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We study formation and superfluidity of dipolar excitons in double layer heterostructures formed
by two transition metal dichalcogenide (TMDC) atomically thin layers. Considering screening effects
for an electron-hole interaction via the harmonic oscillator approximation for the Keldysh potential,
the analytical expressions for the exciton energy spectrum and the mean field critical temperature
Tc for the superfluidity are obtained. It is shown that binding energies of A excitons are larger than
for B excitons. The mean field critical temperature for a two-component dilute exciton system in
a TMDC double layer is analyzed and shown that latter is an increasing function of the factor Q,
determined by the effective masses of A and B excitons and their reduced mass. Comparison of the
calculations for Tc performed by employing the Coulomb and Keldysh interactions demonstrates
the importance of screening effects in TMDC.

PACS numbers: 71.20.Be, 71.35.-y, 71.35.Lk

I. INTRODUCTION

When a sufficient amount of bosons at low temperatures spontaneously occupy the single lowest energy quantum
state, Bose–Einstein condensation (BEC) happens. The system of interacting bosons can experience the superfluidity,
caused by BEC, analogously to the superfluid helium1. A BEC of weakly interacting particles was achieved experi-
mentally in dilute gases of alkali atoms. This atomic BEC can be created at the nanokelvin temperatures, which are
technically challenging to achieve. The progress in the experimental and theoretical research of the BEC of dilute
supercold alkali gases is reviewed in Ref.2.
The BEC for two-dimensional (2D) bosons with higher mass occurs at the temperatures greater than for bosons

with lower mass, because the de Broglie wavelength for 2D system is inversely proportional to the square root of the
mass of a particle. Therefore, BEC exists at much higher temperatures in a Bose gas of small mass particles, than in
a system of relatively heavy alkali atoms. The small mass boson quasiparticles can be formed due to absorption of
a photon by a semiconductor. Absorption of a photon leads to creation of an electron in a conduction band and a
positive charge “hole” in a valence band. This electron-hole pair can form a bound state called an “exciton”. The BEC
and superfluid of such excitons are expected to exist at experimentally observed exciton densities at temperatures
much higher than for the BEC of alkali atoms3. The BEC and superfluidity of dipolar (indirect) excitons, formed by
electrons and holes, spatially separated in two parallel two-dimensional semiconductor quantum wells, were proposed4.
The experimental observation of superfluidity of dipolar excitons in GaAs quantum wells was claimed recently5. The
recent progress in experimental and theoretical studies of BEC of dipolar excitons in semiconductor quantum wells
was reviewed3,6–8.
Due to relatively large exciton binding energies in novel 2D semiconductors, such as transition metal dichalcogenides

(TMDC), the BEC and superfluidity of dipolar excitons in double layers of TMDC can occur. Monolayers of TMDC
such as MoS2, MoSe2, MoTe2, WS2, WSe2, and WTe2 are 2D semiconductors, belonging to a class of monolayer direct
bandgap materials, attract an interest due various applications in electronics and opto-electronics9. Since contrary to
gapless graphene, TMDC monolayers have the direct gap in a single-particle spectrum exhibiting the semiconducting
band structure10–13, excitons in TMDCs can be created by the laser pumping. The ground and excited states of
direct excitons in mono- and few-layer TMDCs on a SiO2 substrate were experimentally and theoretically studied14.
Two distinct types of excitons in TMDC layers, labeled A and B, are formed due to significant spin-orbit splitting
in the valence band15. The excitons of type A are created by spin-up electrons from conduction and spin-down
holes from valence bands. The excitons of type B are created by spin-down electrons from conduction and spin-up
holes from valence bands. While the spin-orbit splitting in the valence band is much larger than in the conduction
band, in the valence band the energy for spin-down electrons is larger than for spin-up electrons. The spin-orbit
spitting results in the experimentally observed energy difference between the A and B excitons9. Therefore, A and B
excitons form a two-component Bose gas in TMDCs. Let us mention that caused by the lack of inversion symmetry
in TMDC monolayers, spin-orbit splitting of energy bands generally occurs over the entire Brillouin zone16,17. Due to
the Kramers theorem, the bands are doubly degenerate at the time-reversal invariant points Γ and M and at special k
points along the Γ-M direction in the crystal momentum space, which are protected by crystal mirror symmetry17. In
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TMDC monolayers, the low-energy bands at K± points at the centers of the valleys in the crystal momentum space
are not spin degenerate16,17.
High-temperature superfluidity can be observed for dipolar excitons in a heterostructure of two TMDC mono-

layers, separated by a hexagonal boron nitride (h-BN) insulating barrier18. The dipolar excitons were observed in
heterostructures formed by monolayers of MoS2 and MoSe2 on a Si − SiO2 substrate19 and by monolayers of MoS2
on a substrate constrained by hexagonal boron nitride layers20. The theoretical study of the phase diagram of 2D
dipolar exciton condensates in a TMDC double layer was performed21. The high-temperature superfluidity of the two
component Bose gas of A and B dipolar excitons in a transition metal dichalcogenide double layer was predicted in
Ref.22.
In this paper, we study the superfluidity of two-component dilute Bose gas of dipolar A and B excitons in different

TMDC double layers. We search the candidates for higher temperature of superfluidity by comparing the results
of the calculations for various TMDC double layers, formed by two monolayers of the same TMDC material and
two different TMDC monolayers, when the transition metal atom is replaced by the other transition metal atom
(e.g. for a MoS2/WS2 heterostructure) or when the chalcogenide atoms are replaced by the other chalcogenide atoms
(e.g. for a MoS2/MoSe2 heterostructure). While an electron and a hole interact via the Coulomb potential, in
general, affected by screening effects the electron-hole interaction in TMDC materials is described by the Keldysh
potential 15. In the framework of the harmonic oscillator approximation for the electron-hole interaction in TMDC
double layer heterostructure we obtain the analytical expressions for the exciton energy spectrum and the mean field
critical temperature of superfluidity. The calculations are performed for both the Keldysh and Coulomb potentials,
describing the interactions between the charge carriers, which allows to study the influence of the screening effects
on the properties of a weakly interacting Bose gas of dipolar excitons in a TMDC double layer. Due to spin-orbit
splitting around the K point in the Brillouin zone, the critical temperature Tc of superfluidity for a two-component
exciton system in a TMDC double layer is higher than Tc for an exciton system in semiconductor (GaAs/AlGaAs)
coupled quantum wells, where the spin degeneracy for the charge carriers occurs.
The paper is organized in the following way. In Sec. II, the two-body problem for an electron and a hole, spatially

separated in two parallel TMDC monolayers, is formulated, and the energy spectrum, wave functions, and binding
energies for a single dipolar exciton in a TMDC double layer are obtained. The exciton-exciton interaction is analyzed
in Sec. III. In Sec. IV, the mean field critical temperature of superfluidity for the two-component dilute system of
dipolar excitons in a TMDC double layer is obtained and analyzed. The conclusions follow in Sec. V.

