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Disordered hyperuniformity is a state of matter exhibiting both isotropic liquid-like properties and
crystalline-like properties such as minimal density fluctuations over long distances. Such states arise
for jammed particle assemblies and in nonequilibrium systems. An open question is whether the
properties of disordered hyperuniformity can be harnessed for technological applications. A major
issue for applications of type-II superconductors is preventing the motion or depinning of magnetic
vortices in order to achieve high critical currents, so there is great interest in identifying optimal
pinning site geometries. Using large scale simulations, we show that a disordered hyperuniform
pinning arrangement produces enhanced vortex pinning compared to an equal number of purely
randomly arranged pinning sites, and that the enhancement is robust over a wide parameter range
for both short and long range vortex-vortex interactions. In disordered hyperuniform arrays, pinning
density fluctuations are suppressed, permitting higher pin occupancy and preventing weak links that
lead to easy flow channeling. We also show that in amorphous vortex states on either random or
disordered hyperuniform pinning arrays, the vortices themselves exhibit disordered hyperuniformity
due to the repulsive nature of the vortex-vortex interactions.

I. INTRODUCTION

Disordered hyperuniformity describes amorphous
systems that exhibit both liquid and crystalline
properties1,2. The amorphous nature of these systems
indicates that they are isotropic, in contrast to crys-
talline systems which break spatial symmetries and ex-
hibit Bragg peaks. Disordered hyperuniform systems also
show strong suppression of density fluctuations out to
long length scales, a crystal-like property, where the den-
sity per unit cell is fixed at a constant value. This is
in contrast to a random assembly or Poisson distribu-
tion of particles where large density variations can occur
since it is possible for points to accumulate in certain re-
gions or to have extended regions devoid of points. In
2003, Torquato and Stillinger proposed that the con-
cept of disordered hyperuniformity can be used to de-
scribe many-body systems in which density fluctuations
are suppressed out to very long wavelengths1. Since
then, disordered hyperuniformity has been studied in a
growing number of systems including jammed particle
assemblies3–5, block-copolymer systems6, near nonequi-
librium critical points7–9, and even in certain quantum
systems10. An open question is identifying possible ap-
plications for systems that exhibit disordered hyperuni-
formity. There have already been some proposals along
these lines, such as the use of hyperuniformity to create
photonic materials with complete band gaps11.

Here, we show that pinning sites in a disordered hype-
runiform arrangement have superior pinning properties
compared to an equivalent number of randomly arranged
pinning sites for magnetic vortices in a type-II supercon-
ductor over a wide range of magnetic fields, substrate
strengths, and applied drives. We show that this en-

hancement occurs both for stiff 3D bulk vortex systems
with columnar defects and for vortices in thin film su-
perconductors. The enhancement is more pronounced in
the thin films since the disordered hyperuniform arrays
suppress the filamentary flow that occurs near depinning
in systems with long range interactions. One of the ma-
jor issues for applications of type-II superconductors is
that the onset of vortex motion limits the magnitude of
the current that can be carried by a sample in the su-
perconducting state, since the vortex motion produces
dissipation through a voltage response12–14. To empha-
size the importance of pinning, a general rule of thumb is
that doubling the critical current reduces the cost of using
these materials by half14. There have been intense efforts
directed at improving vortex pinning by adding defects
to superconducting samples in order to locally suppress
the superconducting order parameter, creating low en-
ergy regions that trap vortices14,15. Since adding defects
to the sample can decrease Tc and the critical current if
the defect volume density becomes too large, there is a
limit to the number of pinning sites that can be added.
Therefore it is important to determine the best way to
spatially distribute a fixed number of pinning sites to cre-
ate the highest critical current for a wide range of fields.
One method is to arrange the pinning sites in crystalline
lattices16–23, diluted ordered lattices24,25, quasiperiodic
arrangements26,27, conformal arrangements28–30, or gra-
dient arrays31–33. Typically in systems with crystalline
arrangements of pinning sites, a strong enhancement of
the depinning threshold compared to random pinning ar-
rangements occurs only for matching conditions under
which the number of vortices is an integer multiple of
the number of pinning sites, whereas under non-matching
conditions, the periodic pinning arrays have lower depin-
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ning thresholds than random arrays since the high sym-
metry of the array allows easy 1D vortex flow channels
to form along symmetry directions of the array19,28. In
order to achieve strong pinning for a wide range of pa-
rameters, it would be ideal to place the pinning sites
in a geometry that has reduced pinning density fluctua-
tions, similar to crystalline arrays, while simultaneously
remaining isotropic in order to eliminate easy flow sym-
metry channeling effects. This suggests that disordered
hyperuniform pinning arrangements could be ideal for
enhancing the critical current.

Another question is whether amorphous assemblies of
vortices in the presence of random pinning arrange them-
selves in a disordered hyperuniform state or a random
state. Generally, vortex structures in the presence of pin-
ning are described as either being ordered, as in a Bragg
glass state where there are no dislocations in the vor-
tex lattice34, or as amorphous where numerous topolog-
ical defects are present34–36. Due to the repulsive inter-
action between vortices, strong density fluctuations are
highly energetically costly, which suggests that the amor-
phous vortex structure may be hyperuniform in nature
when vortex-vortex interactions are relevant, and more
random in nature when pinning or thermal effects domi-
nate. Since disordered hyperuniform states are expected
to occur for certain charged systems2, pinned amorphous
vortex systems may be ideal places to seek emergent dis-
ordered hyperuniformity. We show that disordered hype-
runiform vortex states arise for vortices interacting with
either disordered hyperuniform or random pinning ar-
rays, which suggests that disordered hyperuniformity is
a general feature of pinned vortex systems. There are
many techniques that have been used to visualize large
amorphous vortex assemblies37–45, and it would be in-
teresting to re-examine this data to see if disordered hy-
peruniform or random configurations occur. Addition-
ally, there are a wide class of systems that have many
similarities to amorphous vortices in the presence of pin-
ning which may also exhibit disordered hyperuniformity,
including charge-stabilized colloids46, Wigner crystals47,
and skyrmions in chiral magnets48,49.

