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Au-Fe alloys are of immense interest due to their biocompatibility, anomalous hall conductivity,
and applications in various medical treatment. However, irrespective of the method of preparation,
they often exhibit a high-level of disorder, with properties sensitive to the thermal or magnetic
annealing temperatures. We calculate lattice dynamical properties of Au1−xFex alloys using density
functional theory methods, where, being a multisite property, reliable interatomic force constant
(IFC) calculations in disordered alloys remain a challenge. We follow a two fold approach: (1) an
accurate IFC calculation in an environment with nominally zero chemical pair correlations to mimic
the homogeneously disordered alloy; and (2) a configurational averaging for the desired phonon
properties (e.g., dispersion, density of states, and entropy). We find an anomalous change in the
IFC’s and phonon dispersion (split bands) near x=0.19, which is attributed to the local stiffening of
the Au-Au bonds when Au is in the vicinity of Fe. Other results based on mechanical and thermo-
physical properties reflect a similar anomaly: Phonon entropy, e.g., becomes negative below x=0.19,
suggesting a tendency for chemical unmixing, reflecting the onset of miscibility gap in the phase
diagram. Our results match fairly well with reported data, wherever available.

PACS numbers: 62.20.-x, 63.50.Gh, 65.40.-b, 65.20.dk

Gold (Au) and iron (Fe) and their alloys continue to at-
tract attention. Due to the higher magnetic state of Fe in
Au-Fe than in pure Fe, various properties have been stud-
ied, including thickness dependent spin-glass behavior
and anomalous hall conductivity in Fe/Au multilayers.[1–
5] Due to its exceptional biocompatibility and favor-
able physical properties, Au-Fe nanoparticles find vari-
ous applications in medical sciences.[6–10] Gold-rich Au-
Fe alloys form a face-centered-cubic (fcc) structure. Al-
though fcc is a high-temperature phase, Au-Fe alloys up
to 53 at.%Fe are reported to be easily stabilized at room
temperature.[11–14] Due to sensitivity of magnetic and
chemical properties to annealing temperatures, these al-
loys require at most care in their synthesis, especially as
disorder is quite common and difficult to control. Hence,
chemical disorder plays an important role in their anoma-
lous structural and magnetic properties.

For alloys to have useful applications, mechanical sta-
bility is a necessary criteria. Studying the lattice dy-
namics provides direct stability information and gives
idea about local atomic environment, and related phe-
nomena. Experimentally, techniques like nuclear reso-
nant inelastic X-ray Scattering (NRIXS), inelastic neu-
tron scattering (INS), and Mossbauer spectrometry are
used to investigate the elementary excitation in disor-
dered alloys.[14, 15] But, to date, there is no singularly
accepted ab initio theoretical approach available to ad-
dress lattice dynamics in disordered alloys, mainly due
to configurational averaging and the associated compu-
tational cost. In fact, the challenge is to address the off-
diagonal disorder arising out of the force constant matrix
between two sites. In addition, the sum rule obeyed by
the force constants implicitly makes the disorder at a

site dependent upon its neighborhood, i.e., environmen-
tal disorder.

Historically, various approximate models are proposed
to address disorder. The Virtual Crystal Approxima-
tion (VCA),[16] and Coherent Potential Approximation
(CPA) are two widely known single-site examples, which
also suffer from deficiencies.[17–21] VCA, the simplest
among many, involves simple compositional averages of
the constituent potentials and completely ignores envi-
ronmental effect. The single-site CPA suffers from cap-
turing the multisite effects expected in lattice dynam-
ics, such as, off-diagonal and environmental disorder.
Some generalization to the CPA, e.g., Itinerant CPA
(ICPA)[21], Dynamical Cluster Approximation (DCA)
[22], and its first-principles version (i.e., non-local CPA
(NL-CPA)[19, 20]), address two-site disorder. These
methods consist of various promising features, but they
are usually limited to specific types of off-diagonal dis-
order or to small clusters due to computational expense.
The Special Quasirandom Structure (SQS) technique[23]
is being utilized more often to estimate environmental
effects of disorder. It involves a fully-ordered cell (useful
for band-structure method) in a layered arrangement of
atoms that nominally exhibits zero chemical pair corre-
lations (within a specified range of neighbor 2− 3 shells)
and mimics those of the homogeneously disordered alloy.
To predict the lattice dynamical properties of disordered
systems, accurate calculation of force constants as well as
an appropriate configurational average over the disorder
environment are equally important.

