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Abstract

In this work, the magnetism of the single crystal Cr1/3NbS2, which exhibits chiral magnetic

soliton lattice (CSL) state, is investigated. The magnetization displays strong magnetic anisotropy

when the field is applied perpendicularly and parallel to the c-axis in low field region (H < HS,

HS is the saturation field). The critical exponents of Cr1/3NbS2 are obtained as β = 0.370(4),

γ = 1.380(2), and δ = 4.853(6), which are close to the theoretical prediction of three-dimensional

Heisenberg model. Based on the scaling equation and the critical exponents, the H −T phase dia-

gram in the vicinity of the phase transition is constructed, where two critical points are determined.

One is a tricritical point which locates at the intersection between the CSL, forced ferromagnetic

(FFM), and paramagnetic (PM) states. The other one is a critical point situated at the boundaries

between CSL, helimagnetic (HM), and PM states.

PACS numbers: 75.30.Gw, 75.40.-s, 75.40.Cx

Keywords: chiral magnetic solition; helimagnetism; critical scaling; phase diagram; tricritical point

1



I. INTRODUCTION

Magnetic materials with chirality have attracted considerable attention due to spin-

textures such as helimagnetic (HM) structure, conical magnetic ordering, magnetic

skyrmion, chiral bobber1–5. The chirality with spin-orbital coupling in the crystal structure

results in an antisymmetric exchange interaction called the Dzyaloshinskii-Moriya (DM) in-

teraction, which is 1∼2 orders of magnitude weaker than the ferromagnetic coupling6,7. The

competition between the DM interaction with the ferromagnetic coupling causes the appear-

ance of chiral spin-texture8. When an external magnetic field is applied above a threshold

value, the HM ordering is usually modulated into particle-like spin-texture such as skyrmion,

magnetic soliton.

Recently, the monoaxial chiral magnet Cr1/3NbS2 becomes prominent due to the chiral

magnetic soliton lattice (CSL), which is a type of superlattice structure consist of periodic

helical spin texture9–11. The crystal structure for Cr1/3NbS2 belongs to the space group

P6322
12,13. The hexagonal layers in 2H-NbS2 are intercalated by the Cr ions which are in the

trivalent state with localized moments S = 3/2, whereas the electronic conduction originates

from an unfilled band of Nb atoms. Due to the strong magnetocrystalline anisotropy and

DM interaction, Cr1/3NbS2 displays a ground state of helical magnetic ordering with vector

along the c-axis13,14. The magnetic sate can be modulated differently through the direction

of the applied external field. When H is applied parallel to the c-axis, the HM ordering is

polarized to conical ordering, and finally to forced ferromagnetical (FFM) phase. However,

when H is applied perpendicularly to the c-axis, the HM structure with 48 nm changes

continuously into CSL state, which is well reproduced by the one-dimensional chiral sine-

Gordon model10. Further increase ofH results in a phase transition from an incommensurate

CSL to a commensurate FFM state15. It has been demonstrated that CSL can be effectively

manipulated by magnetic field or current injection, which supplies potential application as

spintronic device16–18.

Although the phase transition and CSL in Cr1/3NbS2 have been intensively investigated,

controversies emerge for the complex phase diagrams19–23. The phase diagrams have been

constructed in several experimental and theoretical works12,15,24–27. However, vagueness and

difference exist on boundaries between different phases, especially in the vicinity of the

phase transition. In this work, the H − T phase diagram of the single crystal Cr1/3NbS2 is
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constructed based on the critical scaling method, where the phases and boundaries in the

vicinity of the transition are clearly clarified. The critical behavior unambiguously indicates

that the magnetic coupling is of a three-dimensional (3D) Heisenberg type, which suggests

that the magnetic coupling of Cr-Cr occurs not only within the ab-plane but also between

the interlayers along the c-axis. In addition, two critical points are determined on the H−T

phase diagram.

