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Recent preliminary experiments (Marakov et al Phys. Rev. B 91, 094503 (2015)), using triplet-
state He2 excimer molecules as tracers of the motion of the normal fluid, have shown that, in thermal
counterflow turbulence in superfluid 4He, small scale turbulence in the superfluid component is ac-
companied, above a critical heat flux, by partially-coupled large-scale turbulence in both fluids, with
an energy spectrum proportional to k−m, where m is greater than the Kolmogorov value of 5/3.
Here we report the results of a more detailed study of this spectrum, over a range of temperatures
and heat fluxes, using the same experimental technique. We show that the exponent m varies sys-
tematically with heat flux, but is always greater than 5/3. We interpret this as arising from the
steady counterflow, which causes large-scale eddies in the two fluids to be pulled in opposite direc-
tions, giving rise to dissipation by mutual friction at all wave numbers, mutual friction tending also
to oppose the effect of the counterflow. Comparison of the experimental results with a simple theory
suggests that this process may be more complicated than we might have hoped, but experiments
covering a wider range of heat fluxes, which are technically very difficult, will probably be required
before we can arrive at a convincing theory.

PACS numbers: 67.25.dk, 29.40.Gx, 47.27.-i

I. INTRODUCTION

Below about 2.17 K, liquid 4He undergoes a transition
to a superfluid phase (He II) in which an inviscid su-
perfluid component (associated with Bose condensation)
coexists with a viscous normal-fluid component (formed
from thermal excitations)1. The flow of the superfluid
component must be irrotational. Any rotational motion
in a simply-connected volume of superfluid is possible
only with the formation of topological defects in the form
of quantized vortex lines, each of which carries a circu-
lation of κ = h/m, where h is Plancks constant and m
is the mass of a helium atom2. Turbulence in the super-
fluid component must therefore take the form of a tangle
of vortex lines. Turbulence can also occur in the normal
fluid, where it is similar to that in a classical fluid, ex-
cept for the possible presence of a force of mutual friction
between the two fluids arising from the scattering of ther-
mal excitations by the vortex lines. Since turbulence in
a superfluid is dominated by quantum effects, it is often
referred to as quantum turbulence3.

This paper is concerned with the turbulence in a par-
ticular form of flow in superfluid helium - the so-called
thermal counterflow. When the helium contained in a
channel carries a steady heat current, the two fluids are
forced to move relative to each other. The normal fluid
moves in the direction of the heat current with a mean
velocity determined by the heat flux q as Un = q/ρsT ,
where ρ = ρs + ρn is the total density of the helium, s
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is its specific entropy, and T is the temperature. The
superfluid moves in the opposite direction with a mean
velocity Us = (ρn/ρs)Un to ensure no net mass flow. It
was recognized in the 1950s that this forced counterflow
can lead to the generation of turbulence in the superfluid
component when the counterflow velocity, U = Us − Un,
exceeds a small critical value U0

4,5. A phenomenological
theory was developed at the same time6. A much bet-
ter understanding was provided by Schwarz7, who devel-
oped a computer simulation of the counterflow based on
the vortex filament model applied to a spatially homoge-
neous flow. According to this theoretical work, counter-
flow turbulence exists only in the superfluid component
and consists of a more or less random vortex tangle, the
velocity field of which exists only on length scales of or-
der, or less than, the average vortex spacing ℓ, which is
related to the vortex line density (i.e. length of vortex
line per unit volume) L by ℓ = L−1/2. The dependence of
the line density on the counterflow velocity as L1/2 = γU
was easily understood.

Extensive experimental studies by Tough suggested
that this was not the whole story8. They showed that
there seemed to be two regimes: a TI state character-
ized by smaller values of γ and a TII state with larger γ.
They suggested that transitions to turbulence in the nor-
mal fluid might be responsible. Melotte and Barenghi9

developed a theory showing that the TI to TII transi-
tion might well be associated with an instability in the
laminar flow of the normal fluid, leading to a situation
in which there is turbulence in both fluids. Experimental
confirmation that laminar-to-turbulent transitions do oc-
cur in the normal fluid was first provided by Guo et al

10,
who used metastable He∗2 excimer molecules as tracers
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of the motion of the normal fluid. More detailed study
of the form of the normal-fluid turbulence was made by
Marakov et al