Here, we combine two techniques to correctly address
the above issues: the SQS and Augmented Space Recur-
sion (ASR). ASR is a powerful method to capture multi-
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x 1.00 0.50 0.25 0.19 0.06 0.00 Direction
Au-Au 26.39 21.79 19.05 16.66 17.52 110xx

Fe-Fe 9.29 14.08 9.16 2.39 9.38 110xx

Au-Fe 13.89 10.98 10.98 9.20 110xx

Au-Au 30.57 26.18 23.06 20.33 21.03 110xy

Fe-Fe 17.88 14.48 1.49 2.92 10.67 110xy

Au-Fe 16.78 12.05 13.20 10.85 110xy

Au-Au -6.37 -6.95 -6.64 -6.52 -5.94 110zz

Fe-Fe 8.15 2.68 -8.01 -2.35 -1.60 110zz

Au-Fe -1.62 -2.86 -3.17 -2.84 110zz

TABLE I. Force constants (N/m) for Au1−xFex along [110].
The measured data for pure Au (x = 0) are 16.63, 20.82, -8.62
along 110xx, 110xy, 110zz directions respectively.[14].

site disorder effects, as required in the phonon problem.
A detailed description of the ASR formalism for phonons
is given in supplementary material (section S1).[24] For a
given size and symmetry cell, the SQS is used in conjunc-
tion with the small displacement method[25] to calculate
the estimated force constants in a disordered alloy. ASR
then performs the configurational averaging, with these
disordered force constants. We calculated the phonon
dispersion, density of states, lifetime, vibrational entropy,
and thermo-mechanical properties for the Au1−xFex..

Spin-polarized, density functional theory (DFT)[26]
calculations are performed with a projected augmented
wave (PAW)[27] basis using the local density approxi-
mation (LDA), as implemented in the Vienna Ab-initio
Simulation Package (VASP).[28, 29] We chose an opti-
mal 32-atom SQS unit cell[30] to perform all the cal-
culations for Au1−xFex for x = 0.50, 0.25, 0.19 and
0.06, providing good accuracy. For SQS structure of a
given alloy, all the atoms were relaxed to achieve energy
(force) convergence of up to 10−6 eV (10−3 eV/Å). We
use a high-energy cutoff of 450 eV, with a Monkhorst-
Pack 6 × 6 × 6 k-mesh grid.[31] For x = 0.50, 0.25, 0.19
and 0.06, respectively, optimized lattice parameters in
Au1−xFex were 3.83, 3.96, 4.00, and 4.05 Å. The exper-
imental lattice parameter for x = 0.50, 0.30, 0.20and0.03
are 3.908, 3.991, 4.026 and 4.072 respectively, which com-
pared fairly well with theory. Phonons were calculated
using the small displacement method as implemented in
PHON,[25] and the atomic force fields were obtained us-
ing 48, 96, 96 and 19 displacements for the respective
x’s. For elastic constants, we used PBEsol exchange-
correlation functional[32] with a 10 × 10 × 10 Γ-centered
k-mesh for total-energy calculation at different strains.

As SQS provides structures with reduced symmetry
(not fcc), the force constant matrix become random and
asymmetric, which cannot be used directly in ASR for
configurational averaging. To extract meaningful param-
eters for the proper fcc symmetry, a directional aver-
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FIG. 1. (Left) Using force constants from 32-atom SQS,
phonon dispersion for Au1−xFex along high-symmetry [ζ00],

[ζζ0], [ζζζ], where ζ = |~k|/|~kmax| for reciprocal-space vec-

tor ~k. Longitudinal (L) and transverse (T) modes are indi-
cated. Bars indicate the calculated full width at half maxima
(FWHM). (Right) Projected Density of States (DOS).

age mapping method is adopted. For fcc symmetry, we
mapped all 12 nearest neighbor matrix elements for Au-
Au, Fe-Fe and Au-Fe pairs in Au1−xFex at each site along
[110] using φ101 = T†φ110T, where T is the transforma-
tion matrix along different directions.

