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We investigate the amorphous GexS100−x (with 10≤ x ≤40) system from ab initio simulations. Results
show a very good agreement with experimental findings from diffraction and the topology of the obtained
structural models is further analyzed and compared with the selenide analogue. Differences emerge how-
ever from a detailed Molecular Dynamics analysis showing the ring statistics and the homopolar defects
to not evolve similarly. The findings are also connected to Rigidity theory which provides a topologi-
cal approach to decoding the physics of network glasses, and effect of composition and temperature are
analyzed.

PACS numbers: 61.43.Fs

I. INTRODUCTION

A topological approach to physics of network glasses was
first developed using Rigidity Theory1,2. The role of temper-
ature dependent constraints was then introduced3–5, and more
recently, the theory has been extended to systems wherein
the octet bonding rule is intrinsically broken using Molecu-
lar Dynamic (MD) simulations6. The theory has thus evolved
into a promising tool making possible to predict topological
phases in a variety of glass systems including tellurides7 and
modified oxides8–11. In the basic approach two types of me-
chanical constraints are usually considered; bond-stretching
and bond-bending. In 3D, flexible phases form when nc <3,
an isostatically intermediate phase (IP) forms when nc ≃3,
and a stressed-rigid phase when nc > 3. Here nc represents
the count of constraints per atom. The physical properties
of glasses in IPs have attracted widespread attention12 both
at a basic level13–19 and for applications20–23 because such
networks are stress-free24, display weak aging25 as compared
to glasses fulfilling nc 6=3, and can adapt to form compacted
networks26, which are characterized by thermally reversing
glass transitions. These phases have now been observed in
more than 30 glass systems including heavy metal oxides27,
solid electrolytes20,28, modified oxides including borates11,
germanates10 and silicates8,9.

The case of the Ge-chalcogenides, specially, Ge-S and Ge-
Se have been extensively investigated experimentally for sev-
eral decades in this context29–35. The recent experimental re-
port on binary Ge-S glasses33 on especially homogenized melt
glass batch compositions yielding an IP that is strinkingly sim-
ilar in composition space to the one in Ge-Se binary34 drew
our attention. From the theoretical viewpoint however, Ge-S
system has received little attention up to now, albeit recent
work has focused on particular compositions (the stoichio-
metric GeS2

36–39 and GeS4
40). In chalogenides, the major

challenge is to reproduce bonding defects that are observed
experimentally in diffraction or spectroscopic studies41–43.
Previous computational schemes and, particularly classical
molecular dynamics simulations44–47 or Reverse Monte Carlo

simulations48–50 have failed in reproducing accurately such
features. In addition these chalcogenide glasses and melts
display chemical bonding that is partially ionic and partially
covalent, while also showing semi-metallic behavior under
pressure51 or with temperature52. One has therefore to rely on
first-principles molecular dynamics (FPMD), which can ac-
count for all the electronic features of chemical bonding. This
also allows for the computation of other properties which are
inaccessible from classical molecular dynamics such as elec-
tronic properties.

In the present work, using FPMD we investigate in a sys-
tematic fashion the behaviour of Ge-S glasses, while also ex-
ploring new features regarding rigidity that can be directly de-
rived from molecular simulations. In such Group IV chalco-
genides, one has a cation (Ge) and an anion (S) that conform
to the 8-N (octet) bonding rule (N being the number of s
and p electrons), leading amongst other things to the forma-
tion of a local structure consisting in corner-sharing and edge-
sharing GeS4/2 tetrahedra. Results show a very good agree-
ment of the pair correlation function and the structure fac-
tor for all compositions, and the corresponding structural
models are then analyzed from the viewpoint of topology
and rigidity, while also being analyzed in termes of par-
tial pair correlations. Homopolar Ge-Ge bonds form at a
composition (25 %) that is lower than the stoichiometric
compound (GeS2, 33 %), and the intermediate range or-
der can be quantified by the ring statistics. It reveals that
while 4- (edge-sharing) and 6-fold rings increase with Ge
content, one does not observe a threshold behavior close to
the stress transition (25 % following Ref.33), and one does
not obtain a significant increase of 5-fold rings in the Ge-S
system. Finally, the calculation of the fraction of bond-
ing constraints permits to quantify accurately the Mauro-
Gupta function3 for the Ge-S system, and to provide new
insights into the temperature dependence of topological
constraints.
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Figure 1: A snapshot of an amorphous GeS3 showing Ge atoms (or-
ange) cross-linking the sulphur network. A 5-fold ring has been high-
lighted.