11 for thermal counterflow in a channel of
square cross section with inner side-width D = 9.5 mm
at a particular temperature of 1.83 K. They showed that
the energy spectrum of the normal-fluid turbulence in the
heat flux range they studied was of the approximate form
E(k) ∝ k−2 over a range of wave numbers extending from
a little larger than 2π/D to almost 2π/ℓ. Over this range
of wave numbers the turbulence appeared to be more or
less homogeneous. It was argued by Gao et al12, from the
observed form of decay of the turbulence when the heat
flux is turned off, that this large-scale turbulence in the
normal fluid must be coupled through mutual friction to
similar large-scale turbulence in the superfluid. The ob-
served energy spectrum describing turbulence on scales
much larger than ℓ falls more steeply with increasing
wave number than does the Kolmogorov spectrum that
describes the inertial sub-range in homogeneous isotropic
turbulence in a classical viscous fluid at high Reynolds
number. In the absence of the steady counterflow we
expect large-scale turbulence in the two fluids to be so
strongly coupled by mutual friction that the two velocity
fields become almost identical; dissipation is then very
small, with the result that there is a single Kolmogorov
spectrum3. However, as was discussed by Gao et al

12

and in more detail by Babuin et al
13, a steady counter-

flow will tend to pull turbulent eddies in the two fluids
in different directions, causing decoupling, although such
decoupling will be opposed by mutual friction. The ex-
tent of the decoupling, and hence the magnitude of the
resulting dissipation, might then be understood in terms
of a balance between two processes: the steady counter-
flow that is tending to pull the turbulent eddies in the
two fluids apart, and mutual friction that is tending to
keep them spatially coincident. The theoretical challenge
is then to determine whether this process can account for
the forms of the observed energy spectra. The extent of
the decoupling, and hence the form of the spectrum, can
be expected to depend on the eddy size (i.e. the wave
number), the strength of the mutual friction, and the
counterflow velocity U . Systematic experimental study
is therefore called for, from which we can learn how the
observed energy spectrum depends on heat flux and tem-
perature. A primary aim of this paper is to report the
results of such a study.

Our experimental technique is described in Section II,
and the experimental results in Section III. In Section IV,
we discuss in a preliminary way whether the observed en-
ergy spectra can be understood in terms of a simple bal-
ance between the two processes that we have described,
and we are led to question whether it can be. Our con-
clusions are summarised in Section V.

II. COUNTERFLOW EXPERIMENTAL SET-UP

Our experimental setup in this work is similar to the
one used in previous studies11,12. As shown in Fig. 1,
a stainless steel flow channel with a square cross-section
is attached to a pumped helium bath whose tempera-
ture can be controlled within 0.1 mK by accurately reg-
ulating the vapor pressure. This flow channel has an
inner side width of 9.5 mm and a total length of about
300 mm. A planar heater (around 400 Ω) at the lower end
of the channel can be used to drive a thermal counter-
flow. A pair of porous-membrane second sound transduc-
ers are installed to excite and detect second-sound stand-
ing waves in the channel. The effective area of transducer
membrane has a diameter of about 6 mm. The attenu-
ation of the second sound amplitude in the presence of
vortex lines allows the determination of the vortex-line
density L in the superfluid component4,5.
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Channel
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1u 2u

Thermometer

FIG. 1: (color online). Schematic diagram of the experimen-
tal setup. A typical image of the He∗2 molecular tracer line
in steady-state thermal counterflow is shown. Local stream-
wise normal-fluid velocity can be measured, from which the
transverse velocity structure function at a given separation r
can be determined (see discussions in Section III). The white
dashed line indicates the initial location of the tracer line.

In order to probe the normal-fluid motion, we have
adopted our recently developed flow visualization tech-
nique by tracking thin lines of He∗2 molecular tracers14. A
35-femtosecond pulsed laser (repetition rate 5 kHz, pulse
energy about 60 µJ) is focused into the channel. The
beam waist in the focal regime is about 110 µm in diam-
eter. The instantaneous laser intensity in the focal regime
is sufficient for ionizing ground state helium atoms to pro-
duce a thin line of He∗2 tracer molecules. Above 1 K, these
He∗2 tracers are completely entrained by the normal fluid
and can be imaged via laser-induced fluorescence from a
pulsed imaging laser at 905 nm10,15–17. To pass the laser
beams through the channel, two vertical slots (4 mm ×
1.5 mm) are cut into the channel walls. A pair of anti-
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reflective coated sapphire windows on two extended side
flanges is used to seal the flow. This design helps to avoid
laser light scattering in the channel and protect the sap-
phire windows from high light intensities near the focal
region in the centre of the channel. The laser heating
in the helium is negligible, as discussed in our previous
publication14. The fluorescence is captured by an inten-
sified CCD (ICCD) camera mounted perpendicularly to
both the flow direction and the laser beam path.
In a typical experiment, a straight baseline image is ac-