II. EXPERIMENTAL METHODS

Single crystals of Cr1/3NbS2 were grown by the chemical vapor transport(CVT) method

using iodine as the transport agent13. The chemical compositions were carefully checked

by Energy Dispersive X-ray(EDX) spectrometry. The crystal structure was confirmed by

the Rigaku-TTR3 X-ray diffractometer using high-intensity graphite monochromatized Cu

Kα radiation. The magnetization was measured using a Quantum Design Vibrating Sample

Magnetometer (SQUID-VSM). The no-overshoot mode was applied to ensure a precise mag-

netic field. The magnetic field was relaxed for two minutes before data collection. For the

measurement of initial isothermal magnetization, the sample was firstly heated adequately

above TC for ten minutes, then cooled to the target temperature under zero magnetic field.

III. RESULTS AND DISCUSSION

Figure 1 (a) shows the crystal structure for Cr1/3NbS2. The NbS2 is a quasi-two-

dimensional system with van der Waals interaction between the layers. The Cr atoms are

intercalated in the octahedral holes between the trigonal prismatic layers of 2H-NbS2
12. Fig-

ure 1 (b) gives the morphology of the Cr1/3NbS2 single crystal. The single crystal presents

layered characteristics, with a bright hexagonal surface of 1 mm × 1mm. The chemical

proportion is determined by the EDX spectrum as depicted in Fig. 1 (c), which gives that

the proportion of Cr : Nb : S is close to 0.33 : 1: 2. The bright surface was checked by XRD

as shown in Fig. 1 (d), which indicates that the surface is (001) plane. The inset of Fig.

1 (d) presents the rock curve of the (001) diffraction peak, the full-width-at-half-maximum

(FWHM) of which is ∆θ = 0.071◦. The single peak and narrow FWHM of the rock curve

indicate high quality of the single crystal sample without twin crystal. The XRD pattern of

3



the single crystal gives the lattice constant c = 12.029(8) Å, which is very close to previous

reports13,14,28.

Figure 2 (a) and (b) gives the temperature dependence of magnetization [M(T )] under

selected field, where the external field is applied perpendicularly and parallel to the c-axis

respectively. All M(T ) curves with H ⊥ c orH//c undergo a magnetic ordering transition at

the phase transition temperature TC ∼ 125 K, which is in agreement with previous report13.

However, the M(T ) curves exhibit different behaviors when H ⊥ c and H//c . When H ⊥ c,

M(T ) curves below H = 500 Oe almost display the same behavior, as shown in Fig. 2 (a).

However, when H exceeds 500 Oe, the values under fixed field increase abruptly. On the

other hand, when H//c, M(T ) curves are raised monotonously with the applied field, as

presented in Fig. 2 (b). These different behaviors of M(T ) between H ⊥ c and H//c can be

attributed to the formation of CSL13,14. When H ⊥ c, the CSL forms under the lower field,

thus the M(T ) curves exhibit similar behaviors in the CSL phase. However, when under

higher field, the CSL is destroyed abruptly, which causes the prominent different behaviors in

M(T ) curves. When H//c, no CSL phase forms but a conical ordering is polarized gradually.

Therefore, no abrupt change appears in the M(T ) curves when H//c. In addition, it is also

noticed from the insets of Fig. 2 that bifurcations occur to the zero-field-cooling (ZFC) and

field-cooling (FC) curves, which are attributed to the different magnetic ground state under

zero field and non-zero-field. As we know, the HM is polarized to conical spin ordering by

the external field. In a sequence of ZFC, the system exhibits a HM ordering, where the HM

ordering is gradually polarized by the field with the increase of temperature. However, In a

sequence of FC, the system displays a ground state of conical ordering. Thus, the different

magnetic ground states under zero-field and non-zero-field result in the different behaviors

between ZFC an FC curves13,14.