The averaged force constants for all pairs are tabu-
lated in Table I. Notably, Au-Fe force constants become
stiffer as we increase the iron concentration (%Fe). Ad-
dition of Fe in pure Au makes the Au-Au pair more
stiff but Fe-Fe either becomes softer or remains unaf-
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Parameters Pure Au Au94Fe06 Au81Fe19 Au75Fe25 Au50Fe50 Pure Fe
C11 (GPa) 196.09 (201.63)a 192.22 222.01 205.04 211.29 328.35 (243.1)c

C12 (GPa) 164.14 (169.67)a 161.38 180.94 159.24 153.41 164.56 (138.1)c

C44 (GPa) 44.57 (45.44)a 48.69 57.64 61.53 81.75 136.00 (121.9)c

B (GPa) 174.79 (180.32) 171.66 194.63 174.51 172.70 219.16 (173.1)

GV (GPa) 33.13 (33.65) 35.38 42.80 46.08 60.61 114.36 (94.1)

GR (GPa) 25.97 (26.15) 26.13 33.46 36.74 47.26 107.57 (79.74)

GH = µ (GPa) 29.55 (29.90) 30.76 38.13 41.41 53.94 110.96 (86.94)

Y (GPa) 83.93 (85.01) 87.07 107.37 115.12 146.56 284.82 (223.41)

C
′

(GPa) 15.98 (15.98) 15.42 20.53 (20.7)b 22.90 28.93 81.90 (52.50)

Cp (GPa) 119.56 (124.22) 112.69 123.30 97.71 71.66 28.56 (16.18)

ν 0.42 (0.42) 0.42 0.41 0.39 0.36 0.28 (0.28)

Kζ 0.89 (0.89) 0.89 0.87 0.84 0.81 0.63 (0.68)

AZ 2.79 (2.84) 3.16 2.81 2.69 2.82 1.66 (2.32)

P 5.92 (6.03) 5.58 5.10 4.21 3.20 1.98 (1.99)

λ (GPa) 155.09 (160.38) 151.15 169.21 146.90 136.74 145.18 (115.14)

vl (m/s) 3335.20 (3377.67) 3372.61 3735.33 3675.10 4079.53 6523.11 (6058.51)

vt (m/s) 1238.84 (1244.67) 1282.61 1472.16 1560.33 1915.67 3586.33 (3322.86)

ΘD (K) 162.87 (162.4± 2)d 169.44 196.73 209.35 264.61 539.29 (472.7± 6)d

TABLE II. Calculated parameters for Au, Fe and four alloys. Parenthetic values are measured data.a[33], b[34], c[35], d[36]

fected. Interestingly, Au81Fe19 shows a turning point,
where the force constant matrix elements exhibits a non-
monotonous change. This anomaly is also reflected in the
phonon dispersion, entropy, and other properties. The
origin of this cannot be explained simply by the changes
in lattice parameters or the overall electron DOS at the
Fermi energy (EF ). Below we provide a deeper explana-
tion.

Au-Fe alloys are known for their rich magnetic
properties.[11, 37] Pure Fe in its stable bcc phase has
a magnetic moment of 2.13 µB/atom, in agreement
with previous theoretical and experimental data.[38,
39] As %Fe decreases from 0.50 to 0.06, the Fe mo-
ments increases from 2.71 to 2.99 µB/atom, also found
previously.[14, 40] fcc Au is a non-magnetic metal. How-
ever, we found that the Au 5d moments are 0.083 (0.146)
in Au75Fe25 (Au50Fe50), similar to other reported theory
and experimental values of 0.099 (0.197), respectively.[11]
(detailed result can be found in supplementary [24] sec-
tion S2.)