quired to be used as a reference. Subsequently, we turn
on the heater and wait for at least 20 s so that a fully
developed counterflow can establish in the channel. Note
that due to the relatively large channel width, the tem-
perature gradient across the channel length resulted from
typical heat currents used in our experiment is negligible,
and hence the thermometer reading should well represent
the helium temperature in the channel. We then send in
the femtosecond laser pulses to create a tracer line. This
tracer line is allowed to move with the normal fluid by a
drift time ∆t before we send in the imaging laser pulses
to produce a fluorescence image. To extract quantitative
information, we divide the tracer-line image into many
vertical line segments (typically 100 to 200 segments).
The line-segment centre position can be determined with
a Gaussian fit of its fluorescence intensity profile. The
local streamwise velocity of the normal fluid un(R) can
therefore be computed as the measured line-segment dis-
placement at location R divided by the drift time ∆t.
In a turbulent flow, a straight tracer deforms randomly
due to the turbulent eddy motion. To ensure reliable
measurement of the velocity fluctuations resulted from
the eddies, we normally use small drift times (typically
in the range 10 − 20 ms) so that ∆t is shorter than the
turnover time of the smallest eddies that can be probed
by our visualization method (i.e. ∼ 100 µm, comparable
to the spatial resolution limit).

III. EXPERIMENTAL RESULTS

We have conducted systematic flow visualization and
second sound measurements in steady-state counterflow
in a range of temperatures and heat fluxes, which greatly
extend the parameter range compared to our previous
study11. At all temperatures and at sufficiently small
heat fluxes, we observe that an initially straight tracer
line deforms into a nearly parabolic shape, as we found
at 1.83 K11, indicating a laminar Poiseuille normal-fluid
velocity profile. As the heat flux is increased towards
the turbulence transition, a tail-flattened laminar veloc-
ity profile can be observed in the normal fluid, which has
recently generated much interest in the quantum turbu-
lence field18–20. At higher heat fluxes, a straight tracer-
line deforms randomly, implying turbulent flow in the
normal fluid. The turbulent flow regime is the focus in
this paper.
At a given temperature and heat flux, we normally

take up to 200 tracer-line images to compute the sta-
tistical properties of the turbulent normal-fluid flow. In
Fig. 2 (a), the mean normal-fluid velocity Un = 〈un(R)〉
is shown as a function of the heat flux, where the an-
gle brackets denote ensemble average over all locations
across the channel and over all image samples. As one
can see, the values of Un agree well with those calcu-
lated from the applied heat flux (i.e. the dashed lines)
at all temperatures, confirming that the tracer lines do
follow the normal-fluid motion. We have also calcu-
lated the streamwise root mean square velocity fluctu-
ation ∆un = 〈(un(R)− Un)

2〉1/2. In Fig. 2 (b), we
show the turbulence intensity in the normal fluid, de-
fined as ∆un/Un. The observed turbulence intensity is
much larger than that in typical classical turbulent chan-
nel flows, which is normally a few percent 21. Note that
the turbulence intensity would be smaller if the physi-
cally relevant ratio were to involve U = Un−Us instead of
Un. The turbulence intensity depends weakly on the heat
flux and appears to be controlled solely by the tempera-
ture. Fig. 2 (c) shows the temperature dependance of the

turbulence intensity averaged over heat fluxes ∆un/Un.
The mechanism underlying the observed large turbulent
intensity in the normal-fluid turbulence is still unclear.