As indicated by the M(T ) curves, the monoaxial Cr1/3NbS2 exhibits strong anisotropic

magnetization, which should be investigated by the angle dependent of magnetization

[M(ϕ)]. Figure 3 shows the out-of-plane and in-plane M(ϕ) at selected temperature. The

in-plane M(ϕ) was measured under the field within the ab-plane, while the out-of-plane one

was performed under the field rotated from c-axis to ab-plane. It can be seen that the in-

plane M(ϕ) display isotropic magnetization. However, out-of-plane M(ϕ) at 2 K and 100 K

exhibits a shape of butterfly, which suggests strong magnetic anisotropy. The magnetization

in ab-plane is much stronger than that along c-axis, suggesting that the spins are ordered
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within the ab-plane. The out-of-plane M(ϕ) at 150 K exhibits slightly magnetic anisotropy,

which is much weaker than those at 100 K or 2 K. The slight magnetic anisotropy at 150 K

may be attributed to the precursor or fluctuation phenomenon analogy to that in FeGe29.

The out-of-plane M(ϕ) at 300 K does not display any magnetic anisotropy.

Figure 4 (a) and (b) plot the isothermal magnetization [M(H)] at selected temperature

with H ⊥ c and H//c, respectively. The magnified M(H) curves in low field region are

depicted in Fig. 4 (c) and (d). When H ⊥ c, M becomes saturated rapidly with very small

saturation field (HS ∼ 0.7 kOe), as shown in Fig. 4 (c). When H//c, M becomes saturated

slowly with large saturation field (HS ∼ 25 kOe), as given in Fig. 4 (b). However, the same

saturation magnetization (MS) is attained regardless of the direction of applied field. For

M(H) with H ⊥ c at 2 K and 100 K below TC , it exhibits two symmetrical magnetic steps

in low field region before saturation. Moreover, a loop is found at the magnetic step between

increase and decrease of field, which has been also found in previous works30. However, when

H//c, no step or loop is found on the M(H) curves. To better understand the M(H) loops,

the M(H) with H ⊥ c was measured at different temperatures, as shown in Fig 5 (a). The

curves in Fig 5 (a) are elevated vertically for clear clarity. As can be seen, the loop becomes

smaller as the temperature increases. The width of the M(H) loop (∆H) as a function

of temperature is extracted to plot in Fig. 5 (b), which displays that the ∆H decreases

with the increase of temperature. The loop disappears when temperature exceeds 120 K. It

is well known that Cr1/3NbS2 undergoes a field-induced transition from HM to CSL below

TC . Moreover, the CSL state is polarized to FFM, accompanied with a transition from

incommensurate to commensurate states. In fact, this kind of M(H) loop is usually found

in the magnetic metastable transition system, such as UP0.9S0.1 and EuSe31. The M(H)

loop originates during the formation and collapse of the magnetic metastate by the applied

field31. The M(H) loops in Cr1/3NbS2 assemble those observed in the ferrimagnetic or

antiferromagnetic metastable, where M(H) loop occurs between phase transitions induced

by the field. Therefore, M(H) loops in Cr1/3NbS2 confirms that the CSL state is a magnetic

metastable31.

In order to uncover the magnetic coupling in Cr1/3NbS2, the critical behavior is investi-

gated. Figure 6 (a) gives the initial isothermal M(H) around TC with H ⊥ c, and the Arrott

plot of M2 vs. H/M is depicted in Fig. 6 (b). All curves on the Arrott plot display non-

linear behaviors even in the high field region, which suggests that the magnetic interaction
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in Cr1/3NbS2 cannot be described by the conventional Landau mean-field model32,33. The

order of the phase transition can be determined by the slope from the Arrott plot according

to the Banerjee’s criterion, where a negative slope suggests a first-order transition and a

positive slope implies a second-order one34. The positive slopes of M2 vs. H/M curves

reveal that the phase transition in Cr1/3NbS2 is of a second order.