This paper is organized as follows. In Section II we
describe our simulation model. We primarily focus on
models of bulk 3D superconducting samples in which the
vortices can be represented by stiff lines. In Section III
we show that the disordered hyperuniform pinning array
produces an enhanced critical current as well as a reduced
vortex velocity in the flowing state compared to a random
pinning array with the same number of pinning sites. We
then shift our attention to the structure of the vortices in
the pinned state, and in Section IV we show that the vor-
tices themselves form an emergent disordered hyperuni-
form structure even when the underlying pinning array
is random. To our knowledge, this is the first observa-
tion of a disordered hyperuniform state in the presence of
quenched disorder. In Section V we consider a model for
long range interacting vortices in a 2D thin film, and show
that not only is the critical current enhancement by the

disordered hyperuniform pinning array robust, it is even
more pronounced than in the bulk 3D samples due to the
small shear modulus of the thin film system. We observe
the same emergent disordered hyperuniform vortex struc-
ture in the pinned state that appeared in the bulk 3D
system. Section VI contains a discussion of our results,
including some schematic phase diagrams indicating the
regimes in which disordered hyperuniform vortex states
could be observed experimentally, as well as a demonstra-
tion that our results are robust against the addition of
thermal fluctuations. A unique aspect of our results is the
creation of a hyperuniform arrangement of monodisperse
particles through the addition of quenched disorder. In
contrast, many investigations of two-dimensional particle
based systems use bidisperse particle assemblies in order
to prevent crystallization.

II. SYSTEM DESCRIPTION

The key feature of disordered hyperuniformity is the
suppression of density fluctuations out to long distances.
This can be characterized in reciprocal space by the be-
havior of the structure factor

S(k) = N−1
v
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where there are Nv particles and Ri are the positions
of the particles. In hyperuniform systems, which include
crystals, S(k) → 0 as |k| → 0, but unlike crystals, S(k)
for disordered hyperuniform systems is isotropic and has
no Bragg peaks1,2. In general, for a disordered hyper-
uniform system S(k) goes to zero as |k|α, where larger
values of α indicate greater amounts of short-range order.
For a random system, S(k) is isotropic but it approaches
a finite value as |k| goes to zero. Hyperuniformity can
also be characterized2 using the number variance σ2(R),
which is the variance of N(R), the number density or the
number of points in a region defined by a d-dimensional
sphere Ω(R) of radius R,

σ2(R) = 〈N2(R)〉 − 〈N(R)〉2. (2)

For a random or Poisson placement of points in a d-
dimensional region of radius R, σ2(R) ∼ R2, while for
a hyperuniform point arrangement, σ2(R) ∼ Rd−α for
α < 1, σ2(R) ∼ Rd−1 for α > 1, and σ2(R) ∼ Rd−1 lnR
for α = 150.
We consider d = 2 systems in which we place Np pin-

ning sites arranged in either a random or a disordered
hyperuniform configuration as shown in Fig. 1(a,b). The
pinning sites are modeled as nonoverlapping local attrac-
tive parabolic wells with radius rp. To construct the dis-
ordered hyperuniform array, we set up a square lattice
of cells and place one pinning site at a randomly chosen
location within each cell1,2,50, while the random array
is produced using a Poisson distribution. Figure 1(c,d)
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FIG. 1: The pinning site locations (open circles) for (a) a
disordered hyperuniform array and (b) a random array. (c)
The structure factor S(k) for the disordered hyperuniform
pinning array, where the weight vanishes at small k and the
system is isotropic. (d) S(k) for the random pinning array,
where the system is isotropic but the weight approaches a
finite value at small k. (e) S(k) vs k = |k| for the disordered
hyperuniform array. The dashed line is a fit to S(k) ∝ k2. (f)
S(k) vs k for the random array approaches a constant value
at small k.

shows S(k) for the pinning configurations in Fig. 1(a,b).
At small k, S(k) has constant weight for the random ar-
ray but vanishing weight for the disordered hyperuniform
array. In both cases S(k) is isotropic, indicating that the
points are amorphous. In Fig. 1(e,f) we plot S(k) versus
k for the disordered hyperuniform and random arrays,
showing that S(k) goes to zero at small k for the dis-
ordered hyperuniform system as S(k) ∝ k2, indicating
that α ≈ 2, while for the random array S(k) approaches
a finite constant value at small k. In Fig. 2 we plot the
number variance σ2 versus R for the pinning site loca-
tions from the system in Fig. 1. For the random array,
σ2 ∝ R2 or σ2 ∼ Rd as expected for a Poisson process,
while for the disordered hyperuniform array, σ2 ∝ R or
σ2 ∼ Rd−1 as expected for a d = 2 disordered hyperuni-
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FIG. 2: The number variance σ2 vs region radius R for the
pinning site configurations in Fig. 1. Red squares: disordered
hyperuniform array, with the orange dashed line indicating a
fit to σ2 ∝ R1.0; blue circles: random array, with the green
dashed line indicating a fit to σ2 ∝ R2.0.