In order to probe the energy spectrum of the normal-
fluid turbulence, we have calculated the second-order
transverse structure function, defined as S⊥

2 (r) = 〈[u(R+
r/2)−u(R−r/2)]2〉, where r is the separation of two line
segments as illustrated in Fig. 1. In our calculations, we
choose the reference location R at the center of the flow
channel. In fact, we observe no significant dependence of
the S⊥

2 profile on the reference location. In Fig. 3 (a),
typical S⊥

2 curves obtained at various heat fluxes at 1.85
K are shown. Below a few millimeters, our data suggest
that S⊥

2 (r) ∝ rn, except at the smallest heat flux. The
exponent n leads to an energy spectrum E(k) ∼ k−(n+1)

where k is the wave number22,23. A power law fit to
the data (i.e. the dotted lines in Fig. 3 (a)) allows us
to determine the exponent n. Note that the heat flux
that can be explored in the experiment is limited since
the creation of the He∗2 tracer lines is inefficient when the
heat flux is too high, as we shall explain later. In our pre-
vious report11, n ≃ 1 was observed at 1.83 K in the heat
flux range 150-300 W/cm2. This seemingly different be-
havior could be caused by the relative large temperature
variations in the helium bath in the previous work (i.e.,
a few mK). There was a level meter in the helium bath
which was continuously operated in the previous experi-
ment and hence constantly dissipated heat into the bath).
The temperature variations and flows in the bath could
affect the counterflow in the channel and result in large
uncertainties in the data. This effect is especially sig-
nificant when the heat current in the channel was small.
This level meter was not used during the measurements
in our current experiment. In Fig. 3 (b), we show the
observed power exponent n at various heat fluxes and
temperatures. The uncertainties of the fit in determin-
ing n are indicated later in Fig. 6. The black curves in
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FIG. 2: (color online). (a) Measured mean normal-fluid
velocity Un as a function of heat flux. The dashed lines
represent the expected normal-fluid velocity based on two-
fluid hydrodynamics1. (b) Normal-fluid turbulent intensity
∆un/Un as a function of heat flux at various temperatures.

The dashed lines indicate the mean values ∆un/Un averaged
over heat fluxes at the different temperatures. (c) Variation

of ∆un/Un with temperature.

Fig. 3 (b) represent lines of constant counterflow velocity
U . The exponent n appears to vary significantly along
these lines, suggesting that the counterflow velocity U is
not the controlling factor for the observed spectrum.
In Fig. 4 (a), we show the measured vortex-line density

in steady counterflow using the standard second sound
attenuation method4,5. As we have already noted, it is
expected that L1/2 = γ(U −U0). A linear dependence of
L1/2 on U is indeed seen at all temperatures. We per-
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FIG. 3: (color online). (a) Typical calculated second order
transverse structure function S⊥

2 (r) at various heat fluxes.
The data shown were obtained at 1.85 K. The dotted lines rep-
resent the power-law rn fit to the data. The vertical dashed
lines indicated the range of the power-law fit. At the low-
est heat flux, the S⊥

2 (r) curve does not show clear power-law
regime. (b) The observed power exponent n at various heat
fluxes and temperatures. The n values at low heat fluxes are
skipped since the power-law fit appears no longer reliable.

form a linear fit to the data to determine the γ coefficient
and the critical velocity U0. The resulting values of γ as
a function of temperature are shown in Fig. 4 (b). For
comparison, we have also included the γ values in coun-
terflow reported by other groups24–29. The data points
scatter among experiments, which may be caused by the
different sizes of the channels used in different experi-
ments. The overall trend of our data appear to agree
better with those reported in the TII state. This is per-
haps not surprising since, in the heat flux range we used,
the flows in both the superfluid and the normal-fluid com-
ponents are turbulent on a large scale. The critical ve-
locity U0 we have obtained is around 2 mm/s with no
obvious dependence on temperature, in agreement with
early studies29,30.
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TABLE I: The flow visualization and second sound measurement results at selected temperatures and heat fluxes.

T (K) q (mW/cm2) Un (mm/s) ∆un (mm/s) ∆un/Un n L (cm−2) γ (s/cm2) Z(k0)
1.65 150 18.7 5.0 0.272 0.89±0.03 8.63× 104 139.9±2.4 1.44

200 22.3 6.1 1.14±0.03 1.62× 105 1.02
300 32.7 11.2 1.18±0.04 3.82× 105 a 0.65

1.85 200 11.8 3.8 0.357 0.88±0.04 8.11× 104 173.6±5.8 1.41
300 17.8 6.7 1.23±0.02 1.98× 105 0.87
330 20.1 8.1 1.27±0.03 2.48× 105 0.76
497 30.3 11.7 1.35±0.03 5.85× 105 a 0.48

2.0 233 8.6 4.4 0.526 1.3±0.02 1.41× 105 242.8±12.1 0.80
386 13.4 6.8 1.31±0.03 4.73× 105 0.39
580 20.9 11.6 1.36±0.02 1.12× 106 a 0.25

2.1 200 5.7 5.1 0.918 1.09±0.02 3.73× 105 303.6 0.24
350 9.92 10.1 1.11±0.04 1.14× 106 a 0.14

aValues are extrapolated from Fig. 4 (a).

