the question above by constructing an effective medium in which the Berry 

curvature of its band structure is strongly peaked at 0k = , where k  is the wavevector. Since the 

effective medium model should describe the physical structure very well near 0k = , we expect that 

the non-trivial band topology of the effective medium model should also manifest in the physical 

metamaterial systems. And indeed, through numerical simulations, we find that our metamaterial 

systems with a wide variety of lattices, including periodic, quasiperiodic, and random lattices, all of 

which homogenize to the same effective medium model, all possesses complete non-trivial 

topological band gap. We also note that only part of the topological features of the effective medium 

persist in the inhomogeneous physical system. 

 

From a fundamental physics perspective, the systems that we consider here may provide a platform 

to explore the interplay between order or disorder and topology. From an experimental perspective, 

creating a disordered system with non-trivial topology may relax the stringent requirements for 

fabricating topologically non-trivial photonic and phononic systems. While there have been several 

very recent works on nontrivial topological photonic structures utilizing aperiodic lattices [34-36], 

our construction differs in that it is not based on any specific lattice [34,35] or needs to engineer the 

local connections [36]. The structure reported here may therefore open a route towards synthesis of 

topological meta-material based on the self-assembly approach.[37-39] 

 

We first introduce an effective medium model that exhibits non-trivial topology in its band structure, 

and has the Berry curvature of its band structure strongly peaked at 0k = . We consider 

electromagnetic waves in two dimensions and focus on the TM polarization, which has the electric 

field zE  along the z-direction and the magnetic field xH , yH  in the xy− plane. For such a TM 

polarized wave, we consider an effective medium model where the relevant effective 

electromagnetic materials are the relative electric permittivity eε  along the 𝑧-direction, and the 

relative magnetic permeability in the 𝑥𝑦-plane, which has the form ( ), ; ,e r k k ri iµ µ µ µ µ= −
t

. In order 

to achieve a band structure with non-trivial topology, we start with the case where 0kµ = , and  
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The starting point of our system is therefore the Epsilon and Mu Near Zero (EMNZ) systems that 

have been widely considered in the meta-material literature. [40] Here we consider a lossless system. 

eγ  and µγ  are both positive as required by causality. [41] When E Hω ω≠ , (Fig. (a)), the system 

supports a mode that is singly degenerate at 0k =  having a frequency Eω ω= . This mode exhibits 

a quadratic dispersion at 0k ≠ . The system also supports at 0k =  a pair of doubly degenerate 

modes at Hω ω= . At 0k ≠  the two modes split into two bands, one with flat dispersion and the 

other with quadratic dispersion. By setting 0E Hω ω ω= ≡ , we force a three-fold accidental 

degeneracy at 0k = . [42,43] At 0k ≠ , the three modes split into two bands with a Dirac-like linear 

dispersion as well as a flat band, as shown in Fig. (b).  

 

Starting with the band structure in Fig. (b), we then break time-reversal symmetry by setting a 

frequency-independent 0kµ ≠ . Now the three-fold degeneracy at 0k =  is completely lifted as 

shown in Fig. (c) and two band gaps are introduced into the system. Both of these band gaps are 

topologically non-trivial. To see the nontrivial topology, here we develop a Hamiltonian for the 

Maxwell’s equations near 0ω . For the system with 0kµ = , an effective Hamiltonian has been 

developed to describe the physics in the vicinity of the triply degenerate point. [44]. For our system 

here with 0kµ ≠ , starting from the Maxwell’s equations, and keeping only the lowest order of 

0ω ω ωΔ ≡ −  we obtain  
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where !µk = µk / γµ , ( ), , 0/x y x yk k c ε µω γ γ=% , , 0 ,x y x yH Hµµ γ=% , 0z zE Eεε γ=%  and c  is the 

speed of light. Here xk  and yk  are the wavevectors, respectively. The matrix on the right-hand 

side of Eq. (2) can now serve as an effective Hamiltonian. The three eigenvalues of this Hamiltonian 
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are given by { }2 2 20, x y kk k µ± + +% % % , which is consistent with the band dispersion in Fig. (c). With the 

effective Hamiltonian obtained, we can determine the total Berry flux for the upper, middle, and 

lower bands to be ( )sgn 2kµ π− , 0 and ( )sgn 2kµ π , respectively, when 0kµ ≠ . Thus we have 

introduced an effective medium model with topologically non-trivial band gaps. Such an effective 

medium model thus represents a photonic Chern insulator. While there have been many theoretical 

proposals and experimental demonstrations of photonic Chern insulators [4-9], the effective medium 

model as proposed here represents a route for creating a Chern insulator that was not previously 

reported. In this model, the Berry curvature peaks at 0k = , as shown in Fig. 1(d). Therefore, we 

anticipate that this effective medium model can be used to guide the construction of physical 

meta-material structures through homogenization.  