form system with α > 1.02.
Within the sample we place Nv vortices modeled as

point particles with a repulsion given by a pairwise Bessel
function K1(r) interaction as used in previous vortex
simulations19,24,28,32. This model represents the behav-
ior of stiff 3D vortex lines in a bulk sample. The initial
vortex positions are obtained by starting from a high
temperature state and cooling to T = 0. After the ini-
tialization we apply a driving force, which experimentally
corresponds to the application of an external current that
creates a Lorentz force on the vortices. We wait a fixed
time at each drive increment to ensure that the system
has reached a steady state, and then we measure the av-

erage vortex velocity 〈V 〉 = N−1
v

∑Nv

i=1 vi · x̂ in the direc-
tion of the driving force to determine when the vortices
depin and to construct velocity-force curves that are pro-
portional to experimentally measurable current-voltage
curves.
To describe the vortex motion, we utilize a particle

model based on the London equations. The dynamics of
a single vortex i is governed by the following overdamped
equation of motion:

η
dRi

dt
= F

vv
i + F

vp
i + F

D, (3)

where vi = dRi/dt is the vortex velocity, Ri is the vor-
tex position, and η is the damping term which is set to
unity. The interaction with the other vortices is repulsive

and described by the term F
vv
i =

∑Nv

j=1 F0K1(Rij/λ)r̂ij
where F0 = φ2

0/2πµ0λ
3, φ0 is the elementary flux quan-

tum, µ0 is the permittivity, Rij = |ri − rj |, r̂ij =
(ri − rj)/Rij , K1 is the modified Bessel function which
falls off exponentially for large Rij , and λ is the Lon-
don penetration depth which we set equal to 1.0. We
place a cutoff on the interactions for vortex separations
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FIG. 3: Vortex velocity 〈V 〉 vs driving force FD for a dis-
ordered hyperuniform pinning array (red, lower curves) and
random pinning array (blue, upper curves) for systems with
pinning density np = 0.7 and pinning strength Fp = 2.55.
(a) B/Bφ = 0.3, where Bφ is the field at which there is one
vortex per pinning site. The ratio of the depinning threshold
for the disordered hyperuniform array to that of the random
array is Re = 1.125. (b) At B/Bφ = 1.0, Re = 1.8. (c) At
B/Bφ = 2.7, Re = 1.2.

Rij/λ > 6.0 for computational efficiency. At T = 0 and
in the absence of pinning, the vortices form a triangular
solid due to their mutually repulsive interactions. The
pinning force Fvp

i is produced byNp non-overlapping har-
monic potential traps with a radius Rp = 0.15 which can
exert a maximum pinning force of Fp on a vortex. The
driving term F

D = FDx̂ represents a Lorentz force from
an externally applied current interacting with the mag-
netic flux carried by the vortices26. Our system is of size
L × L with L = 36, and has periodic boundary condi-
tions in the x and y directions. The vortex density is
nv = Nv/L

2 and the pinning density is np = Np/L
2.

In this work all forces are measured in units of F0 and
lengths in units of λ. In the bulk system, for np = 0.7
the pinning sites are spaced by approximately 1.2λ, so
at a field B/Bφ = 1.0, the vortices are separated by
≈ 1.2λ. These parameters fall within the same range
of values used in previous simulations of vortex systems
that have accurately captured the vortex pinning behav-
ior in random24,26–28, periodic19,24,25, spin ice pinning
arrays22,23, quasi-periodic26,27, and conformal pinning
arrays28,29. As an example of the magnitude of magnetic
fields that these length scales represent, the vortex sep-
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FIG. 4: (a) The depinning force Fc vs B/Bφ for disor-
dered hyperuniform arrays with Fp = 2.55 (dark blue cir-
cles), 1.05 (dark green squares), and 0.53 (dark red left trian-
gles), and for random pinning arrays with Fp = 2.55, (light
blue diamonds), 1.05 (light green up triangles), and 0.53 (or-
ange down triangles). The inset shows a blow-up of the be-
havior at higher fields. (b) The depinning threshold ratio
Re = F hyper

c /F random
c vs B/Bφ for Fp = 2.55 (dark blue cir-

cles), 1.05 (light blue triangles), and 0.53 (green squares),
showing that the pinning is consistently enhanced for the dis-
ordered hyperuniform pinning arrays.

aration mentioned above at B/Bφ = 1.0 corresponds to
a field of 0.7φ0/λ

2. Since φ0 = 2.0678× 10−15 T/m2, we
obtain fields of 0.059T for YBCO (λ = 156 nm), 0.083T
for MgB2 (λ = 132 nm), and 0.535T for Nb (λ = 52 nm).
Experimentally our system could be realized with ar-

tificial pinning arrays, in which the pinning sites could
be arranged in a Poisson distribution27 and compared to
arrays with a hyperuniform pinning arrangement. Pois-
son pinning distributions also arise in samples containing
columnar defects created using heavy ion irradiation51,52.
Through use of a mask, it should be possible to create a
hyperuniform arrangement of areas containing columnar
pins, and compare this to a Poisson arrangement of areas
containing columnar pins.