II. TWO-BODY PROBLEM FOR AN ELECTRON AND A HOLE, SPATIALLY SEPARATED IN TWO

PARALLEL TMDC MONOLAYERS

We consider electrons to be confined in a 2D TMDC monolayer, while an equal number of positive holes are placed
in a parallel TMDC monolayer at a distance D away. The system of the charge carriers in two parallel TMDC layers
is treated as a 2D system without interlayer hopping. The electron and hole via electromagnetic interaction V (reh),
where reh is a distance between the electron and hole, could form a bound state, i.e., a dipolar exciton. The electron-
hole recombination due to the tunneling of electrons and holes between different TMDC monolayers is suppressed by
the dielectric barrier with the dielectric constant εd that separates two TMDC monolayers22. Therefore, the dipolar
excitons, formed by electrons and holes, located in two different parallel TMDC monolayers, have a longer lifetime
than the direct excitons. After projection the electron position vector onto the TMDC plane with holes and replacing
the relative coordinate vector reh by its projection r on this plane and taking into account that reh =

√
r2 +D2, the

potential V (reh) can be expressed as V (r) = V (
√
r2 +D2), where r is the relative distance between the hole and the

projection of the electron position onto the TMDC monolayer with holes. Thus, a dipolar exciton can be described
by a two-body 2D Schrödinger equation with potential V (

√
r2 +D2), employing in-plane coordinates r1 and r2 for

the hole and the projection of the electron, respectively, so that r = r1 − r2.
The Hamiltonian of an electron and a hole, spatially separated in two parallel TMDC monolayers with the interlayer

distance D has the following form

Ĥex = − h̄2

2me
∆r1 −

h̄2

2mh
∆r2 + V (r), (1)

where ∆r1 and ∆r2 are the Laplacian operators with respect to the components of the vectors r1 and r2, respectively,
and me and mh are the effective masses of the electron and hole, respectively. The problem of the in-plane motion
of interacting electron and hole forming the exciton in a TMDC double layer can be reduced to that of one particle
with the reduced mass µ = memh/ (me +mh) in a V (r) potential and motion of the center-of-mass of the exciton
with the mass M = me + mh. Following the standard procedure for the two-body problem23, we introduce the
coordinates of the center-of-mass R of an exciton and the coordinate of the relative motion r of an electron and hole
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as R = (mer1 +mhr2) / (me +mh) and r = r1 − r2, correspondingly. The Hamiltonian Ĥex can be represented in

the form: Ĥex = ĤR + Ĥr, where the Hamiltonians of the motion of the center-of-mass ĤR and relative motion of
electron and a hole Ĥr.
The solution of the Schrödinger equation for the center-of-mass of an exciton ĤRψ(R) = Eψ(R) is the plane wave

ψ(R) = eiPR/h̄ with the quadratic energy spectrum E = P 2/(2M), where P is the momentum of the center-of-mass
of an exciton.

A. The harmonic oscillator approximation of Keldysh potential for a TMDC double layer

In TMDC layers due to the screening effects15,24–27 the electron-hole attraction has to be described by the Keldysh
potential28,29. We assume the following form of the Keldysh potential30:

V (reh) = − πke2

(ε1 + ε2) ρ0

[
H0

(
reh
ρ0

)
− Y0

(
reh
ρ0

)]
, (2)

where k = 9× 109 N ×m2/C2, H0(x) and Y0(x) are Struve and Bessel functions of the second kind of order ν = 0,
correspondingly, ε1 and ε2 are the dielectric constants of the dielectrics, surrounding the TMDC layer, ρ0 is the
screening length, defined by ρ0 = 2πζ/ [(ε1 + ε2) /2], where ζ is the 2D polarizability. If the electron-hole separation
is large, implying reh ≫ ρ0 , the potential, given by Eq. (2), has the three-dimensional Coulomb tail, while for small
electron-hole distances at reh ≪ ρ0 it turns to a logarithmic Coulomb potential for two 2D point charges. Throughout
of this paper we assume that TMDC monolayers are embedded in the same material with dielectric constant εd and,
therefore, we set ε1 = ε2 = εd.
Substituting reh =

√
r2 +D2 into Eq. (2), assuming r ≪ D, and expanding Eq. (2) in Taylor series we obtain in

the first order with respect to (r/D)
2
:

V (r) = −V0 + γr2, (3)

where

V0 =
πke2

2εdρ0

[
H0

(
D

ρ0

)
− Y0

(
D

ρ0

)]
, (4)

γ = − πke2

4εdρ20D

[
H−1

(
D

ρ0

)
− Y−1

(
D

ρ0

)]
. (5)

If we use the Coulomb potential, the potential energy of the electron-hole attraction V (r) is

V (r) = − ke2

εd
√
r2 +D2

. (6)

Assuming r ≪ D, we approximate V (r) by the first two terms of the Taylor series and obtain

V (r) = −V0 + γr2, where V0 =
ke2

εdD
, γ =

ke2

2εdD3
. (7)

The Keldysh potential and the harmonic oscillator approximation for the Keldysh potential for electron-hole at-
traction in a TMDC double layer, describing the electron-hole interaction in a TMDC double layer, given by Eqs. (2)
and (3), respectively, are shown in Fig. 1. According to Figs. 1a and 1b, the difference between the potentials for
different TMDC materials decreases as r increases. As seen from Fig. 1c, the harmonic oscillator approximation of the
Keldysh potential is very much close to the exact Keldysh potential for small r, while it becomes larger than the exact
Keldysh potential when r increases. Let us mention that indirect excitons were observed in two different MoS2 layers
separated by h-BN monolayers and surrounded by h-BN cladding layers, since h-BN monolayers are characterized
by relatively small density of the defects of their crystal structure20. Therefore, in our calculations we consider the
TMDC monolayers to be separated by h-BN insulating layers. Besides we assume h-BN insulating layers to be located
on the top and on the bottom of the TMDC double layer. In this case, εd = 4.89 is the effective dielectric constant,

defined as εd =
√
ε⊥

√
ε‖18, where ε⊥ = 6.71 and ε‖ = 3.56 are the components of the dielectric tensor for h-BN31.