II. NUMERICAL METHODS

Ge-S liquids and glasses have been investigated using Car-
Parrinello molecular dynamics (CPMD) simulations53. The
system contained 120 atoms (Fig. 1), and up to 5 composi-
tions GexS100−x have been simulated in NVT ensemble with
cubic cell of sizes allowing one to recover the experimental
density of corresponding glasses33 (e.g. 15.01 Å for Ge10S90).

The general methodology is exactly the same as the one
used for recent investigations of GeS2 and GeS4 glasses36,40

i.e. we have used density functional theory (DFT) to de-
scribe the electronic structure that evolved self-consistently
with time. We have adopted a generalized gradient approach
(GGA) using the exchange energy obtained by Becke54 and
the correlation energy according to Lee, Yang and Parr
(LYP)55. The BYLP approach was used because it takes into
account valence electron localization effects better than alter-
native exchange correlation functionals56,57 as suggested by a
better agreement with experiments41–43 on structure for simi-
lar liquids and glasses. In the present investigation, valence
electrons have been treated explicitly, in conjunction with
norm conserving pseudopotentials of the Trouiller-Martins
type to account for core-valence interactions. The wave func-
tions have been expanded at the Γ point of the supercell on a
plane-wave basis set having an energy cut-off of 20 Ry which
is a standard value for the investigation of chalcogenides56–61.
A fictitious electron mass of 2000 a.u. was used in the first-
principles molecular dynamics (FPMD) approach. The time
step for integrating the equations of motion was set at ∆t
= 0.12 fs. The temperature control was achieved for both
ionic and electronic degrees of freedom using Nosé-Hoover
thermostats. The initial coordinates of 120 atoms have been

constructed by substituting previous configurations of Ge-Se
glasses62. After a preliminary run at T = 2000 K for a period
of 25ps in order to lose the memory of the initial configura-
tion, we have then investigated a certain number of isotherms
(1800 K, 1500 K, 1200 K) over 25 ps each, down to 1050
K. At this temperature, four independent configurations sep-
arated by 5 ps each have served as starting configurations for
a quenching procedure (q=10 K/ps approximatively) and then
selected a certain number of target temperatures (800 K, 600
K) prior to a complete recording (70 ps) of glass trajectories
at 300 K that have been analyzed. In the forthcoming, most of
the structural analysis is performed at 300 K.

The difference in quench rates between the MD simula-
tions (10 K/ps) and the experimental ones (typically 103

K/s) deserves some comments. Given this huge differ-
ence, the numerical systems have usually all the features
of a high-temperature liquid that has been hyperquenched
into a local energy minimum (an inherent structure63) that
does not necessarily reflect the true glassy state given the
small time interval (70-100 ps) allowed for relaxation. The
four independent quenches are precisely used to partailly
circumvent this problem, i.e. by averaging over four inde-
pendent local minima of the potential energy landscape,
one might have a good representation of a potentially
more realistic glass structure, the number of independent
quenches being limited by computational cost. There are,
certainly structural variations and some of these aspects
are discussed below.

It should also be stressed that typical cooling rates in-
volved in MD simulations (109-1013 K/s) are compatible
with a general scaling law that applies for size dependent
cooling rates. It has been, established, indeed, that q is
proportionnal to the volume V over area A ratio of the
sample64, in the case where the mechanism of heat transfer
during quench is convection. This scaling law is actually
fulfilled for a variety of glass-forming liquids with sizes
ranging between 10−3 mm65 and 2 mm66, the former being
compatible with values found for the production of amor-
phous water67. An extrapolation of the obtained scaling
law q(V/A) to sizes typical of those involved in the present
simulated systems (10-20 Å) is actually compatible with
the lower limit of typical MD cooling rates (109 K/s).

III. RESULTS

A. Reciprocal space

In order to validate the simulated structural models, we
first concentrate on results in reciprocal space that can be di-
rectly compared to measurements from diffraction for Ge-S
glasses68–70 (Fig. 2).