III. ENHANCED PINNING WITH

DISORDERED HYPERUNIFORM SUBSTRATES

In Fig. 3 we plot the vortex velocity 〈V 〉 vs applied
driving force FD for a system with Fp = 2.55 and a pin-
ning density of np = 0.7 with Np = 900 pinning sites
arranged in either a disordered hyperuniform or a ran-
dom array. Since the vortex density is proportional to
the magnetic field, we define the matching field Bφ as
the field at which there is exactly one vortex per pinning
site. The depinning threshold is defined to be the lowest
value of FD for which a persistent flow of vortices occurs
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green triangles). Inset: the depinning current ratio Re vs Fp

for B/Bφ = 0.6 (red squares) and B/Bφ = 1.9 (pink circles).

so that 〈V 〉 > 0. At B/Bφ = 0.3 in Fig. 3(a), the de-
pinning threshold for the disordered hyperuniform array
is F hyper

c /Fp = 0.936, while that of the random array is
F random
c /Fp = 0.832. We quantify the pinning enhance-

ment Re as the ratio of these two depinning thresholds,
Re = F hyper

c /F random
c . At B/Bφ = 0.3, Re = 1.125,

while for FD/F hyper
c > 1.0, the velocity response for both

pinning arrays is almost the same. In general, at lower
fields where the vortices are widely spaced, the vortex-
vortex interactions are less relevant and the depinning
threshold is dominated by the strength of the individual
pinning sites, so in the extremely low field limit of a sin-
gle vortex, Re = 1.0. At B/Bφ = 1.0, Fig. 3(b) shows
that the depinning threshold is larger for the disordered
hyperuniform array, with Re = 1.8. Here, once both sys-
tems have depinned, the velocity response for the random
array is higher than that of the disordered hyperuniform
array, indicating that even within the sliding state, the
disordered hyperuniform array is more effective in reduc-
ing the dissipation. For B/Bφ = 2.7 in Fig. 3(c), there is
a smaller enhancement of Re = 1.2, and above depinning,
the velocity response of the disordered hyperuniform ar-
ray is slightly below that of the random array. In general,
at higher vortex densities the vortex-vortex interactions
begin to dominate over the vortex-pin interactions, so the
difference in the pinning effectiveness of the two pinning
geometries is reduced.

In Fig. 4(a) we plot F hyper
c and F random

c versus B/Bφ

for the system in Fig. 3 at varied pinning strengths of
Fp = 2.55, 1.05, and 0.53. For all cases, Fc decreases
monotonically with increasing B/Bφ and is consistently
higher in the disordered hyperuniform arrays than in the
random arrays. In Fig. 4(b) the corresponding depinning
threshold ratio Re versus B/Bφ approaches Re = 1.0 in
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FIG. 6: (a) Fraction Pv of vortices located at pinning sites
vs B/Bφ for disordered hyperuniform arrays at Fp = 2.55
(dark blue circles), 1.05 (dark green squares), and 0.53 (red
diamonds), and random arrays at Fp = 2.55 (light blue up
triangles), 1.05 (light green left triangles), and 0.53 (orange
down triangles), showing that there is a consistently higher
fraction of occupied pinning sites in the disordered hyperuni-
form arrays. (b) Pv vs Fp for disordered hyperuniform arrays
at B/Bφ = 1.9 (dark blue circles) and 0.6 (dark green squares)
and random arrays at B/Bφ = 1.9 (light blue diamonds) and
0.6 (light green triangles), showing a similar trend. (c) The
vortex (blue filled circles) and pinning site (orange open cir-
cles) locations in a small portion of the sample for a disordered
hyperuniform array at Fp = 2.55 and B/Bφ = 1.5. (d) Vortex
(blue filled circles) and pinning site (orange open circles) lo-
cations in a small portion of the sample for the random array
under the same conditions showing that a higher fraction of
pinning sites are unoccupied.

the B/Bφ = 0 limit. The largest enhancement of Fc

by the disordered hyperuniform arrays occurs over the
range 0.5 < B/Bφ < 2.5. In this regime, for some fields
in the Fp = 2.55 system the enhancement is as large as
Re = 2.75. At higher values of B/Bφ, the vortex-vortex
interactions begin to dominate over the pinning interac-
tions, and the differences in Fc between the disordered
hyperuniform and random arrays are reduced.

In Fig. 5 we plot F hyper
c and F random

c versus pinning
strength Fp at B/Bφ = 0.6 and B/Bφ = 1.9, and show
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FIG. 7: (a,b,c) S(k) of the vortex positions for np = 0.7
at Fp = 0.53 (green), 1.05 (orange), and 2.55 (purple) for a
random pinning array at (a) B/Bφ = 0.6, (b) B/Bφ = 1.9,
and (c) B/Bφ = 2.7. (d,e,f) S(k) of the vortex positions for
np = 0.7 at the same Fp values as above for a disordered
hyperuniform pinning array at (d) B/Bφ = 0.6, (e) B/Bφ =
1.9, and (f) B/Bφ = 2.7. In each case k goes to zero as
a power law S(k) ∝ |k|α, as indicated by the dashed lines
which are all power law fits with exponent α = 2.0.