Throughout of this paper we consider the separation between two layers of TMDC materials in steps of DhBN = 0.333
nm, corresponding to the thickness of one h-BN monolayer18. Therefore, the interlayer separation D is presented as
D = NLDhBN , where NL is the number of h-BN monolayers, placed between two TMDC monolayers. In Fig. 1 the
number NL = 10 of h-BN monolayers, located between two TMDC monolayers corresponds to D = 3.33 nm.
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FIG. 1: (Color online) (a) The Keldysh potential for electron-hole attraction in different TMDC double layers, given by Eq. (2).
(b) The harmonic oscillator approximation for the Keldysh potential for electron-hole attraction in different TMDC double
layers, given by Eq. (3). (c) Comparison of the Keldysh potential and the Keldysh potential, approximated by the harmonic
oscillator potential in a MoS2 double layer. The calculations were performed for the number NL = 10 of h-BN monolayers,
located between two TMDC monolayers. The polarizabilities for TMDC materials are taken from Ref.15.

B. The dipolar exciton energy spectrum and wave functions

The solution of the Schrödinger equation for the relative motion of an electron and a hole ĤrΨ(r) = EΨ(r) with
the potential (3) is reduced to the problem of a 2D harmonic oscillator with the exciton reduced mass µ. The
eigenfunctions and eigenenergy for a single particle in the parabolic well were first determined by Fock in 192832, later
in Ref. [33], and was studied in detail in Ref.34. The single-particle eigenfunction for the two-dimensional oscillator
was widely used for the description of a quantum dot35.
Following Refs. [35,36] one obtains the radial Schrödinger equation and the solution for the eigenfunctions for the

relative motion of an electron and a hole in a TMDC double layer in terms of associated Laguerre polynomials can
be written as

ΨNL(r) =
N !

a|L|+1
√
ñ!ñ′!

2−|L|/2sgn(L)Lr|L|e−r2/(4a2) × L
|L|
N (r2/(2a2))

e−iLφ

(2π)1/2
, (8)

where N = min(ñ, ñ′), L = ñ − ñ′, ñ, ñ′ = 0, 1, 2, 3, . . . are the quantum numbers, φ is the polar angle, and

a =
[
h̄/
(
2
√
2µγ

)]1/2
.

The corresponding energy spectrum is given by

ENL ≡ Ee(h) = −V0 + (2N + 1 + |L|)h̄
(
2γ

µ

)1/2

. (9)

At the lowest quantum state N = L = 0 as it follows from Eq. (9) the ground state energy for the exciton is given by

E00 = −V0 + h̄

(
2γ

µ

)1/2

. (10)

The important characteristics of the exciton is the square of the in-plane gyration radius r2X . It allows to estimate
the condition when the excitonic gas is dilute enough. One can obtain the square of the in-plane gyration radius rX of
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TABLE I: Masses of excitons and D0 for different TMDC materials. m0 is an electron mass.

Exciton MoS2 MoSe2 WS2 WSe2

A Mass/m0 1.1 1.33 0.84 0.93

D0, Å 0.29 0.23 0.32 0.30

B Mass/m0 0.98 1.15 0.62 0.66

D0, Å 0.31 0.25 0.37 0.36

a dipolar exciton18, which is the average squared projection of an electron-hole separation onto the plane of a TMDC
monolayer as

r2X ≡
〈
r2
〉
=

∫
Ψ∗

00(r)r
2Ψ00(r)d

2r =
2π

2πa2

∫ +∞

0

r2e−
r
2

2a2 rdr = 2a2. (11)

Let us mention that the Taylor expansion of the electron-hole attraction potential in the first order with respect to
r2/D2, presented by Eq. (3) is valid if r2X = 2a2 ≪ D2. Thus, one obtains that h̄/

√
2µγ ≪ D2. The latter inequality

holds for D ≫ D0. The value of D0 depends on the effective masses of the electron and hole. For the Keldysh
potential D0 can be obtained from solution of the following transcendental equation:

D3
0 = − 2h̄2εdρ

2
0

πke2µ
[
H−1

(
D0

ρ0

)
− Y−1

(
D0

ρ0

)] . (12)

The following inequality should hold for the Keldysh potential:

− 2h̄2εdρ
2
0

πke2µ
[
H−1

(
D
ρ0

)
− Y−1

(
D
ρ0

)] ≪ D3. (13)

For the Coulomb potential, we have D0 = h̄2εd/
(
ke2µ

)
. The comparison of the latter expression for D0 with Eq. (12)

shows that in the case of the Keldysh potential D0 depends on the screening length which is contingent on the 2D
polarizability of TMDC material.
To estimate the condition of validity of the Taylor expansion we find D0 by solving Eq. (12). The masses of dipolar

excitons and D0 for different TMDC materials are represented in Table I. The smallest D0 corresponds to a MoSe2
double layer, while largest D0 corresponds to a WS2 double layer. The values of D0 are smaller for A dipolar excitons
than for B dipolar excitons for the same TMDC double layers. Consideration of the double layer heterostructure that
consists from two different TMDC layers, when in one of the layers the transition metal atom is replaced by the other
transition metal atom (e.g. for a MoS2/WS2 heterostructure) or the chalcogenide atoms are replaced by the other
chalcogenide atoms (e.g. for a MoS2/MoSe2 heterostructure) changes the value of D0 insignificantly.
The binding energy of an exciton depends on the effective masses of an electron and a hole that constitute the A