Fig. 2 shows the results of the present investigated
Ge-S system. First, it is important to emphasize that a
very good agreement of the calculated interference function
I(k)=k[S(k)-1] is found when compared to the experimen-
tal counterpart. Note that this function I(k) = k[S(k)− 1]
blows up the oscillations found at higher k value, which are
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Figure 2: Simulated interference function k[S(k)−1] (black curves)
in 300 K Ge-S glasses. The results are directly compared with
measured structure factors (colored curves) from neutron diffraction:
Ge10S90

68, Ge20S80
68, Ge33S67 (green68,69 and red70), Ge40S60

69.
The shoulder peak at k0 ≃7.5Å is signaled.

damped in the simple S(k) function. This permits to better
quantify the degree of agreement between theory and exper-
iments, and, particularly for k >8 Å−1. In fact, the present
simulations on Ge-S reproduce all typical features over the
entire range of wavevectors k and for all compositions. The
first sharp diffraction peak (FSDP) is found at k ≃ 1 Å−1 sim-
ilarly to experiments68–70 for compositions larger than 20 %
Ge. The simulated first principal peak (PP1) at ≃ 3.5 Å−1

and second principal peak (PP2) at ≃6 Å−1 are also very well
described ; the position, the width and the intensity of the
peaks for all considered compositions are excellently repro-
duced. Similarly, I(k) permits one to detect also a very good
agreement in the high wavector region (k >10-18 Å−1), and
this provides confidence that real space properties at short dis-
tance r (r ∝ 1/k) should be also reasonably well reproduced.
However, it should noted that a slight shift in wave-vector
is obtained for the lowest Ge-S composition and k > 12 Å,
and this may arise from a partial crystallization of the ex-
perimental glass sample68, as detected experimentally. The
reproduction of the structure factor in such complex glasses
(e.g. GeS2) has been found to moderately depend on the
numerical cooling rate38, the only limiting feature being the
correct reproduction of the amplitude of the FSDP. The lat-
ter has been found to be strongly dependent on the DFT
scheme, and a continuous improvement for the exchange-
correlation functional, incorporation of the generalized gra-
dient approximation75, better account for the semi-conducting
nature of the material56, has led to the identification of the cor-
rect electronic scheme, able to reproduce the salient structural
features of Ge-S glasses36,37,39,40.

When investigated as a function of Ge content, we find that
a shoulder peak exists at k0 ≃ 7.5 Å for low content (arrow in

Fig. 2), which is also present in experiments. This peak sep-
arates from the second principal peak (PP2) only for x=40 %.
It is, therefore, believed that structural correlations at the cor-
responding length 7.7/k0 ≃1 Å will be substantially altered
once the glasses have a larger amount of Ge-Ge bonds. An in-
spection of the corresponding Faber-Ziman structure factors
(not shown) SGeGe(k) indicates, indeed, that contributions to
the peak at k = k0 mostly arise from such correlations, and
also from Ge-Se. In addition, we find that the amplitude of
the oscillations in I(k) decrease at high Ge content, and the
intensity of the peak at e.g. k1=12 Å is substantially reduced,
i.e. one finds I(k1)=0.75 and 1.35 at Ge40S60 and Ge33S67,
respectively.

B. Real space

The accuracy of the present models can be compared to
experiments in real space as well. When investigated as a
function of Ge content (Figure 3), one obtained a computed
total pair correlation function g(r) for the GexS1−x glasses
which is, again, in good agreement with available measure-
ments from the literature68–70. In fact, for e.g. GeS2 (Fig. 3)
all the features of the pair correlation function are reproduced
with a great accuracy: main peak at 2.24 Å (experimentally
2.21 Å70 or 2.24 Å69) and a small secondary peak (2.93 Å)
whose position and intensity (2.92 Å70 and 2.94 Å69) are
found to be close to experimental findings. The third principal
peak has its position slightly overestimated (3.65 Å against
3.45 Å69,70) and its intensity underestimated with respect to
the experimental findings. In GeS2, one furthermore notices
that a fourth shallow peak (5.41 Å) is also rather well repro-
duced, and all these obtained features are rather systematic for
the other compositions, especially when a direct comparison
with experiments is avalailable as for Ge10S90

68, Ge20S80
40

and Ge40S60
69.