the correspondingRe vs Fp curves in the inset. The value
of Re can be as large as R = 2.75 for B/Bφ = 0.6, but
falls to Re = 1.25 for higher Fp when the pinning begins
to dominate the behavior. For B/Bφ = 1.9, the maxi-
mum enhancement is only Re = 1.5, but the enhance-
ment is more robust and persists up to higher values of
Fp.
To better understand how the disordered hyperuniform

arrays produce enhanced pinning, in Fig. 6(a) we plot
the fraction Pv of vortices located at pinning sites ver-
sus B/Bφ at Fp = 2.55, 1.05, and 0.53 for the random
and disordered hyperuniform arrays, showing that Pv is
higher for the disordered hyperuniform array than for
the random array. In Fig. 6(b) we plot Pv versus Fp

for samples with B/Bφ = 1.9 and 0.6, where a similar
trend appears. Figure 6(c,d) illustrates the vortex and
pinning site locations in a small portion of the sample for
B/Bφ = 1.9 and Fp = 2.55. Here, there are five unoccu-
pied pinning sites in the disordered hyperuniform array in
Fig. 6(c), while there are eleven unoccupied pinning sites
in the random array in Fig. 6(d). In the random array, lo-
cal clumping of the pinning site positions can occur, and
if a vortex is trapped by one pinning site in such a clump,
its repulsive force screens the remaining pins and pre-
vents other vortices from occupying them. The random
array can also contain large spatial regions in which there
are no pinning sites, and vortices located in these regions
can flow relatively easily along river-like channels or weak
links, depressing the value of Fc. In the disordered hy-
peruniform array, pinning density fluctuations are sup-
pressed, so there is less screening of the pinning sites
and a correspondingly higher pin occupation fraction, as
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Fp = 2.55 for (a) a disordered hyperuniform pinning array
and (b) a random pinning array. (c) Structure factor S(k)
for the vortex positions in panel (a). (d) S(k) for the vortex
positions in panel (b).

shown in Fig. 6. In periodic pinning arrays, pinning den-
sity fluctuations are absent; however, due to the symme-
try of the pinning lattice, there are easy flow directions
along which vortices can form one-dimensional easy-flow
channels, particularly at incommensurate fillings32. It
may be possible to construct other types of hyperuniform
arrays beyond the ones we consider here which would al-
low for even stronger enhancement of the pinning, or to
create a pinning lattice that is hyperuniform along only
one direction.

IV. EMERGENT DISORDERED

HYPERUNIFORMITY IN VORTEX SYSTEMS

We next consider whether amorphous vortex configu-
rations in the presence of random or disordered hyper-
uniform pinning arrays exhibit disordered hyperunifor-
mity. As described above, disordered hyperuniform sys-
tems have two identifying characteristics in the structure
factor S(k): it is isotropic, and it goes to zero as |k|α

at small |k|. In Fig. 7(a,b,c) we show S(k) of the vor-
tex configuration for a random pinning array at np = 0.7
with Fp = 0.53, 1.05, and 2.55 for B/Bφ = 0.6, 1.9, and
2.7, while in Fig. 7(d,e,f) we plot the same quantities for
vortices interacting with a disordered hyperuniform pin-
ning array. All of the curves in Fig. 7 exhibit a power
law decay with S(k) approaching zero as S(k) ∝ kα with
α = 2, as indicated by the dashed lines. In each case
the vortices form an amorphous structure, as shown in
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FIG. 9: (a,b,c) σ2 of the vortex positions vs R at Fp = 0.53
(green), 1.05 (orange) and 2.55 (purple) for the system in
Fig. 7(a,b,c) with a random pinning array with np = 0.7 at
(a) B/Bφ = 0.6, (b) B/Bφ = 1.9, and (c) B/Bφ = 2.7. (d,e,f)
σ2 of the vortex positions vs R at the same Fp values as above
for the system in Fig. 7(d,e,f) with a disordered hyperuniform
pinning array at (d) B/Bφ = 0.6, (e) B/Bφ = 1.9, and (f)
B/Bφ = 2.7. The dashed brown lines in each panel are fits to
σ2 ∝ Rd−1.

Fig. 8(a,b) for the disordered hyperuniform and random
arrays at B/Bφ = 1.9 and Fp = 2.55. The correspond-
ing plots of S(k) for the vortex configurations appear
in Fig. 8(c,d), and show a ring feature indicating that
the vortices are arranged isotropically for both types of
pinning. In Fig. 9(a,b,c) we plot σ2(R) for the vortex po-
sitions for the random pinning arrays from Fig.7(a,b,c)
at Fp = 0.53, 1.05, and 2.55 for fields of B/Bφ = 0.6,
1.9, and 2.7 along with fits to σ2 ∝ Rd−1. Figure 9(d,e,f)
shows σ2(R) for the vortex positions in the disordered
hyperuniform arrays from Fig. 7(d,e,f) at the same val-
ues of Fp and B/Bφ where again we find σ2 ∝ Rd−1

consistent with a disordered hyperuniform structure2.