Figure 1 shows phonon dispersions for Au1−xFex along
high-symmetry directions. Notice the split band behav-
ior with x ≥ 19%. Such splittings normally arise for
systems with dominant mass or force constant disor-
der. Ni-Pt is a classic example of such behavior. In
their elemental phase, Pt-Pt force constants are 55%

larger than Ni-Ni. Although the force constant differ-
ence here is not that significant, the mass difference is
higher (MAu/MFe = 3.53). Such splitting is a conse-
quence of strong resonance, arising mainly out of domi-
nant mass disorder here. Near resonances the FWHM
become very large, as is clear in Fig. 1. ASR is ex-
pected to correctly address both mass and force con-
stant disorders, mainly in the higher frequency region,
as demonstrated in our earlier papers.[41, 42] Figure 1
also shows the phonon DOS, where the higher (lower)
frequency region is dominated by Fe (Au), as expected
by mass. It also explains the increase in number of states
in the higher frequency region as the %Fe increases. Our
calculated phonon-dispersion and DOS compares fairly
well with previous experimental data.[14] The anoma-
lous band splitting arises for x ≥0.19, the turning point
in the force constants (Table I). This behavior can be un-
derstood from the evolving nature of Au-Au bond in an
Fe-matrix. When Fe is substituted in Au, there are two
types of force constants that Au-Au pairs acquire. The
pairs that do not contain Fe in their vicinity has force-
constants similar to that of pure Au. However, pairs
that exist in the neighborhood of Fe increasingly stiffen
as %Fe increase, which causes an increase in the energy
of some Au-modes above the cut-off energy of Au-modes
and hence causes the splitting. This behavior can be
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explicitly found in thermo-mechanical properties of the
alloy, as seen below.

For a material, thermo-mechanical parameters are di-
rectly related to the second-order elastic constants. For
a cubic crystal, there are three independent elastic con-
stants denoted by C11, C12, and C44. Here we use a
strain-energy approach[30, 43] to evaluate Cij at various
%Fe, along with bulk modulus (B), shear modulus (GV ,
GR, GH), Young’s modulus (Y), shear constant (C′),
Cauchy pressure (CP ), Poisson’s ratio (ν), Kleinman pa-
rameter (Kζ), Zener’s anisotropy ratio (AZ), Pugh’s in-
dicator (P), Lames’s co-efficients (λ and µ), longitudinal
and transverse sound wave velocity (vl and vt), Debye
temperature (ΘD), high-temperature limit to the thermal
conductivity, as obtained via Clarke’s model (κClarkemin )[44]
and Cahill’s model (κCahillmin ) [45]. All the properties help
asses the mechanical stability of the material (see supple-
mentary material[24] (section S3. and S4.) for details).

Table II presents the calculated values of these quan-
tities along with available experimental data. Our data
(Cij ’s) agrees within 2−5% of the experiment for Au[33].
For pure Fe, calculated C11 is overestimated by 25%
while C12 and C44 by 19% and 11% compared to ex-
periment, respectively. This is due, as well-known, to
the GGA exchange-correlation function used here, which
tends to underestimate the lattice constants for 3d tran-
sition metals.[46, 47] The Born-Huang’s mechanical sta-
bility criteria[48] (C11 − C12 > 0, C11 + 2C12 > 0 and
C44 > 0) are satisfied for both the elements and alloys.
The calculated C′ = 20.5 GPa for Au81Fe19 compares
well with that measured 20.7 GPa.[34] All our calculated
results are expected to be within 10-15% of the measured
values, and will be interesting to be verified experimen-
tally.

Pure Au has high B but small GH , which makes it
very ductile, as seen by its Pugh’s indicator (5.92),[49]
where materials with P >1.75 are ductile. With increas-
ing %Fe, the size and coupling force mismatch makes
the system more stiffer (see Table I) resulting in reduced
ductility and higher Young’s modulus. Cp > 0 [50] sug-
gests metallic bonding character, as well as higher con-
ductivity. High ν values confirm this. AZ > 1[51] for
both the elements and alloys points to highly anisotropic
deformation in the material (higher possibility of micro-
cracks). Kζ [52] (between 0 and 1) indicates the nature of
bonding. A lower (higher) Kζ indicates dominant bond
bending (stretching), as found here for Au-Fe. Lame’s
constant λ suggests large incompressibility of these al-
loys. Debye temperature (ΘD) increases with disorder,
attributed to higher mass fluctuation and increase in fre-
quency of thermal vibrational modes.