The position of the Ge-S bond length is of about 2.22 Å, i.e.
shorter than the one found42,62 for Ge-Se (2.36 Å). As a result,
the large intensity of the first peak of the partial gGeS(r) (Fig.
4) this time does not overwhelms other contributions arising
from Ge-Ge correlations70. Consequently, the peak associated
with the latter can be detected at short distances (2.24 Å for
GeS2) in the total correlation function g(r) and arises from
the edge-sharing GeS4/2 tetrahedra. Other typical correlat-
ing distances between the (Ge,S) species can be detected as
a function of Ge content (Fig. 4), i.e. the partial gGeGe(r)
reveals three major components made of i) a homopolar dis-
tance Ge-Ge (e.g. 2.46 Å in GeS2) found at high Ge con-
tent and which give rise to a so-called ethane-like unit76, ii)
a secondary peak (e.g. at 2.92 Å in Ge20S80) associated with
the edge-sharing tetrahedra, and iii) a main peak correspond-
ing to corner-sharing (CS) tetrahedra. For the Ge-Se system,
these features have been unambiguously identified from the
analysis of the full partial resolution using isotopic substitu-
tion in neutron diffraction42. The difference between the two
systems is mostly detectable in the height of the intensity as-
sociated with the ES peak, and indicates that the Ge-S binary
seems to have an increased tendency to form such a ring struc-
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Figure 3: a) Calculated total pair correlation function g(r) in amor-
phous Ge-S (300 K) glasses (black lines) at 300 K, compared to
experimental measurements from neutron diffraction: Ge10S90

68,
Ge20S80 (red curve,40), Ge33S67 (circles68,69 and red curve70),
Ge40S60

69. b) Comparison of the present simulated GeS2 (33%)
and GeS4 (20%) with previous simulations from Blaineau et al.38,39,
Celino et al.36 and Bouzid et al.40.

ture, at least in Ge-rich glasses, as already revealed from the
Raman analysis33. In addition, we note that the homopolar
Ge-Ge bonds appear only for Ge33S67 (Fig. 4a), and this con-
trasts with the findings of the Ge-Se glasses which already
exhibited62 this corresponding typical prepeak at Ge25Se75
(red curves in gGeGe(r) in

The main feature of the pair distribution function gGeS(r)
consists of an intense peak that has a large gap with the sec-
ondary contributions, and this first peak corresponds to Ge-S
distance defining the tetrahedra. The distance, furthermore,
satisfies dGe−S=

√

3/8dS−S with dS−S being the edge length
of the tetrahedra (i.e. the principal peak of gSS(r)), and we
find that dGe−S/dS−S=0.60±0.02 and one has 0.61 for a per-
fect tetrahedron. With increasing Ge content, it is seen that
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Figure 4: (Color online) Computed pair distribution functions gi j(r)
(i, j=Ge,S) as a function of composition x in GexS1−x glasses
(300 K). The red curves are results for Ge-Se glasses62 and serve for
comparison. They have been rescaled in distance in order to match
the sulphide related functions (see also Fig. 6). The blue arrows
indicate structural features discussed below.



5

the secondary peak (arrows in Fig. 4b) found at ≃3.44 Å at
low Ge content (e.g. Ge10S90) tends to decrease in amplitude
as x is increased, and has completely vanished at x ≥33 %.
The origin of this peak62 can be associated with i) typical dis-
tances involved between a cross-linking Ge atom and a sul-
phur atom being part of a distinct chain, and ii) the second
nearest neighbor distance associated with GeS4/2-S-S corre-
lations along the same sulphur chain. As the chain-like struc-
ture disappears with increasing Ge content, it becomes harder
to find such typical correlating distances and the amplitude of
the corresponding peak in gGeS(r) decreases to finally vanish
for x >25 %.

C. Comparison with previous simulations

As stated previously, a certain number of simulations
on select compositions of the Ge-S binary have already
been reported in the literature, the system size being the
only difference (from 96 to 480 atoms, depending on the
composition). Figure 3b) reproduces such previous simu-
lations g-GeS2

36,38,39 and GeS4
40. It should be remarked

that the total pair correlation function is almost identical
for both presented compositions. However, while almost
all simulations are relying on an identical DFT scheme,
it is important to emphasize that some of them38,39 use a
non-self-consistent DFT together with a local density ap-
proximation (LDA) and such approximate schemes lead to
a smaller amount of homopolar bonds and threefold coor-
dinated sulfur atoms40, the only other difference being an
increased sharpness for the first peak of g(r) which is the
signature of a more structured network.