In the vicinity of a second order magnetic phase transition, the spontaneous magnetization

MS and initial susceptibility χ0 can be described by a series of functions35,36:

MS(T ) = M0(−ε)β , ε < 0, T < TC (1)

χ−1
0 (T ) = (h0/M0)ε

γ, ε > 0, T > TC (2)

M = DH1/δ, ε = 0, T = TC (3)

where ε = (T − TC)/TC is the reduced temperature; M0/h0 and D are critical amplitudes.

The parameters β (associated with MS), γ (associated with χ0), and δ (associated with TC)

are the critical exponents. The critical behavior around the critical temperature can be

described by a series of critical exponents, which follow the Arrott-Noakes equation of state

in asymptotic critical region37:

(H/M)1/γ = (T − TC)/TC + (M/M1)
1/β (4)

where M1 is a constant. The critical exponents implies significant clues of magnetic interac-

tions, such as the correlating length, spin-dimensionality, and decaying distance of magnetic

coupling. Four series of critical exponents belonging to the 3D-Heisenberg model (β = 0.365,

γ = 1.386), 3D-Ising model (β = 0.325, γ = 1.24), 3D-XY model (β = 0.345, γ = 1.316),

and tricritical mean-field model (β = 0.25, γ = 1.0) are tried to construct the modified Ar-

rott plots33,38, as shown in Figs. 7 (a), (b), (c), and (d) respectively. All the curves in these

four constructions exhibit quasi-straight lines in high field region. However, the lines in Fig.

7 (d) are not parallel to each other, indicating that the tricritical mean-field is dissatisfied.

However, for Figs. 7 (a), (b) and (c), it is difficult to distinguish which model is the best.

As we know, for an ideal model, the modified Arrott plot should display a series of parallel

lines in high field region with the same slope which defined as S(T ) = dM1/β/d(H/M)1/γ.

Thus, in an ideal model, the slopes of M1/β vs. (H/M)1/γ lines should exhibit the sample

value as that at TC . We define the normalized slope (NS) as NS = S(T )/S(TC). For a most
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satisfied model, all NS values should approach ′1′ closely. By this method, it enables us to

distinguish the most suitable model by comparing the NS with the ideal value of ′1′39–41.

Plot of NS vs. T for the four different models is shown in Fig. 8. It can be seen that the

NS of 3D-Heisenberg model is close to ′1′ mostly among these modes.

More accurate critical exponents β and γ can be obtained by the iteration method42,

which are used to distinguish which universality class they belong to. The initial parameters

are based on those of Fig. 7 (a) since its NS values are close to ′1′ mostly. The linear

extrapolation from high field region to the intercepts with the axes M1/β and (H/M)1/γ

yields MS(T, 0) and χ−1
0 (T, 0) under zero field. By fitting to Eqs. (1) and (2), a set of β and

γ is obtained, which is used to reconstruct a new modified Arrott plot. Subsequently, new

MS(T, 0) and χ−1
0 (T, 0) are generated from the linear extrapolation from high field region.

By this way, another set of β and γ can be obtained. This procedure is repeated until β

and γ hardly change. The final obtained critical exponents by the iteration method are

independent on the initial parameters. In this way, β = 0.370(4) with TC = 126.4(7) and

γ = 1.380(2) with TC = 126.1(1) are obtained for Cr1/3NbS2, as shown in Fig 9 (a). The

obtained TC is consistent with that obtained by T. Miyadai et al13. Figure 9 (b) shows the

initial M(H) at the critical temperature TC = 126 K, with the inset plotted on a log− log

scale. One can see that the M(H) at TC exhibits a straight line on a log− log scale when

H > HS. Thus, δ = 4.853(6) is determined in the high field region (H > HS) based on Eq.

(3). According to the statistical theory, these critical exponents should fulfill the Widom

scaling law43:

δ = 1 +
γ

β
(5)

According to the Widom scaling law δ = 4.729(7) is calculated, which in agreement with

that obtained from the experimental critical isothermal analysis. The self-consistency of the

critical exponents demonstrates that they are reliable and unambiguous.