 

Motivated by the effective medium model as presented above, we now consider physical 

metamaterial systems which homogenize to this model at 0k = . We first consider an individual 

cylinder with radius cr , relative permittivity cε  and the relative permeability in the 𝑥𝑦-plane 

( )1, ; ,1c i iµ κ κ= −
t , where κ  is assumed to be frequency independent. This is a simplified model for 

gyromagnetic effects. A more sophisticated model of the gyromagnetic effects can be found in 

Ref.[44]. The main results of the paper are not affected by the use of the more sophisticated model. 

The electric and magnetic dipole responses of a cylinder are described by loc
0 Ep Eε α=

rr
 and 

locm Hα± ±=
rr

, where 
!
E loc  and 

!
H loc  represent the local electric and magnetic fields, respectively, 

Eα  and α±
 represent respectively, the electric and magnetic dipole polarizabilities, and can be 

found in Supplemental Material S. I.   

 

We then consider a metamaterial system consisting of an array of cylinders as described above. An 

example of such metamaterial is shown in Fig. (a). Following the procedure in Ref. [45], we derive 

the effective medium parameters by solving the scattering problem as illustrated in Fig. (b). Here one 

particle is set at the center of a cylindrical cavity filled with air and surrounded by a background 

consisting of the effective medium. The radius of the cylindrical cavity 0r  is chosen such that 



6	
	

2 2
0 / 1r aπ = , where 21/ a  is the number of cylinders inside a unit area for the random array. The 

parameters of the effective medium are determined by assuming that there is no scattering by the 

cavity for waves incident from the effective medium in the limit where the wavelength in the 

effective medium is much larger than 0r , in which case only the electric and magnetic dipole 

responses of the cylinder need to be taken into account. The no-scattering condition gives (Refer to 

the Supplemental Material S-I for detailed derivations.)  
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with ( )2 2/k k r kµ µ µ µʹ ʹ ʹ= − − , ( )2 2/r r r kµ µ µ µʹ ʹ ʹ= − , and 0k  is the wavevector in vacuum. ( )nJ x , 

( ) ( )1
nH x , ( )nJ xʹ  and ( ) ( )1

nH xʹ  are the Bessel function and Hankel function of the first kind and 

their derivatives. It can be proved that the effective parameters as described in Eqs. (3) and (4) are 

purely real when the system is nonabsorptive. [45] (See also Supplemental Material S.I) When the 

time-reversal symmetry is preserved, i.e, when 0κ =  in cµ
t , the effective parameters having the 

form of Eq. (1) can be achieved by choosing the parameters of the cylinders such that the electric and 

magnet dipole responses have the same resonant frequencies, which then results in the dispersion 

relation shown in Fig. (b). [42] Starting from such a cylinder, the dispersion relation in Fig. (c) can 

then be achieved by setting 0κ ≠  in cµ
t , which breaks the time-reversal symmetry.  

  

Using full wave simulations, we now show that different lattices of the cylinders as discussed above, 

all of which homogenize to the same effective medium model has described above, in fact all 

possesses non-trivial topology in their band structures. In Fig. (a), we consider the square lattice case. 

The cylinders have the parameters 0.1735cr a= , 20cε = , and 0κ = , which are determined 

following the homogenization procedure as outlined above. The three-fold degeneracy at the Γ  
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point (i.e. 0k =  point) and conical-like dispersion near the Γ  point are consistent with the 

effective model as plotted in Fig. (b). In fact, we can find similar band dispersions near the Γ  point 

as those in Fig. (a)-(c) by varying some of the parameters of the cylinders. (See the Supplemental 

Material S. II). Based on the square lattice discussed above, we now consider the strip geometry 

shown in Fig.  (c). The lattice consists of the same cylinder as discussed above but with 0.08κ = . 