In order to aid the discussions in Section IV, we list
some measured results in Table I at temperatures and
heat fluxes where both the second sound data and visu-
alization data are available.

IV. DISCUSSION

In discussing our experimentally observed structure
functions, and the energy spectra that can be deduced
from them, we shall make the following assumptions. (1)
Turbulent energy is injected on two length scales: one, on
a scale of order the vortex line spacing, enters the super-
fluid only, by the mechanism identified by Schwarz7; the
other, on a scale comparable with the width, D, of the
channel, enters initially either the superfluid component
or the normal component or both, although if it enters
only one component it may be transferred quickly to the
other by mutual friction, as we shall explain. (2) The
turbulent energy injected on the large scale is transferred
by non-linear effects through a form of Richardson cas-
cade to smaller scales, this cascade being characterised
by the energy spectra that we have observed. (3) The
steady counterflow velocities, Us and Un, are spatially
uniform. Although these assumptions form a reasonable
starting point for our discussion, they are not necessarily
correct; for example, energy injection might conceivably
occur also on other, intermediate, length scales.
In the absence of a counterflow, mutual friction would

quickly lead to essentially complete coupling of the large
scale turbulence in each fluid, the turbulent velocities us

and un becoming essentially equal3. There would then
be no dissipation in the cascade on scales larger than ℓ,
and in the associated inertial sub-range there would be
an energy spectrum that is, approximately, of the Kol-
mogorov form E(k) = Cǫ2/3k−5/3. However, as we have
mentioned, the steady counterflow will tend to pull the
turbulent eddies in the two fluids in opposite directions
(the effect of the terms (Us · ∇)us and (Un · ∇)un in

the equations of motion). This decoupling effect is op-
posed by mutual friction to an extent that depends, for
motion on a scale 2π/k, on the dimensionless parameter
Z(k) = kUτ , where U = Us − Un and τ = ρn/ρακL (α
is the dimensionless mutual friction parameter); the rel-
evance of this parameter has already been discussed by
Babuin et al

13. The characteristic time τ determines3

the rate at which mutual friction tends to eliminate the
velocity difference (us − un), while (kU)−1 is the time
taken by the counterflow to decouple eddies of size 2π/k.
Any decoupling on a scale 2π/k will lead to dissipation on
this scale and hence to a departure from the Kolmogorov
spectrum. On the basis of very simple assumptions, we
shall now estimate the magnitudes of these departures
for different values of Z.

Let us first consider the case Z(k) ≫ 1, when decou-
pling can be expected to be complete for all relevant k.
The turbulent velocity fluctuations in the normal fluid,
un, are then assumed to be uncorrelated with those in
the superfluid, so that the turbulent motion in the nor-
mal fluid can be assumed to be damped as though the
superfluid were constrained to be at rest. The damping
is characterised by a time constant τ1 = ρn/ρsακL. We
need to understand how this damping affects the energy
spectrum in the normal fluid. We note that a similar
problem arises in the development of a theory of homo-
geneous isotropic turbulence in superfluid 3He-B. In this
case the normal fluid has such a large viscosity that it
cannot become turbulent, so that turbulence in the su-
perfluid component evolves in the presence of a normal
fluid that is constrained to be at rest. There is an obvious
similarity between this situation and that for Z(k) ≫ 1
in our case, except that the roles of the two fluids are re-
versed (this similarity has already been noted by Babuin
et al