V. DISORDERED HYPERUNIFORM VORTEX

STATES IN THIN FILM SUPERCONDUCTORS

Up to this point we have considered vortex-vortex in-
teractions with a Bessel function form that is exponen-
tially screened at larger distances. Such interactions are
appropriate for describing stiff 3D vortices in bulk ma-
terials; however, many experiments on nanostructured
pinning arrays are performed in thin film superconduc-
tors where the vortex interaction takes the form of a
long-range logarithmic Pearl potential53. To compare
the performance of disordered hyperuniform and random
pinning arrays in thin-film materials, we conduct simula-
tions utilizing Eq. 3 but with the vortex-vortex interac-
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FIG. 10: Vortex velocity 〈V 〉 vs FD for a model of vortices in a
thin-film superconductor with ln(r) vortex-vortex interaction
potentials using the same parameters as in Fig. 3 with np =
0.7 and Fp = 2.55. The red lower curves are for a disordered
hyperuniform pinning array and the blue upper curves are for
a random pinning array. (a) B/Bφ = 0.44. (b) B/Bφ = 0.67.
(c) B/Bφ = 0.89. In all cases there is an enhancement of the
pinning for the disordered hyperuniform pinning arrays.

tion force replaced by

F
vv
i = −

Nv
∑

j 6=i

Av∇Uv(Rij)R̂ij (4)

where the Pearl vortex-vortex interaction potential is
U(r) = − ln(r), Av = φ2

0/8π
2Λ, and Λ = λ2/t where t is

the film thickness. We calculate the long-range interac-
tions in the periodic boundary conditions with a Lekner
summation technique54,55. This approach has previously
been used to numerically examine vortex states and dy-
namics in random56 and periodic pinning arrays57,58. We
use the same number of pinning sites and vortices and the
same system size as in the bulk simulations described in
Section II and set Av = 1.0. Since the Pearl interaction
form is appropriate for vortices within a distance of a few
penetration depths of one another, the simulation would
be valid for a system of order a few Pearl lengths in size.
In Fig. 10 we plot 〈V 〉 versus FD for systems with

B/Bφ = 0.44, 0.67, and 0.89 at Fp = 2.55 for the ran-
dom and disordered hyperuniform pinning arrays. In all
cases, the disordered hyperuniform pinning substantially
increases the depinning threshold with Re = 3 to 5, which
is a larger enhancement than that found for vortices
with the shorter-range Bessel function interactions. In
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FIG. 11: (a)The depinning force Fc vs B/Bφ for random
pinning arrays (squares) and disordered hyperuniform pin-
ning arrays (circles) with Fp = 2.55 for the system in Fig. 10
with long-range vortex-vortex interactions. (b) The depinning
threshold ratio Re vs B/Bφ shows a strong enhancement of
Fc in the disordered hyperuniform array. (c) Fc vs Fp for
random (squares) and disordered hyperuniform (circles) pin-
ning arrays at B/Bφ = 0.67. (d) The corresponding Re vs Fp

shows pinning enhancement in the disordered hyperuniform
array.

Fig. 11(a) we plot Fc versus B/Bφ for random and disor-
dered hyperuniform pinning arrays with Fp = 2.55. The
corresponding Re versus B/Bφ curve in Fig. 11(b) indi-
cates that for low fillings Re ≈ 1.0, while at B/Bφ = 0.89
Re reaches its maximum value of Re ≈ 7. In the thin
film system, the depinning threshold falls off rapidly for
B/Bφ > 1.0 for both the random and disordered hyper-
uniform pinning arrays; however, even within the moving
phase, the net vortex velocity is significantly lower for the
disordered hyperuniform arrays than for the random ar-
rays as long as FD/Fp < 1.0. In Fig. 11(c) we plot Fc

versus Fp for the disordered hyperuniform and random
pinning arrays at fixed B/Bφ = 0.67, and in Fig. 11(d)
the corresponding Re versus Fp plot shows that there is
a strong enhancement of the depinning threshold for the
disordered hyperuniform pinning array.

Studies of Grønbech-Jensen et al.
56 on the depinning

of logarithmically interacting vortices in random disor-
der offer insights into the origin of the larger pinning
enhancement by disordered hyperuniform arrays that oc-
curs in thin films as compared to bulk superconductors.
The shear modulus C66 of the thin film vortex lattice
is much lower than the compression modulus C11 since
the long range interactions favor a homogeneous vortex
density. As a result, near depinning there is an onset
of filamentary 1D flow channels aligned with the driv-
ing direction that can form without altering the local
vortex density. In a random pinning array, rare regions
of low pinning density occur that serve as easy nucle-
ation sites for filamentary flow channels that reduce the
depinning threshold. In Fig. 12(a) we highlight the vor-
tex trajectories for the random pinning array system in

x(a)

y

x(b)

y

FIG. 12: Pinning site locations (open circles), vortex posi-
tions (red dots), and vortex trajectories (blue lines) for the
thin film superconductor model from Fig. 10 at B/Bφ = 0.67,
Fp = 2.55, and FD = 0.7. (a) For a random pinning array,
numerous 1D filamentary flow channels form. (b) In the dis-
ordered hyperuniform pinning array, the filamentary channels
are suppressed.

Fig. 10(b) with B/Bφ = 0.67 at FD = 0.7. Numerous
1D filamentary flow channels appear. In contrast, for
the same drive and filling in Fig. 12(b) in the disordered
hyperuniform pinning array, far fewer flow channels can
form. The flow channels are unstable in the disordered
hyperuniform pinning array and channels can appear and
disappear from one driving force increment to another,
whereas the flow channels in the random pinning array
are quite persistent and the number of flow channels in-
creases monotonically with FD. The suppression of the
filamentary flow channels in the disordered hyperuniform
arrays results from to the lack of rare regions of low local
pinning density. These results indicate that the enhanced
pinning produced by disordered hyperuniform arrays is
a general property observable in both bulk and thin film
superconductors, and that the enhancement is expected
to be stronger in the thin films.