At x=0.19, a similar anomaly (as in force constants and
phonon dispersion) is encountered in some elastic proper-
ties (e.g., C11, C22, B, and CP ), reflecting the dominant
force constant disorder and the emergence of resonance
mode in the dispersion. Such unusual behavior is also
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FIG. 2. (Color online) Excess phonon entropy vs. x for
Au1−xFex at T= 300 K and configurational entropy of mixing
Sconfig (blue curve). Inset shows ∆Svib vs. T at various x.

predicted by Munoz et al. at x=0.2, which are attributed
to the increasing stiffness of Au-Au bonds with increasing
%Fe, and primarily a local effect.

Next, we have calculated the temperature dependence
of excess vibrational entropy, ∆Svib = (1 − x)∆SAuvib +
x∆SFevib, where ∆SAuvib (∆SFevib) are the partial contribu-
tion to vibrational entropy from Au (Fe) respectively at
each x. These are calculated as, ∆SMvib = SMvib(alloy) −
SMvib(pure), [M = Au, Fe]. SMvib(alloy) is estimated us-
ing the partial phonon density of states for respective
elements at a given x. SMvib(pure) is vibrational en-
tropy of pure element in its respective equilibrium phase.
Configurational entropy of mixing can be expressed as,
Sconfig(x) = −kB [xln(x) + (1 − x)ln(1 − x)]. Figure
2 shows the concentration dependence of excess phonon
entropy for Au1−xFex at 300 K and configurational en-
tropy of mixing. Square and triangle up (down) symbols
indicate the total and partial vibrational entropies for Fe
(Au). The inset shows the temperature dependence of
excess vibrational entropy at various Fe concentrations.
Clearly x=0.19 is an anomalous point which separates
the two unique region of phase diagram. In other words,
phonon entropy of mixing is negative for Fe concentra-
tions ≤19%, beyond which it becomes positive. If we
compare the configurational entropy of mixing, the cal-
culated phonon entropy at x=0.06 Fe is much larger and
negative in sign. This implies that, upto 19% Fe, config-
urational entropy supports chemical mixing, but phonon
entropy favours unmixing, predicting miscibility gap in
the alloy phase diagram.[53] Such discontinuity in the
excess phonon entropy is attributed to the sudden up-
rise of ∆SAuvib at x= 0.25, which arises due to the stiff-
ening of Au-Au bonds in the vicinity of the Fe atoms.
One can also explain this behaviour from the enhance-
ment of disorder broadening (see Fig. 1), a known fact
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for entropy enhancement. A similar abrupt change in
excess entropy is also seen in the temperature depen-
dence of ∆Svib at x= 0.19 (see inset). Our calculated
phonon entropy agrees fairly well with similar measured
data published elsewhere [14]. Small discrepancies can
be attributed to under estimation of phonon DOS in ex-
perimental neutron weighted measurements.

In conclusion, we employ a new first-principles ap-
proach combining the Special Quasirandom Structures
(SQS) and Augmented Space Recursion (ASR) formal-
ism to study the lattice dynamical and thermo-physical
properties of fcc Au1−xFex alloys. This system is inter-
esting because of the large difference in their constituent
masses, force constants and scattering lengths. In ad-
dition Fe, unlike in its elemental state, acquire larger
magnetic moment in the alloy. We found that, as the
Fe concentration increases, the force constants tends to
stiffen in the disordered environment. Above x= 0.19,
phonon dispersion shows a split band behaviour suggest-
ing strong that often arise due to dominant mass and/or
force constant disorder. The anomaly at x = 0.19 is bet-
ter described from our calculated phonon entropy which
suggests the possibility of chemical unmixing below 19%
Fe and hence the onset of miscibility gap in the phase di-
agram. Such anomaly is also reflected in some of our cal-
culated mechanical properties as well. As % Fe increases,
size enhancement and force constants mismatch stiffens
the material which accounts for the increased Youngs’
modulus and lower ductility. From materials perspective,
Au1−xFex alloy is predicted to be mechanically stable,
very ductile but highly anisotropic (possibility of micro-
cracks are high). One of the main ideas of this paper is to
establish the combined SQS + ASR approach as an effi-
cient and accurate method to study the lattice dynamical
properties for random alloys.
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