13). The 3He problem has been addressed in the lit-
erature in various ways; one of us based our discussion31

on an appropriate solution of a modified “Leith” differen-
tial equation32 that describes the diffusion of turbulent
energy in k-space, while reference to other approaches
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FIG. 4: (color online). (a) Square root of the measured

vortex-line density L1/2 as a function of the mean counter-
flow velocity U . The dashed lines represent linear fits to the
data. (b) The derived γ coefficients in thermal counterflow as
a function of temperature. The red asterisks, this work; the
solid black squares, by Chase, 0.8-mm diameter circular chan-
nel24; the solid magenta circles, by Dimotakis and Broadwell,
3.18-mm diameter circular channel25; the solid blue triangles
(TII state) and the open blue triangles (TI state), by Martin
and Tough, 1-mm diameter circular channel27; the green di-
amond, by Babuin et al., 7-mm side width square channel29;
the open black circles (TI state), by Childers and Tough, 0.13-
mm diameter circular channel26; the dashed line, by Adachi
et al., numerical simulation for TI state28.

is included in ref [13]. Here we shall adopt a different,
simpler, and perhaps more transparent approach, which
will serve adequately to provide us with the answers we
require.

We write the energy spectrum in the form

E(k) = [ǫ(k)]2/3k−5/3, (1)

recognizing that the dissipation must lead to an energy
flux ǫ that decreases with increasing wave number. Ten-
tatively, we shall assume that the spectrum takes the

form

E(k) = Ak−p(1 +Bkq), (2)

where A, p and q prove to be constants that we must
determine and B to be an adjustable parameter.

We note that kE(k) can be assumed to be the energy
associated with eddies of size 2π/k, and that kdǫ/dk can
be assumed to be the rate of energy dissipation in these
eddies. It follows that

k
dǫ

dk
= −

2kE(k)

τ1
= −

2Ak1−p

τ1
(1 +Bkq). (3)

Integration then leads to

ǫ = −
2Ak1−p

(1− p)τ1

(

1 +
B(1 − p)

q − p+ 1
kq
)

. (4)

Let us now assume thatBkq << 1. Then, approximately,

E(k) =
(

2A
(p−1)τ1

)2/3(

1 + 2B(1−p)
3(q−p+1)k

q
)

k−(1+2p/3). (5)

Comparing this equation with Eq.(2), we see that p = 3,
A = τ−2

1 and q = 4/3. Therefore

E(k) =
1

τ21
k−3(1 +Bk4/3), (6)

if Bk4/3 << 1.

The behaviour of E(k) is quite different according as B
is greater than or less than zero. Consider the behaviour
of the product k5/3E(k), which has a constant value for
a Kolmogorov spectrum. According to Eq.(6) this prod-
uct behaves as shown schematically in Fig.5. Of course,
Eq.(6) is not strictly valid when Bk4/3 is not small, but
the behaviour shown in Fig.5 remains qualitatively cor-
rect. In fact, we expect the spectrum E(k) to tend to-
wards the Kolmogorov form when dissipation starts to
become unimportant: i.e. when τ1 becomes much larger
than the eddy turnover time 2π/kun(k) (where un(k)
is the turbulent velocity in the normal fluid on a scale
2π/k), a condition that can be written as

kun(k)τ1 ≫ 2π. (7)

This condition can be satisfied only if B > 0. If B < 0,
the product k5/3E(k) falls more and more steeply as k
increases, until it vanishes at a finite k, as shown schemat-
ically in Fig.5.
Which of these two scenarios applies depends on the

rate of injection of energy at the injection wave number
k0, a rate that is equal to k0[un(k0)]

3/4π. As we see from
Eq.(4), if this rate of injection exceeds (k20τ

3
1 )

−2 (i.e. if
k0u0(k0)τ1 > (4π)1/3) then B > 1, and E(k) must tend
towards Kolmogorov at sufficiently large k. Otherwise
E(k) falls to zero at a finite k, and E(k) always falls
more steeply than k−3. In practice, un(k0) is, for a given
temperature, a fixed fraction of U : un(k0) = χU (we
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can take un(k0) = ∆un to a reasonable approximation,
since most of the turbulent energy is at small wave num-
bers). Therefore the condition that E(k) tends towards
Kolmogorov at sufficiently large k can be written as

Z(k0) >
ρs
ρχ

(4π)1/3. (8)

However, E(k) will have the actual Kolmogorov form for
all k > k0 only if the following more stringent condition
is satisfied

Z(k0) ≫
ρs
ρχ

(2π), (9)

as we see from Eq.(7); otherwise, E(k) will fall with
increasing k as roughly k−3. Values of the right hand
sides of the inequalities (8) and (9) are given in Table II.
We remark here that in interpreting our experiments we
shall take k0 to be equal to 2π/(2mm), since the observed
structure functions have maximum values at r ≈ 2 mm;
our observed energy spectra then relate to the range of
k from k0 to about 10k0.