The final critical exponents (β = 0.370(4), γ = 1.380(2), δ = 4.853(6)) are in agreement

with those recently reported by E. Clements et al.,44 which confirm the reliability of these

obtained exponents. Both sets of exponents from these two works are very close to the

theoretical prediction of 3D-Heisenberg model (β = 0.365, γ = 1.386, δ = 4.80), which

suggest a short-rang magnetic coupling of Cr-Cr33,44. Although the structure of Cr1/3NbS2

is two-dimensional, its magnetic coupling is of a three-dimensional type. This indicates

that the magnetic interactions of Cr-Cr are coupled not only within the ab-plane but also
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between the inter-layers along the c-axis. As we know, the DM interaction plays an important

role in the magnetic structure of Cr1/3NbS2, which makes the spins exhibit spiral ordering.

However, the DM interaction has rarely effect on the critical exponents due to two aspects.

The DM interaction is much weaker than the ferromagnetic exchange, which is only 1 ∼

2 orders of magnitude of the ferromagnetic exchange45. Thus, the critical exponents are

mainly determined by the magnetic exchange interaction. In fact, in the systems with DM

interaction such as FeGe, MnSi, Cu2OSeO3, Fe0.8Co0.2Si, their critical exponents are either

rarely influenced by the DM interaction42,45–47.

For a homogeneous magnet, M. E. Fisher et al. theoretically treated the magnetic ordering

as attractive interaction of spins, where a renormalization group theory analysis suggests

the exchange distance J(r) decays with distance r as48,49:

J(r) ≈ r−(d+σ) (6)

where d is spatial-dimensionality, and σ is a critical exponent which can calculated as49,50:

γ = 1 +
4

d

n+ 2

n+ 8
∆σ +

8(n + 2)(n− 4)

d2(n + 8)2

[

1 +
2G(d

2
)(7n+ 20)

(n− 4)(n+ 8)

]

∆σ2 (7)

where ∆σ = (σ− d
2
), G(d

2
) = 3− 1

4
(d
2
)2, n is the spin-dimensionality. For the 3D-Heisenberg

model, there is d = 3 and n = 3. It can be obtained that σ = 1.932(6) for Cr1/3NbS2, which

indicates that the magnetic interaction decays on spatial distance as J(r) ∼ r−4.942,49. It

has been suggested that if J(r) decreases with distance r faster than r−5, the Heisenberg

exponents are valid for a three-dimensional isotropic ferromagnet49. As we know, these crit-

ical exponents should follow the scaling equations. Defining the renormalized magnetization

m ≡ ε−βM(H, ε) and the renormalized field h ≡ Hε−(β+γ), in the asymptotic critical region

the scaling equations can be written as35:

m = f±(h) (8)

where f± are regular functions denoted as f+ for T > TC and f− for T < TC . The scaling

equations indicate that m vs. h should form two universal branches for T > TC and T < TC

respectively, even those in low field region51,52. However, if a field-induced phase transition

occurs, the scaling becomes divergent at the boundary between the phases. The divergence

of the scaling curves supplies a method to distinguish the different phases42. Based on

the scaling equation, the isothermal magnetization around the critical temperatures for
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Cr1/3NbS2 are replotted in Fig. 10 (a), and the typical m vs. h curves are shown on

log-log scale in the Fig. 10 (b) to magnify those in low field region. It can be seen that

experimental data collapse into two universal curves, except the M − T − H in the low

field region. Especially, the m vs. h on log-log scale is depicted in Fig. 10 (c), where the

magnetic transitions in low field region are displayed. Furthermore, m2 vs. h/m curves

clearly distinguish the different phases in low field region, as shown in Fig. 10 (d). Three

regions separated by two transitions are clearly seen on m2 vs. h/m curves, which are

corresponding to the HM, CSL, and FFM states. In very low field region, a plateform is

found on m2 vs. h/m curves, which is corresponding to the HM state. With the increase of

field, the abrupt increase region of m2 vs. h/m is attributed to the CSL transition, where

the critical field from HM to CSL is defined as H1. When H exceeds HS (HS is the critical

field from CSL to FFM), the CSL is completely polarized into FFM state. In the CSL

region, the state can be further identified by the slope (S) of m2 vs. h/m. In fact, the

transition from CSL to FFM phase is a procedure of competition between CSL and FFM.