The long range nature of the thin film vortex-vortex
interactions should make this system ideal for observ-
ing disordered hyperuniform vortex states. In Fig. 13(a)
we plot S(k) for the thin film vortex system with a
random pinning array at B/Bφ = 0.67 for Fp = 0.53,
1.05, and 2.55. Figure 13(b) shows the same system at
B/Bφ = 1.9. The dashed lines are power law fits to
S(k) ∝ |k|−α with α = 4.0, indicating a greater amount
of short range order compared to the bulk Bessel func-
tion system for which α = 2.0. Overall the vortex states
in the thin film system are more homogeneous than in
the bulk system since the long range interactions favor a
more uniform vortex density. As noted, the ln(r) inter-
action is valid for thin film vortices interacting within a
distance of a few Pearl penetration depths. Beyond that
distance, the form of the potential changes to 1/r. This is
still a long range interaction that should suppress the for-
mation of large local density fluctuations, so we expect
that the system would still exhibit hyperuniformity on
larger length scales. Under these conditions, the scaling
of S(k) ∝ kα may change from α = 4.0 to smaller values
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FIG. 13: S(k) of the vortex positions in the thin film super-
conductor model from Fig. 10 with a random pinning array
at Fp = 2.55 (purple), 1.05 (orange), and 0.53 (green). (a)
B/Bφ = 0.67. (b) B/Bφ = 1.9. As in Fig. 7, we find a power
law decay S(k) ∝ |k|α indicative of disordered hyperunifor-
mity, where the dashed lines are fits with exponent α = 4.0.

of α, but we expect that the hyperuniform condition of
α > 1 would still be met. It is likely that α would be
larger in the thin film system than in the bulk system, so
that the enhancement of the pinning would remain larger
in the thin film samples than in bulk samples.

VI. DISCUSSION AND PROPOSED PHASE

DIAGRAMS

In general, if Fp is large or the vortex-vortex interac-
tions are weak, the vortex configurations are dominated
by the locations of the pinning sites, so in the Poisson
random pinning array, the vortices would sit in the pin-
ning sites and themselves form a spatial Poisson distri-
bution. The resulting structure factor of the vortex posi-
tions would approach a constant value as k → 0. In real
superconductors, the vortex-vortex interaction strength
is non-monotonic as a function of field and temperature,
as indicated by the behavior of the bulk pinning force
BJc(T,B), so the pinning energy dominates the vortex-
vortex interaction energy as a critical field or critical tem-
perature is approached. It is therefore possible that as a
function of increasing field or increasing temperature, a
transition could occur from a crystalline to a disordered
hyperuniform vortex state, followed by a second tran-
sition to a truly random state with Poisson properties.
There are already numerous experimental observations of
amorphous vortex states with and without large density
fluctuations at higher magnetic fields42–45, and it would
be interesting to reexamine this experimental data to de-
termine whether the vortex configurations appear to be
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FIG. 14: (a) Schematic proposed phase diagram of temper-
ature T vs disorder strength Fp for a system of repulsively
interacting particles in the presence of quenched disorder.
Between the crystalline state and a random phase with Pois-
son characteristics, there could be a disordered hyperuniform
state (DHyper). (b) Schematic proposed modified vortex
phase diagram for a high temperature superconductor as a
function of magnetic field H in arbitrary units vs reduced
temperature T/Tc, where Tc is the critical temperature of the
material. As a function of increasing H , there is a transition
from a dislocation-free Bragg glass into a disordered hyper-
uniform state, followed by a transition to a random glassy
state with Poisson characteristics at higher fields.

purely random with Poisson statistics or whether they
are in fact in a disordered hyperuniform state.

In Fig. 14(a) we show a proposed generic phase di-
agram for repulsively interacting particle systems as a
function of temperature versus the pinning strength Fp.
At high temperatures or for strong disorder, the system
is disordered and the particle positions are random with
Poisson statistics. Between the crystalline state and the
purely random state we propose that a disordered hype-
runiform state exists for intermediate disorder strength.

In Fig. 14(b) we illustrate a proposed variation
of the vortex phase diagram for a high temperature
superconductor34–36 in the presence of quenched disor-
der. Due to the nonmonotonic behavior of the effective
vortex-vortex interactions as a function of magnetic field
and temperature, there is a transition from a Bragg glass
state at lower fields where the vortices are dislocation-
free to a vortex glass state for increasing field or increas-
ing temperature. We conjecture that between the Bragg
glass and the random amorphous vortex glass with Pois-
son properties, there is a state in which the vortex ar-
rangement is disordered with hyperuniform properties.
We note that for some systems, there can also be reen-
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FIG. 15: 〈V 〉 vs FD for samples with nonzero thermal fluc-
tuations of magnitude F T = 2.0. Here np = 0.7, Fp = 2.55,
and B/Bφ = 0.67. The red lower curves are for a disordered
hyperuniform pinning array and the blue upper curves are for
a random pinning array. (a) Bulk vortices with short range
Bessel function interactions. (b) Thin film vortices with long
range ln(r) interactions. In both cases the enhancement of the
pinning by the disordered hyperuniform array remains robust
at finite temperatures.

trant disordered phases at lower fields where the vortices
are far apart and the pinning becomes dominant again,
so this reentrant region could be another place in which
a crossover from a disordered hyperuniform to a Pois-
son random vortex arrangement could occur. Data from
imaging or neutron scattering experiments could show
whether the vortex configurations are disordered hype-
runiform at the transition between the Bragg glass and
a higher field random state with Poisson characteristics.
The Bragg glass state would exhibit Bragg peaks, the dis-
ordered hyperuniform glass would have no Bragg peaks
but would have a structure factor that drops to zero as
a power law for small k, and the Poisson random phase
would have no Bragg peaks and finite weight in S(k) at
small k.