TABLE II: Values of various parameters at different temper-
atures.

T (K) χ ρs

ρχ (4π)
1/3 ρs

ρχ (2π)
(

χρ
ρn

)3/4

1.65 0.22 8.53 23.1 0.38
1.85 0.23 6.51 17.6 0.47
2.0 0.22 4.42 11.9 0.59
2.1 0.24 2.53 6.85 0.94

We turn now to the condition when there is strong
coupling: Z(k) ≪ 1. The normal and superfluid ed-
dies are then forced into approximate coincidence, so
that (un − us) ≪ un. It is easily shown from the two-
fluid equations of motion that the small decoupling is

described approximately by the equation

(U · ∇)un =
1

τ
(us − un), (10)

so that the small average value of (us − un) for wave
number k can be estimated as being given by

〈|(us − un)|〉 ∼ τU
〈∣

∣

∣

∂un

∂x

∣

∣

∣

〉

∼ kUτun = Z(k)un, (11)

for eddies centred on wave number k. It follows that the
corresponding dissipation per unit volume of helium is
given by

W ∼
〈|us − un|

2〉

τ
= Z(k)2

u2
n

τ
, (12)

where we have assumed that the sign of (us − un) is
random. However, as can be shown fairly easily, only
a fraction ρs/ρ of this dissipation is associated with the
normal fluid. We see that the dissipation in the normal
fluid is proportional to k2, so that its effect on the en-
ergy spectrum is similar to that of viscosity. Since the
dissipation due to a kinematic viscosity ν is νk2u2

n, the
effective kinematic viscosity is given roughly by

νeff =
ρs
ρ
U2τ =

ρsU

ρk0
Z(k0). (13)

This effective kinematic viscosity has a typical value of
3× 10−6 m2s−1. It will therefore have little effect on the
Kolmogorov energy spectrum at sufficiently small wave
numbers, but it will lead to a cut-off when the wave num-
ber exceeds the critical value given by

kc =
( ǫ

ν3eff

)1/4

, (14)

where ǫ is the energy flux down the inertial part of the
Richardson cascade. Taking ǫ = k0[un(k0)]

3/4π, we find
that

kc
k0

=
1

(4π)1/4Z(k0)

(ρχ

ρs

)3/4

. (15)

As we have mentioned, our experiments relate to the en-
ergy spectrum over a range of wave numbers from k0 to
10k0. Thus we can expect to see a Kolmogorov energy
spectrum only if

Z(k0) ≪ 0.05
(ρχ

ρs

)3/4

. (16)

Otherwise the spectrum ought to fall more steeply with
increasing k than is the case for a Kolmogorov spectrum.
Values of the parameter (ρχ/ρs)

3/4 at different temper-
atures are included in Table II. We note that kc ∼ k0
when Z(k0) ∼ 0.25.

We note that our discussion leads to the conclusion
that, over limited ranges of k , the energy spectrum
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should be of the form E(k) ∝ k−m, where, for a given
temperature, the exponent m is a function of Z(k0).
Therefore in Fig.6 we have plotted our experimental re-
sults for m = n + 1 against Z(k0). Remember that we
have taken 2π/k0 = 2 mm, since the maximum in the
second-order structure function is situated at r = 2 mm.

1.65 K

1.85 K

2.0 K

2.1 K

P
o
w

er
 i

n
d
ex

 n

0 0.5 1.0 1.5

0( )Z k

FIG. 6: (color online). The power exponent n of the second
order transverse structure function S⊥

2 as a function of Z(k0),
with k0 = 2π/2mm.