In lower field region, the CSL is dominant where the magnetic solitions are separated by

the FM region (CSL-1 state)15. In higher field region, the FFM phase becomes dominant

in the system, where the whole magnetization is very close to the FM behavior (CSL-2

state)15. It can be seen that the change from negative to positive occurs to S of m2 vs.

h/m in the CSL region, where the critical field from CSL-1 to CSL-2 is defined as H2. As

we know, the FFM behavior exhibits positive S (S > 0)34. Thus, the positive S in CSL

region corresponds to CSL-2 (with large FM array) which approaches the FFM behavior

with S > 0. Alternatively, the region of S < 0 is corresponding to CSL-1 (dominant helical

texture with poor FM array)15. By this method, we can distinguish the CSL-1 from CSL-2

states.

Based on the scaling of the M − T − H , the H − T phase diagram with H ⊥ c is

constructed in Fig. 11. Since the critical scaling is restrict within the critical temperature

region (|(T − TC)/TC | ≤ 0.1), only the phase diagram around TC is mapped. It can be seen

that Cr1/3NbS2 exhibits a HM ground state below TC ∼ 127 K. When field is applied, the

HM state is modulated to CSL-1, and subsequently changes to CSL-2 state. Finally, the

CSL-2 state is polarized into FFM phase when H exceeds HC. Two critical points can be

determined on the H−T phase diagram, as shown in Fig. 11. In fact, in the monoaxial chiral

helimagnetic system, two tricritical points have been predicted theoretically by V. Laliena
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et al. when the field is applied along variable directions27. However, in another work, they

suggests a tricritical point and a zero-field critical one in monoanixal helimagnet when field

is applied along the c-axis24. The zero-field critical point locates at boundary from HM

to PM phases24. Therefore, in present case, one critical point corresponds to a tricritical

one, which locates at the intersection between the CSL, FFM, and PM phases (∼ 310 Oe

at 127 K). The other one is determined as zero-field critical point, which is situated at the

boundaries between HM, CSL and PM phases (∼ 85 Oe at 127 K).

IV. CONCLUSION

In summary, the magnetism of the single crystal Cr1/3NbS2 is investigated. The magne-

tization displays strong magnetic anisotropy when the external field is applied parallel and

perpendicularly to the c-axis (H < HS). The M(H) curve with H ⊥ c displays a loop on the

boundary of the phase transition from incommensurate CSL to commensurate FFM, which

suggests that the CSL phase is a magnetic metastable. The critical exponents of Cr1/3NbS2

are obtained as β = 0.370(4), γ = 1.380(2), and δ = 4.853(6), which are close to the the-

oretical prediction of 3D-Heisenberg model. The critical behavior indicates the magnetic

coupling is of a short-range type. Based on the scaling equation, the H − T phase diagram

around TC is constructed, where two critical points are determined. One critical point is a

tricritical one, which locates at the intersection between the CSL, FFM, and PM states. The

other critical point is a zero-field critical one, which is situated at the intersection between

CSL, HM and PM states.
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FIG. 1: (Color online) (a) The crystal structure of Cr1/3NbS2; (b) the morphology of Cr1/3NbS2

single crystal; (c) a typical EDX spectrum for single crystal Cr1/3NbS2; (d) XRD pattern of the

plane (the inset shows the rock curve).
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FIG. 2: (Color online) Temperature dependence of magnetization [M(T )] under selected fields for

Cr1/3NbS2 with (a) H ⊥ c and (b) H//c (the insets show the ZFC and FC curves under 10 Oe

with H ⊥ c and H//c respectively).
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