and B excitons and the polarizability of TMDC material. In our calculations throughout of this paper we use the
set of effective masses for electrons and holes from Refs.37,38 and the polarizability from Ref.15. The effective masses
for the charge carriers in Refs.37,38 and the polarizability in Ref.15 were obtained by employing density functional
theory (DFT) calculations. Let us mention that we consider the excitons, formed by the carriers at the K point in
the crystal momentum space, around which the valley is centered, where the spin degeneracy is absent16,17. Due to
the spin-orbit splitting of the bands at the center of the valley at the K point, the charge carriers with opposite spins
are characterized by different effective masses, determined by the second derivatives of the band energy with respect
to the crystal momentum37,38.
The binding energies for A and B dipolar excitons in different TMDC double layers, formed by the same monolayers,

are represented in Table II. The highest binding energy corresponds to a MoSe2 double layer, while the lowest
corresponds to a WS2 double layer.
For the double layer heterostructure, formed by two different TNDC monolayers, if the transition metal atom is

replaced with another transition metal atom (e.g. for a MoS2/WS2 heterostructure) or if the chalcogenide atoms are
replaced with the other chalcogenide atoms (e.g. for a MoS2/MoSe2 heterostructure), we estimated the polarizability
as the average of the polarizabilities of two TMDC monolayers. The binding energies for A and B dipolar excitons in
different TMDC double layers, formed by two different monolayers, are represented in Tables III and IV, respectively.
The highest binding energy corresponds to a double layer with electrons in a MoSe2 monolayer and holes in a MoS2
monolayer.
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TABLE II: Binding energy in eV for A and B type dipolar excitons in a TMDC double layer with the same TMDC materials

NL h-BN Binding energy of A exiton, eV Binding energy of B exiton, eV

MoS2 MoSe2 WS2 WSe2 MoS2 MoSe2 WS2 WSe2

8 0.049 0.054 0.040 0.041 0.045 0.050 0.029 0.030

10 0.045 0.049 0.038 0.040 0.043 0.046 0.028 0.029

12 0.042 0.044 0.036 0.038 0.039 0.042 0.028 0.029

Our calculation of the dipolar exciton binding energy by employing the harmonic oscillator approximation for the
Keldysh potential for electron-hole attraction shows that the binding energy for A excitons is greater than for B
excitons for the TMDC double layer heterostructure with the same monolayers. The latter is related to the fact
that the effective masses of spin-down holes from the valence band are sufficiently larger than the effective masses of
spin-up holes due to the strong spin-orbit coupling in the valence band of TMDCs, and the effective masses of spin-up
electrons from the conduction band are slightly greater than the effective masses of spin-down electrons. Therefore,
the reduced mass µ is larger for A excitons than for B excitons, which results in higher binding energies for A excitons
than for B excitons. Let us mention that it is possible to create either electrons or holes in either TMDC monolayer
by changing the direction of the electric field perpendicular to the plane of the double layer. Since the effective masses
of electrons and holes are different for the same TMDC monolayers, the binding energy for dipolar excitons depends
on a choice of a monolayer for electrons and holes, correspondingly. According to Tables III and IV, the binding
energies for dipolar excitons with electrons in MoS2 and MoSe2 and holes in WS2 and WSe2 are larger than for dipolar
excitons with electrons in WS2 and WSe2 and holes in MoS2 and MoSe2.

The energy spectrum of the center-of-mass of the A (or B) dipolar exciton ε
A(B)
0 (P) is given by

ε
A(B)
0 (P) =

P 2

2MA(B)
, (14)

where P is a momentum of the center of mass of a dipolar exciton, and the masses of A and B dipolar excitons
are given by MA = me↑ + mh↓ and MB = me↓ + mh↑, where me↑(↓) is the effective mass of spin-up (spin-down)
electrons from the conduction band and mh↑(↓) is the effective mass of spin-up (spin-down) holes from the valence
band, correspondingly.

III. EXCITON-EXCITON INTERACTION

We consider a dilute system of electrons and holes in two parallel TMDC monolayers, spatially separated by a
dielectric, when nr2X ≪ 1, where n is the 2D concentration for dipolar excitons. In this case, the dipolar excitons
are formed by electron-hole pairs with the electrons and holes spatially separated in two different TMDC monolayers.
One can estimate the concentration of excitons n that corresponds to r−2

X by using Eq. (11). r2X depends on the
interlayer separation and when D increases r2X increases. For all TMDC materials r2X varies from 7.4× 10−18 cm2 to
9.1× 10−18 cm2 that corresponds to the 2D concentrations 1.4× 1017 cm−2 and 1.1× 1017 cm−2 when the interlayer
separation is NL = 12 of h-BN monolayers. For the smaller interlayer separation the corresponding concentration
even is larger. Below we are considering the dilute limit with the maximal 2D exciton concentration that not exceeded
6× 1015 cm−2, where the model of a weakly interacting Bose gas is valid.
The excitons, which are not elementary but composite bosons8 are different from bosons only due to exchange

effects3. At large interlayer separations D, the exchange effects in the exciton-exciton interactions in a TMDC double

TABLE III: Binding energy in eV for A type dipolar exciton in a TMDC double layer with different TMDC materials

NL h-BN Electron layer MoS2 MoSe2 WS2 WSe2

Hole layer MoSe2 WS2 WSe2 MoS2 WS2 WSe2 MoS2 MoSe2 WSe2 MoS2 MoSe2 WS2

8 B, eV 0.050 0.045 0.047 0.053 0.049 0.050 0.042 0.043 0.045 0.042 0.034 0.046

10 B, eV 0.046 0.043 0.044 0.048 0.045 0.046 0.041 0.041 0.043 0.039 0.033 0.044

12 B, eV 0.042 0.039 0.040 0.044 0.042 0.042 0.038 0.038 0.041 0.036 0.032 0.042
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TABLE IV: Binding energy in eV for B type dipolar exciton in a TMDC double layer with different TMDC materials