The arguments that we have summarised so far serve to
establish how the counterflow energy spectrum for large-
scale turbulence in the normal fluid is likely to behave in
various limits, according to our simple de-coupling the-
ory. Unfortunately, our experimental results do not re-
late strictly to any of these limits; they cover only a small
range of values of Z(k0) of order unity. Nevertheless we
can examine our results to see whether they might, or
might not, be consistent with our theoretical predictions.
In all cases we observe an energy spectrum E(k) ∝

k−m (remember thatm = n+1). Let us make the reason-
able assumption that for a given temperature our simple
de-coupling theory would lead to a smooth variation of
m with Z(k0). Based on our analysis of the asymptotic
forms of behaviour we would then expect m to vary with
Z(k0) in the way sketched roughly and schematically in
Fig.7.
We note that experiment suggests, but does not yet

firmly establish, that the value of m, as a function of
Z(k0), passes through a maximum at around Z(k0) =
0.5, in qualitative agreement with theory. However,
quantitatively, experiment differs from our tentative the-
ory in two respects: the magnitude of m in the region
of the maximum (if it exists) is smaller; and, probably
more seriously, m seems to be falling rapidly to the Kol-
mogorov value at Z(k0) ∼ 1.5, rather than at Z(k0) ∼ 20,
as suggested by the theory. The latter difference seems
to us more serious, because it is hard to see, on the ba-
sis of our assumptions, how the energy spectrum can be
close to Kolmogorov when Z(k0) ∼ 1. Therefore we draw
the tentative conclusion that the theory is inadequate,
most obviously if Z(k0) > 1, because the assumptions on

0( )Z k

210− 110− 010 110 21020

1

2

3

0

1.67

m

FIG. 7: (color online). Sketches of the power exponent m
of the energy spectrum as a function of Z(k0). Red line:
suggested theory (1.85 K); Blue line: experiment (1.85 K).

which it is based are wrong. This in turn suggests that,
contrary to our supposition, the condition Z(k0) ≫ 1
does not signal a complete breakdown of coupling be-
tween large scale turbulence in the two fluids. We are
presently working on the formulation of a version of the
Leith equation that will allow us to predict the energy
spectra for any value of Z(k0). Tentative results are con-
sistent with the conclusions that we have just drawn, and
do not serve to give better agreement with experiment.
One possibility is that mutual friction is serving not only
to damp the turbulent motion in each fluid, but also to
generate extra turbulence, as occurs, for special reasons
identified by Schwarz7, on scales of order the vortex line
spacing. The development of an improved theory may be
seriously challenging.

In the light of our discussion it is very clear that our
measurements cover a range of values of Z(k0) that is
far too small. The range of Z(k0) is determined largely
by the range of heat fluxes that can be studied. Small
values of Z(k0) correspond to large heat fluxes, and vice

versa. In our experiments the smallest accessible heat
fluxes are determined by the critical velocity below which
there is no large-scale turbulence. The largest accessible
heat fluxes are determined by a technical limitation aris-
ing from the way in which a sufficiently dense initial line
of excimer molecules is generated. For reasons that are
explained in ref [14], an adequate density can be achieved
only if several pulses of the femtosecond laser are used,
later pulses relying on the ionization of excimer molecules
produced by earlier pulses. It follows that the heat flux
cannot be too large: otherwise the motion of the normal
fluid will sweep the excimer molecules produced by ear-
lier pulses away from the beam line of the later pulses.
Overcoming this limitation is a challenge for the future.
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V. CONCLUSION

When superfluid 4He carries a heat current, with a re-
sulting counterflow of the two fluids, turbulence is gener-
ated in the superfluid component on a length scale com-
parable with the vortex line spacing, as has been known
and understood for many years. Recently it has been dis-
covered that, above a certain critical heat flux, this small
scale turbulence is accompanied by turbulence in both
fluids on scales up to the size of the containing channel.
We have reported a new experimental study of the large-
scale turbulence in the normal fluid, based on the use of
metastable triplet-state He2 excimer molecules as trac-
ers. This study has yielded information about the energy
spectrum characterising this turbulence, over a range of
temperatures and heat fluxes. The spectrum has usually
the form E(k) ∝ k−m, where m varies with temperature
and heat flux and is always greater than the Kolmogorov
value of 5/3; this value applies to the inertial sub-range
in homogeneous isotropic turbulence in a classical fluid,
and also in superfluid 4He when turbulent flow of the
two fluids can be fully coupled by mutual friction. The
increased value of m is attributed to dissipation arising
from a breakdown in this coupling caused by the steady
counterflow. A simple theory of this decoupling is shown
to lead to results that may be in qualitative agreement
with experiment, but are not in quantitative agreement.

The simple assumptions underlying this theory are there-
fore probably wrong.
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