The lattice is periodic along the y direction and truncated by a perfect magnetic conductor (PMC) 

boundary on the left and a perfect electric conductor (PEC) boundary on the right. The projected 

band and the corresponding surface states are shown in Fig. (b). The field distribution of one of the 

surface states near the PEC boundary is also shown in Fig. (c). The projected band structure consists 

of three groups of bulk bands. Dispersions of the upper and lower groups of bulk bands agree well 

with the effective medium model near the Γ  point. And as predicted by the effective medium 

model, the breaking of time reversal symmetry introduces a local Berry flux of 2π  and one-way 

surface states emerge near the Γ  point.  

 

On the other hand, the effective medium model does not describe the band structure for the 

wavevectors significantly away from the Γ  point. First, the middle band is no longer perfectly flat. 

Second, as shown in Fig. 3a, there exists a band degeneracy between the lower two bands at the M 

point protected by the combination of time-reversal symmetry and the 4C v  lattice symmetry. Such 

degeneracy is not predicted by our effective medium model. When this degeneracy is lifted by 

breaking the time-reversal symmetry, a Berry flux of 2π  peaks at the M point and as a result, the 

lower band becomes topologically trivial. The surface states inside the lower band gap, emerge near 

the Γ  point, almost reach the other band, but then merge back into their original bands.  

 

In the square lattice structure, we observe that the effective medium model of Fig.  generally agrees 

well with the band structure of the physical system near Γ  point. Moreover, the upper band of Fig.  

in the effective medium model agrees quite well with the band structure of the physical system. As a 

result one can achieve a topologically non-trivial band gap between the upper and the middle band in 

the physical systems. And a one-way edge state can be found in such a band gap in a truncated lattice. 

The lower band, on the other, significantly differs from the effective medium model away from Γ . 
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These observations turn out to be generally applicable for other lattices that homogenize to the same 

effective medium model. As an additional example, results for a triangular lattice are shown in 

Supplemental Materials S. III. Therefore, we have shown that the effective medium model as we 

developed here provides the guidance for creating a class of non-trivial topological meta-material 

with different periodic lattices.   

 

We now show that the effective medium model can be used to guide us in constructing random or 

quasi-periodic system with a non-trivial topological band gap and a one-way edge state. The 

evolution of the band structures from a square lattice to a completely random lattice is discussed in 

Supplemental Material Sec. VI. As an exemplary demonstration of random systems, we consider a 

geometry with a supercell as shown in Fig. (a). The supercell forms a square lattice and each 

supercell contains 25 cylinders with the same radius, dielectric constant and density of cylinders as in 

Fig. (b), except with 0.4κ = . Within each supercell, the cylinders are randomly distributed with 

equal probability while keeping the minimal distances between cylinders to be larger than 0.8a so 

that the dipole approximation remains valid. The projected band structure for a strip geometry with 5 

supercells along the y direction is shown in Fig. 4a. The strip is truncated in the y-direction with PEC 

boundaries on the upper and lower sides, and is assumed to be periodic along the x direction. The 

structure supports a topological non-trivial band gap, the frequency range of which corresponds to 

the upper band gap in the effective medium model. Within the gap the structure supports one-way 

surfaces states with opposite propagation direction on the upper and lower boundaries, respectively 

(blue and red curves in Fig.  (a)). These features are consistent with the effective medium model. 

We also note that in the effective medium model the upper edge of this nontrivial band gap 

corresponds to eff 0µ = , while the lower edge corresponds to effµ →∞ . (See Supplemental 

Material Sec. I) This feature is consistent with Ref. [46]. However, the interaction in Ref. [46] is 

short-ranged (only limited to particles within a finite distance), our construction does not make 

assumptions about the ranges of interactions between particles, and the electromagnetic interaction 

between particles in the array systems similar to ours is typically not short-ranged. 