NL h-BN Electron layer MoS2 MoSe2 WS2 WSe2

Hole layer MoSe2 WS2 WSe2 MoS2 WS2 WSe2 MoS2 MoSe2 WSe2 MoS2 MoSe2 WS2

8 B, eV 0.046 0.038 0.038 0.049 0.041 0.041 0.035 0.035 0.031 0.034 0.027 0.034

10 B, eV 0.043 0.037 0.037 0.045 0.039 0.039 0.034 0.035 0.033 0.033 0.027 0.035

12 B, eV 0.040 0.035 0.035 0.041 0.037 0.037 0.033 0.034 0.032 0.032 0.026 0.034

layer are negligible, because the exchange interactions in a system of spatially separated electrons and holes in a
double layer are suppressed due to the low tunneling probability, caused by shielding of the dipole-dipole interaction
by the insulating barrier22. Therefore, the dilute system of dipolar excitons in a TMDC double layer can be treated
as a weakly interacting Bose gas.
The experimental observation by pump-probe spectroscopy39 of a two-component system of co-existing A and B

excitons in a monolayer of MoS2 was reported. Co-existing A and B excitons can be created employing non-resonant
pumping by a broadband laser pulse. In this case, the laser photon energy is much higher than the exciton binding
energies. Then created hot free carriers lose energy to phonons and eventually form A and B excitons. The number of
A or B excitons is determined by the branching ratios for the various relaxation processes. Since the binding energies
for A excitons are larger than for B excitons, the life-time of A excitons is expected to be larger than for B excitons.
We consider the system either at the time scales less than the life-tome of B excitons or at the continuous pumping,
which will keep creating both types of excitons, substituting recombined excitons.
Assuming that at T = 0 K almost all dipolar excitons belong to a BEC, this two-component weakly interacting

Bose gas of A and B dipolar excitons can be treated in the framework of the Bogoliubov approximation40,41. Within
the Bogoliubov approximation for a weakly interacting Bose gas, the many-particle Hamiltonian can be diagonalized,
replacing the product of four operators in the interaction term by the product of two operators. This is valid if
most of the particles belong to the BEC, and only the interactions between the condensate and non-condensate
particles are considered, while the interactions between non-condensate particles are neglected. The operators for
condensate bosons are replaced by numbers40, and the resulting Hamiltonian is quadratic with respect to the creation
and annihilation operators.
Let us consider and present the expressions for the coupling constant g for the both Keldysh and Coulomb potentials

for interaction between the charge carriers. When two dipolar excitons are separated by the distance R and the electron
and hole of one dipolar exciton interact with the electron and hole of another dipolar exciton, then the exciton-exciton
interaction potential U(R) can be presented as

U(R) = 2V (R)− 2V

(
R

√
1 +

D2

R2

)
, (15)

where V (R) is the potential for interaction between two electrons or two holes in the same TMDC monolayer. The
interaction V (R) can be given either by the Keldysh potential (2) or by the Coulomb potential.
In a very dilute weakly-interacting Bose gas of dipolar excitons, implying D ≪ R, the second term in Eq. (15) can

be expanded in terms of (D/R)2, and by retaining only the first order terms with respect to (D/R)2, one gets

U(R) =

{
πke2D2

2εdρ2

0
R

[
Y−1

(
R
ρ0

)
−H−1(y)

(
R
ρ0

)]
, for the Keldysh potential,

ke2D2

εdR3 , for the Coulomb potential.
(16)

According to the procedure presented in Ref. [22,42], the exciton-exciton coupling constant g in a very dilute Bose
gas of A and B excitons can be obtained under the assumption that the dipole-dipole repulsion of dipolar excitons
exists only at distances between excitons larger than the distance from the exciton to the classical turning point.
The separation between two dipolar excitons cannot be smaller than this distance, and the coupling constants for the
exciton-exciton interaction is obtained as

gi = 2π

∫ ∞

R0i

RdR U(R), i = AA, BB, AB, (17)

where R0AA, R0BB, and R0AB are the distances between two dipolar excitons at the classical turning point for two
A excitons, two B excitons, and one A and one B excitons, correspondingly.
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Substituting Eq. (16) into Eq. (17), the exciton-exciton coupling constant g can be written as following

gi =

{
π2ke2D2

εdρ0

[
H0

(
R0i

ρ0

)
− Y0

(
R0i

ρ0

)]
, for the Keldysh potential,

2πke2D2

εdR0i

, for the Coulomb potential.
(18)

The system of equations for R0AA, R0BB, and R0AB is derived in Appendix A. The system of equations (A6)
has all real and positive roots only if yAA = yBB = yAB ≡ y, which implies R0AA = R0BB = R0AB ≡ R0 and
gAA = gBB = gAB ≡ g. In a very dilute system, the exciton-exciton coupling constant is the same for all three
possible combinations of A and B excitons, because at large distances within the dipole approximation (15) the
exciton-exciton interaction potential U(R), given by Eq. (16), depends only on the charges of electrons and holes,
which are the same for A and B dipolar excitons. Combining Eqs. (A4), (16) and (18), for the Keldysh potential one
obtains the following transcendental equation for R0:

4πnρ20y [H0(y)− Y0(y)] = − [H−1(y)− Y−1(y)] , (19)

where y = R0/ρ0.
For the Coulomb potential one combines Eqs. (A4), (16), (18), implies R0AA = R0BB = R0AB ≡ R0

and derives the following expression for R0:

R0 =
1

2
√
πn

. (20)

From Eqs. (20), (18) and (A1), we derive the exciton-exciton coupling constant g for the Coulomb potential

g =
4πke2D2

√
πn

εd
. (21)

From Eq. (19) it follows that for the Keldysh potential R0 depends on the exciton concentration and the type of
TMDC material in the double layer, while for the Coulomb potential R0 depends only on the excitonic concentration
according to Eq. (20). The corresponding dependence is replicated for the exciton-exciton coupling constant g, while
the coupling constant has the same dependence on the interlayer separation for the both potentials and is directly
proportional to D2. The coupling constant g and the distance R0 between two dipolar excitons at the classical
turning point for different TMDC double layers as functions of the exciton concentration n for the Keldysh potential
are represented in Fig. 2. According to Fig. 2, g increases and R0 decreases as the exciton concentration n increases.
While the values of g and R0 are close to each other for different TMDC double layers, the largest g and R0 correspond
to a WS2 double layer, and the smallest g and R0 correspond to a MoSe2 double layer. According to Fig. 2, the
difference between exciton-exciton coupling constants g for different TMDC double layers increases as the exciton