To check whether the disordered hyperuniform states
are robust against thermal fluctuations, we have per-
formed finite temperature simulations for both the bulk
and thin film vortex models. We represent thermal fluc-
tuations using Langevin kicks F

T
i which have the prop-

erties 〈FT
i 〉 = 0 and 〈FT

i (t)F
T
j (t

′)〉 = 2ηkBTδijδ(t − t′).

We report our results in terms of FT , the maximum am-
plitude of the Langevin kicks. In Fig. 15(a) we plot 〈V 〉
versus FD for the bulk sample with short range vortex
interactions at B/Bφ = 0.67 and Fp = 2.55 at FT = 2.0
for random and disordered hyperuniform pinning arrays,
showing that the enhancement of pinning in the dis-
ordered hyperuniform array is robust against thermal
fluctuations. For these parameters, the finite depinning
threshold vanishes for FT > 2.5 and the system enters a
liquid state. In Fig. 15(b) we plot 〈V 〉 versus FD under
the same conditions but with long-range vortex interac-
tions appropriate for a thin film sample, and find that the
enhanced pinning effect in the disordered hyperuniform
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FIG. 16: S(k) of the vortex positions in samples with random
pinning arrays at B/Bφ = 1.9 and Fp = 2.55 for differing lev-
els of thermal fluctuations F T = 10 (purple), 5 (orange), and
1 (green). (a) Bulk vortices with short range Bessel function
interactions. Dashed lines are fits to S(k) ∝ |k|α; the up-
per dashed line has α = 1.25 and the lower dashed line has
α = 2.25. (b) Thin film vortices with long range interactions.
The upper dashed line is a power law fit with α = 2.0 and the
lower dashed line is a fit with α = 4.0.

array is maintained at finite temperature.

In Fig. 16(a) we plot S(k) of the vortex positions for a
bulk sample with short range vortex-vortex interactions
in the presence of a random pinning array at Fp = 2.55
at different temperatures of FT = 10.0, 5.0, and 1.0.
At low temperatures, we find a fit of S(k) ∝ |k|α with
α = 2.25, while at higher temperatures we find a similar
fit with α = 1.25. As α decreases, the amount of short
range order in the system decreases, so at the higher
temperatures where the system is in a liquid phase, the
vortex configuration is becoming more random and less
hyperuniform. For temperatures above the range that
we can access with our model, the system should enter
a gas phase, and in this case we would expect a fit to
give α = 0 indicating that the vortex configuration has
become fully random. Our numerical algorithm for finite
vortex interactions becomes unstable when the vortices
approach each other too closely, limiting the upper tem-
perature we can simulate. The overall behavior of S(k)
as a function of temperature that we observe is consis-
tent with our proposed 2D phase diagram in Fig. 14(a),
where the system exhibits disordered hyperuniformity for
finite temperature and finite quenched disorder. We find
a similar trend for long range vortex interactions appro-
priate for thin film samples, as shown in Fig. 16(b) where
we find α = 4.0 at lower temperatures and α = 2.0 at
higher temperatures. The longer range interactions favor
a more uniform vortex density, giving an extended region
of disordered hyperuniformity.
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VII. SUMMARY

We have shown that pinning sites in a disordered hy-
peruniform arrangement provide enhanced pinning com-
pared to an equivalent number of randomly placed pin-
ning sites. In disordered hyperuniform arrays, the struc-
ture is isotropic like a liquid; however, the density fluctu-
ations in the pinning site locations are strongly reduced
out to large distances, similar to what is found in a crys-
tal. Random arrays are also isotropic but can have strong
density fluctuations of the type found in liquids. In the
disordered hyperuniform pinning arrays, we find that the
probability for pinning site occupation is enhanced, while
weak links or easy flow channels are minimized due to
the isotropic nature of the pinning arrangement. There
are no symmetry directions along which easy vortex flow
can occur, unlike in crystalline pinning arrays. We also
show that in the presence of random or disordered hy-
peruniform pinning arrays, the amorphous vortex states
themselves exhibit disordered hyperuniformity due to the
repulsive nature of the vortex-vortex interactions, and we
propose that there may be additional disordered hyper-
uniform phases that are distinct from random amorphous
phases in the vortex phase diagram. We find that these
results are robust for both short range vortex interac-
tions appropriate for bulk samples as well as for long
range vortex interactions appropriate for thin film super-

conductors.
Our results should be general to the wider class of

systems of repulsively interacting particles in the pres-
ence of either random or disordered hyperuniform pin-
ning arrays, including Wigner crystals, colloids, disor-
dered charge systems, and skyrmions in chiral magnets.
We note that in the course of completing this work we
became aware of simulations using a Landau-Ginzburg
approach to model vortices interacting with pinning sites
in a disordered hyperuniform arrangement that also show
an enhancement of pinning compared to random pin-
ning arrangements59. Although these studies were per-
formed on a much smaller system than we consider,
they confirm that the pinning enhancement by disor-
dered hyperuniform arrays is robust in both the London
model particle-based approach we consider as well as the
Landau-Ginzburg approach.
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