 

The existence of one-way edge state in a random system can also be visualized by simulating a finite 
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system as shown in Fig. (b). The cylinders are the same as Fig. (a) and the minimal distances 

between cylinders are also kept to be larger than 0.8a. This lower-side of the finite system is 

truncated by a perfectly matched layer [47] to absorb the wave. The remaining boundaries of the 

system consist of PEC. The wave propagates anticlockwise without being backscattered when the 

frequency of the source is inside the nontrivial bandgap. While here we show an example of a 

random lattice, similar effects of band gap and one-way edge states are also observed in other 

isotropic systems such as quasicrystals with the same cylinder and cylinder density. (See 

Supplemental Material Sec. IV)  

 

In conclusion, we theoretically propose and numerically demonstrate a route towards creating a 

metamaterial that behaves as a photonic Chern insulator, through homogenization of an array of 

particles. While for concreteness we have considered cylindrical particle possessing gyromagnetic 

effects, one can achieve similar results with gyroelectric effects more commonly used in the optical 

frequency range. Also the particles can be of other shapes provided that their response can be well 

described by the electric and magnetic polarizabilities. Our method can easily be extended to create 

meta-materials that achieve electromagnetic analogues of quantum spin Hall systems, and be 

generalized for other classical wave systems.  

 

 

This work is supported by the U. S. Air Force of Scientific Research (Grant No. FA9550-12-1-0471), 

and the U. S. National Science Foundation (Grant No. CBET-1641069). M. X. thanks Dr. S. B. 

Wang for help with COMSOL simulations.  
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Fig. 1 (color online). The dispersion relation for the system as described by Eq. (1) with 3ε µγ γ= = .  

0ω  is a reference frequency, c  is the speed of light in vacuum and k  is the in-plane wave vector. 

(a) 01.01Eω ω= , 00.99Hω ω= , 0kµ = . (b) 0E Hω ω ω= =  and 0kµ = . (c) 0E Hω ω ω= =  and 

0.03kµ = . (d) Red and blue represent the Berry flux β  of the highest and lowest bands in (c), 

respectively. The Berry flux of the middle band in (c) is exactly zero.  

 

 



11	
	

 
Fig. 2(color online). (a) A system consisting of a random array of cylindrical particles (solid blue 

disks). Each particle is described by its electric and magnetic dipole responses to external 

electromagnetic fields. There are in total 25 cylinders with the same radius in (a). The cylinders are 

randomly distributed with equal probability while keeping the minimal distances between cylinders 

to be larger than 0.8a, where 1/	 2a  represents the density of cylinder. (b) A sketch showing the 

geometry used in deriving the effective parameters, eε  and eµ
t , which provide an effective medium 

model for the array in (a). The light blue regions is filled uniformly with material having such 

effective parameters. 

 

 

 
Fig. 3 (color online). (a) The band structure of cylinders in a square lattice. (b) Projected band 

structure (gray area) and corresponding surface states with the supercell in (c). This supercell is 
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terminated by a PMC boundary on the left and PEC boundary on the right. Here red and blue curves 

represent the surface states at the PEC and PMC boundaries, respectively. The Chern numbers for 

the band and the gap Chern numbers in (b) are labeled in red and cyan, respectively. The electric 

field amplitude of the surface state marked by red star ( / 0.2yk a π = − ) in (b) is also shown in (c), 

where red and blue colors represent maximum and zero field amplitudes, respectively. The cylinder 

has a radius of 0.1735cr a= , where a  represents the lattice constant of the square lattice. The relative 

permittivity of the cylinders is 𝜖! = 20. 0κ =  in (a) and 0.08κ =  in (b) and (c).  

 

 

 
Fig. 4 (color online). (a) The projected bulk band structure (gray regions) and the band structure of 

surface states (red and blue curves) of a strip geometry consists of 5 of the supercells, each of which 

is shown in Fig. (a). The upper and lower boundaries of the strip are terminated by PECs and the 

strip is periodic along the horizontal direction. The blue and red curves represent the surface states 

on the upper boundary and the lower boundary, respectively. (b) One-way edge modes supported by 

a finite random lattice of cylinders. Here the red star marks the position of the source with an 

operating frequency at ( )/ 2 0.547a cω π = . The rectangles on the lower end of the figure represents 

a perfectly matched layer (PML) region that absorbs the waves. All the other outer boundaries in (b) 

are PEC.  The radius of the cylinder and the relative permittivity are 0.1735cr a=  and 20, 

respectively, where 21/ a  is the density of the cylinders, and 0.4κ = .  
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