FIG. 2: The coupling constant g and the distance R0 between two dipolar excitons at the classical turning point for different
TMDC double layers as functions of the exciton concentration. The number of h-BN monolayers between the TMDC monolayers
is NL = 10. The calculations were performed for the polarizabilities from Ref.15.
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concentration n increases. Since for the Keldysh potential g and R0 depend on the TMDC material of the double
layer only through the polarizability of the material and do not depend on the electrons and holes effective masses,
the exciton-exciton coupling constant g does not depend on the choice of the monolayer for either electrons or holes,
where the transition metal atom is replaced with the other one and/or the chalcogenide atoms are replaced with the
other ones. We did not display g and R0 for TMDC double layers, formed by the monolayers of different materials,
because the results are very close to ones for two monolayers of the same TMDC material, presented in Fig. 2.
The spectrum of collective excitations for a two-component weakly interacting Bose gas of A and B excitons

was derived within the Bogoliubov approximation22. In the limit of small momenta P , the spectrum of collective
excitations has two modes and reads as εj(P ) = cjP , where j = 1, 2 represents two modes of this spectrum, and cj
are the sound velocities. If the densities of A and B excitons are the same and nA = nB = n/2, the sound velocity is
given by22

cj =

√√√√√gn

2


 1

2MA
+

1

2MB
+ (−1)j−1

√(
1

2MA
− 1

2MB

)2

+
1

MAMB


 . (22)

where g is a coupling constant for the interaction between two dipolar excitons, defined above by Eq. (18). Therefore,
according to Eq. (22), at nA = nB = n/2, there is only one non-zero sound velocity cS ≡ c1 given by

cS =

√
gn

2

(
1

MA
+

1

MB

)
, (23)

while the sound velocity for another mode equals to zero, c2 = 0.

IV. SUPERFLUIDITY

The weakly interacting Bose gas of dipolar excitons in a TMDC double layer satisfies to the Landau criterion for
superfluidity40,41, because at small momenta, the energy spectrum of the quasiparticles is sound-like. The critical
exciton velocity for superfluidity is given by vc = cS , because the quasiparticles can be created only at velocities above
the sound velocity.
Within the mean field approximation, the superfluidity in the dilute system of dipolar excitons in a TMDC double

layer occurs at the temperatures below the mean field critical temperature of superfluidity Tc, which at nA = nB = n/2
is given by22

Tc =
1

kB

[
πh̄2g2n3

12ζ(3)
Q

]1/3
. (24)

where kB is the Boltzmann constant, ζ(z) is the Riemann zeta function (ζ(3) ≃ 1.202), and the factor Q is defined as

Q =
MA +MB

(µAB)
2 . (25)

In Eq. (25) µAB =MAMB/(MA +MB) is the reduced mass for two-component system of A and B excitons, MA and
MB are the effective masses of A and B excitons, correspondingly.
The mean field critical temperature of the superfluidity Tc for the dipolar excitons formed via the Keldysh potential

as a function of the exciton concentration n for different TMDC double layers is shown in Fig. 3. According to Fig. 3,
Tc increases as n increases. The largest Tc corresponds to a WS2 double layer, while the smallest Tc corresponds to a
MoSe2 double layer, that correlated with the corresponding Q factor presented in Table V. Of course, the mean field
critical temperature depends on the polarizability of TMDC material. However, the Q factor has the major impact.
Interestingly enough, the corresponding binding energy for the WS2 is smaller than for the MoSe2. In Fig. 3, we show
Tc for the number NL = 10 of h-BN monolayers, located between two TMDC monolayers. The increase of D results
in the increase of the potential barrier for electron-hole tunneling between the layers, which leads to the increase of
the exciton lifetime. Besides, larger D results in the increase of the exciton dipole moment and the exciton-exciton
coupling constant g. Therefore, according to Eq. (23) the sound velocity increases with the increase of g, which leads
to the increase of the mean field critical temperature of superfluidity with the increase of D. As it is demonstrated in
Fig. 5, Tc increases when D increases.
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Let’s compare the critical temperatures obtained for the Keldysh and Coulomb potentials. The mean field critical
temperature of the superfluidity Tc as a function of the exciton concentration n for WS2 and MoSe2 double layers for
the Keldysh and Coulomb potentials of interaction between the charge carriers is represented in Fig. 4. According
to Fig. 4, Tc for the Keldysh potential is smaller than for the Coulomb potential due to the screening effects, taken
into account by the Keldysh potential. The screening effects cause the exciton-exciton interaction to become weaker,
which leads to smaller exciton-exciton coupling constant g, resulting in smaller Tc.
It is important to mention that while for the Coulomb potential Tc depends on the TMDC materials, forming a

double layer, only through the effective exciton masses, constituting the factor Q, for the Keldysh potential Tc depends
on the TMDC materials also through the exciton-exciton coupling constant g, determined by the polarizability of the
TMDC materials.

FIG. 3: The mean field critical temperature of the superfluidity Tc as a function of the exciton concentration n for different
TMDC double layers. The calculations were performed for the number NL = 10 of h-BN monolayers, located between two
TMDC monolayers, The calculations were performed for the polarizabilities from Ref.15 and the set of effective masses for
electrons and holes from Refs.37,38.

FIG. 4: The mean field critical temperature of the superfluidity Tc as a function of the exciton concentration n for WS2 and
MoSe2 double layers for the Keldysh and Coulomb potentials of interaction between the charge carriers. The calculations
were performed for the number NL = 10 of h-BN monolayers, located between two TMDC monolayers. The calculations were
performed for the polarizabilities from Ref.15 and the set of effective masses for electrons and holes from Refs.37,38.

The mean field critical temperature of the superfluidity Tc for a WS2 double layer under the assumption about
the Coulomb potential for the interaction between the charge carriers is represented as a function of the exciton
concentration n and the interlayer separation D in Fig. 5. We choose to plot Tc for a WS2 double layer, since Tc for
this material is larger than for other materials at the same n and D. According to Fig. 5, Tc increases as n and D
increase.
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FIG. 5: (Color online) The mean field critical temperature of the superfluidity Tc for a WS2 double layer as a function of the
exciton concentration n and the interlayer separation D. The calculations were performed for the set of effective masses for
electrons and holes from Refs.37,38.

TABLE V: Q factor in units of 1/m0, reduced mass µAB and MA +MB in units of m0 for A and B type dipolar excitons in a
TMDC double layer with the same TMDC materials

MoS2 MoSe2 WS2 WSe2

Q, [1/m0] 7.74 6.52 11.47 10.67

µAB , [m0] 0.52 0.62 0.36 0.39

MA +MB , [m0] 2.08 2.48 1.46 1.49

Let us mention that while for a one-component Bose gas of particles with the same mass the critical temperature
of superfluidity is a decreasing function of the mass of a particle, for a two-component weakly interacting Bose gas of
A and B dipolar excitons Tc is an increasing function of the factor Q according to Eq. (24), where the dependence
of the factor Q on the effective masses of A and B dipolar excitons is given by Eq. (25). The factors Q for A and
B type excitons in different TMDC double layers, formed by two monolayers of the same material, are presented
in Table V. The factors Q for A and B type excitons in different TMDC double layers, formed by two monolayers
of two different materials, when the transition metal atom is replaced by the other transition metal atom (e.g. for
a MoS2/WS2 heterostructure) or when the chalcogenide atoms are replaced by the other chalcogenide atoms (e.g.
for a MoS2/MoSe2 heterostructure), are presented in Table VI. According to Tables V and VI, the largest factor Q
corresponds to a double layer, formed by two WS2 monolayers, while the smallest factor Q corresponds to a double
layer, formed by two MoSe2 monolayers. The critical temperature of superfluidity Tc in different combinations of
TMDC double layers for different densities and corresponding Q factor are shown in Table VII. Since the effective
masses of electrons and holes are different for the same TMDC monolayers, the factor Q and Tc depend on a choice of
a monolayer for electrons and holes, correspondingly. According to Table VII, for a given TMDC double layer there
is a correlation between Q and Tc, implying that higher Tc corresponds to the double layer with higher Q, as follows
from Eq. (24). As it can be seen in Table VII, the largest Tc and Q correspond to a double layer, formed by two WS2
monolayers, while the smallest Tc and Q correspond to a double layer, formed by two MoSe2 monolayers.
Applying Eqs. (24) and (25) to dipolar excitons with mass M in semiconductor (GaAs/AlGaAs) coupled quantum

wells, we substitute M ≡ MA = MB and divide the exciton concentration n on the spin degeneracy factor gs = 4,
which is caused by the spin degeneracy of electrons and holes, forming an exciton in semiconductor coupled quantum
wells. In this case, the factor Q1/3n in Eq. (24) will be replaced by n/(2M1/3). This estimation as well as the
possibility of using for the dielectric barrier h-BN monolayers with smaller dielectric constant 4.89 than the dielectric
constant 13 for GaAs result in higher Tc for dipolar excitons in a TMDC double layer than for semiconductor coupled
quantum wells. The dependence of the critical temperature on the spin degeneracy factor was shown in Refs. 43,44.
We do not divide n on gs for the excitons in a TMDC double layer due to the absence of the spin degeneracy in
TMDC monolayers around the K point in the Brillouin zone16,17.
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V. CONCLUSIONS

In this paper we have studied the formation and superfluidity of dipolar excitons in double layer heterostructures
that are formed by two monolayers of the same TMDCmaterial and two different TMDC monolayers. In the framework
of the harmonic oscillator approximation for the Keldysh potential the analytical expressions for the exciton energy
spectrum and the mean field critical temperature of superfluidity are obtained. All calculations are performed by
using the effective electron and hole masses and polarizability obtained within the framework of DFT approach for
the TMDC material. We have calculated the binding energies for A and B dipolar excitons in various TMDC double
layers, taking into account screening effects by employing the approximated Keldysh potential for the interaction
between the charge carriers. The binding energy of dipolar excitons depends on the electron and hole reduced mass,
the polarizability of the TMDC material and the interlayer separation between two monolayers. Since the effective
masses of electrons and holes are different for the same TMDC monolayers, the exciton binding energy is larger
for dipolar excitons with electrons in MoS2 and MoSe2 and holes in WS2 and WSe2 than for dipolar excitons with
electrons in WS2 and WSe2 and holes in MoS2 and MoSe2. The increase of the electron and hole reduced mass
leads to the decrease of the binding energy of dipolar exciton. The mean field critical temperature of superfluidity Tc
for a dilute system of A and B dipolar excitons in TMDC materials are determined by the exciton-exciton coupling
constant g and the factor Q, which depends of the sum of the effective masses of A and B excitons and the reduced
mass for a two-component system of A and B excitons. Different effective electron and hole masses result in different
effective masses of A and B excitons MA and MB, a different reduced mass µAB for two-component system of A and
B excitons, and a different factor Q. We have calculated the exciton-exciton coupling constant g and the mean field
critical temperature superfluidity Tc for a dilute two-component system of A and B dipolar excitons. Let us mention
that Tc for a two-component weakly interacting gas of A and B dipolar excitons is an increasing function of the factor
Q, determined by the effective reduced mass of A and B excitons, which is always smaller than the individual effective
mass of either A or B exciton. While the factor Q and Tc depend on the exciton effective masses, the exciton-exciton
coupling constant g and the distance between two dipolar excitons at the classical turning point R0 do not depend
on the exciton effective masses but depend on the exciton concentration and the polarizability of TMDC materials.
The critical temperature of superfluidity Tc, calculated by using the harmonic potential approximation of the Keldysh
potential for the interaction between the charge carriers, is smaller than for the Coulomb potential due to diminishing
exciton-exciton interaction by screening effects, taken into account by the Keldysh potential. These screening effects
lead to the decrease of the exciton-exciton coupling constant, which results in the decrease of Tc. The largest mean
field critical temperature Tc of two-component superfluidity of A and B dipolar excitons was obtained for a WS2
double layer, while the smallest Tc was obtained for a MoSe2 double layer. For a given 2D exciton concentration n
and interlayer separationD, the TMDC double layer with higher Tc corresponds to the double layer with higher Q. By
comparison of the exciton-exciton coupling g and the mean field critical temperature Tc of superfluidity calculated by
using the Keldysh and Coulomb potential for the interaction between the charge carriers, one can study the influence
of the screening effects on a weakly interacting gas of dipolar excitons in a TMDC double layer.

Appendix A: Interactions in a two-component weakly interacting gas of A and B dipolar excitons

In this appendix, we analyze the interactions in a two-component weakly interacting gas of A and B dipolar excitons
and derive the system of equations for R0i.
The chemical potentials µA and µB for A and B excitons, respectively, of the weakly interacting Bose gas of dipolar

excitons within the Bogoliubov approximation are represented as22

µA −AA = gAAnA + gABnB,

TABLE VI: Q factor in units of 1/m0, reduced mass µAB and MA +MB in units of m0 for A and B type dipolar excitons in a
TMDC double layer with different TMDC materials

Electron layer MoS2 MoSe2 WS2 WSe2

Hole layer MoSe2 WS2 WSe2 MoS2 WS2 WSe2 MoS2 MoSe2 WSe2 MoS2 MoSe2 WS2

Q, [1/m0] 7.31 9.25 9.05 6.86 8.03 7.88 9.17 8.57 11.2 8.80 8.25 10.9

µAB , [m0] 0.55 0.44 0.45 0.59 0.50 0.52 0.44 0.47 0.37 0.46 0.49 0.38

MA +MB , [m0] 2.21 1.77 1.82 2.35 2.04 2.09 1.77 1.90 1.51 1.85 1.98 1.54
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TABLE VII: Critical temperature of superfluidity Tc in K in different combinations of TMDC double layers for diffident densities
and the number NL = 10 of h-BN monolayers, located between two TMDC monolayers, and corresponding Q factor in units
of 1/m0

Electron layer MoS2 MoSe2 WS2 WSe2

Hole layer MoS2 MoSe2 WS2 WSe2 MoS2 MoSe2 WS2 WSe2 MoS2 MoSe2 WS2 WSe2 MoS2 MoSe2 WS2 WSe2

n = 3× 1011 cm−2 41 39 44 43 40 38 41 40 43 42 47 47 43 41 46 45

n = 5× 1011 cm−2 79 76 84 82 77 71 79 77 83 80 91 89 81 78 88 86

Q, [1/m0] 7.74 7.31 9.25 9.05 7.54 6.52 8.03 7.88 9.17 8.57 11.47 11.2 8.80 8.25 10.9 10.67

µB −AB = gBBnB + gABnA, (A1)

where nA(B) is the concentration for A(B) dipolar excitons, gAA(BB) and gAB are the exciton-exciton coupling con-
stants for the interaction between two A dipolar excitons, two B dipolar excitons and for the interaction between A
and B dipolar excitons, respectively, AA and AB are the constants, determined by A and B dipolar exciton binding
energy, correspondingly, and the gap, formed by a spin-orbit coupling for the A (B) dipolar exciton22. One can obtain
from Eq. (A1) the following equation:

µA + µB −AA −AB = gAAnA + gBBnB + gABn, (A2)

where n = nA + nB is the total 2D concentration of excitons.
Below we present the expressions for the coupling constant g for the both Keldysh and Coulomb potentials for the

interaction between the charge carriers.
According to the procedure presented in Refs. [22,42], two dipolar excitons cannot be closer to each other than at

the distance R0i, which is determined by the condition, following from the fact that the energy of two dipolar excitons
cannot exceed the doubled chemical potential µ of the system, i.e.22,

2AA + U(R0AA) = 2µA, 2AB + U(R0BB) = 2µB , AA +AB + U(R0AB) = µA + µB, (A3)

where U(R) is the potential of interaction between the dipolar excitons separated at the distance R. Using
Eqs. (A1), (A2), and (A3), one obtains

U(R0AA)

2
= gAAnA + gABnB,

U(R0BB)

2
= gBBnB + gABnA,

U(R0AB) = gAAnA + gBBnB + gABn. (A4)

Let us mention that the third equation in Eq. (A4) can be replaced by the following:

U(R0AB) =
1

2
(U(R0AA) + U(R0BB)) . (A5)

Then the system of the equations (A4) can be formed by the first and the second equations from Eq. (A4) and
Eq. (A5).
Substituting Eqs. (16) and (18) into Eq. (A4), one obtains the following system of three equations for R0i for the

Keldysh potential:

4πρ20yAA [nA [H0 (yAA)− Y0 (yAA)] + nB [H0 (yAB)− Y0 (yAB)]] = − [H−1 (yAA)− Y−1 (yAA)] ,

4πρ20yBB [nB [H0 (yBB)− Y0 (yBB)] + nA [H0 (yAB)− Y0 (yAB)]] = − [H−1 (yBB)− Y−1 (yBB)] ,

2πρ20yAB [nA [H0 (yAA)− Y0 (yAA)] + nB [H0 (yBB)− Y0 (yBB)] + n [H0 (yAB)− Y0 (yAB)]]

= − [H−1 (yAB)− Y−1 (yAB)] , (A6)

where yi = R0i/ρ0.
If the densities of A and B excitons are the same and nA = nB = n/2, Eqs. (A6) result in the following system of

equations

2πnρ20yAA [H0 (yAA)− Y0 (yAA) +H0 (yAB)− Y0 (yAB)] = − [H−1 (yAA)− Y−1 (yAA)] ,

2πnρ20yBB [H0 (yBB)− Y0 (yBB) +H0 (yAB)− Y0 (yAB)] = − [H−1 (yBB)− Y−1 (yBB)] ,

πnρ20yAB [H0 (yAA)− Y0 (yAA) +H0 (yBB)− Y0 (yBB) + 2H0 (yAB)− 2Y0 (yAB)]

= − [H−1 (yAB)− Y−1 (yAB)] . (A7)
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Substituting Eqs. (16) into Eq. (A5), one can replace the third equation in Eqs. (A6) by the following equation:

1

yAB
[Y−1 (yAB)−H−1 (yAB)] =

1

2yAA
[Y−1 (yAA)−H−1(y) (yAA)] +

1

2yBB
[Y−1 (yBB)−H−1(y) (yBB)] . (A8)
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