On the overall, it is seen that differences are minimal,
and even potential effects71 of system sizes (120 atoms for
the present simulation, 480 in ref.40, 96 atoms in ref.38) are
barely visible.

D. Defects and thermal history

Figure 5 shows the effect of thermal history on the struc-
ture of Ge40S60. Here is represented the Ge-Ge correla-
tions in gGeGe(r) of the four quenched amorphous samples
obtained after a melt quench from an equilibrated temper-
ature of 1050 K (see Methods), and corresponding energies
are provided in order to quantify the relationship of the
underlying energy landscape with structural properties. It
is important to emphasize that corresponding structural
correlations for Ge-S and S-S (not shown) are weakly im-
pacted by the thermal history so that the four correspond-
ing partial pair correlation functions almost overlap onto
each other. This simply indicates that the base tetrahe-
dra (Ge-S distances at 2.22 Å and tetrahedral edges, S-S
distances, at 3.55 Å) act as building blocks for the corre-
sponding structure and are weakly altered by the quench.
This situation contrasts with the one encountered for Ge-
Ge correlations which exhibit some more significant differ-
ences. Results indicate that the structure with the lowest
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Figure 5: (Color online) Partial pair correlation function gGeGe(r) of
Ge40S60 for the four independent quenches. The lowest energy min-
imum corresponds to the green curve (E=-26.415 keV) and energy
differences are provided.

energy (or lowest fictive temperature, green curve) con-
tains the smallest ring fraction (secondary peak at 2.8 Å)
given the weakest amplitude, a qualitative result that has
been also found in other glassy materials including silica72.
It is also seen that the fraction of homopolar defects is
influenced by the energy of the system reached after the
quench, as is the Ge-Ge homopolar distance, the sample
with the lowest energy having also a slightly longer ho-
mopolar distance (2.54 Å vs 2.45 Å) and a reduced Ge-Ge
correlation distance for the ES motif (2.89 Åvs 2.95 Å). It
would certainly be of interest to relate in more detail char-
acteristics of the energy landscape and the energy of in-
herent structures with structural properties73,74 of the ob-
tained glassy materials but such a study is unfortunately
beyond the possibilities of DFT based methods given the
limitation in size and equilibration time. One is, therefore,
left at a rather qualitative albeit insightful level of descrip-
tion.

IV. DISCUSSION

Now that the obtained structural models have been vali-
dated and successfully compared to experiments, we concen-
trate on the topology of such Ge-S networks and relate results
with aspects of rigidity, and compare with the parent Ge-Se
system.

A. Coordination numbers

In Table I, we report the partial pair coordinations ni j cal-
culated from the partial pair correlation functions (Fig. 4).
One obtains a decrease of the partial coordination numbers
nGeS with increasing Ge content once homopolar Ge-Ge have
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Table I: Calculated pair coordination numbers ni j , coordination num-
bers ni and mean coordination number r̄ in Ge-S and Ge-Se62

glasses. The cut-off distances for the calculation of the coordination
numbers have been taken at the minimum of each pair distribution
functions (rm=2.6-2.9 Å).

nGeGe nGeX nXX n Ge nX r̄

Ge10S90 - 4.00 1.56 4.00 2.00 2.20
Ge10Se90

62 - 4.01 1.56 4.01 2.00 2.20

Ge20S80 - 3.96 1.00 3.96 1.99 2.38
Ge20Se80

62 - 3.92 1.00 4.01 2.00 2.40

Ge25S75 - 3.99 0.67 3.99 2.00 2.50
Ge25Se75

62 0.13 3.87 0.71 4.01 2.00 2.50

Ge33S67 0.10 3.85 0.10 3.95 2.03 2.67
Ge33Se67

62 0.25 3.55 0.30 3.80 2.08 2.64

Ge40S60 0.37 3.24 - 3.57 2.16 2.72
Ge40Se60

77 0.52 3.21 0.01 3.73 2.15 2.78

emerged for x ≥33%. On the other hand, nSS decreases with
composition x as indicated from the decrease of the amplitude
of the homopolar distance in gSS(r). These trends are furthe-
more found to be very close to those determined for Ge-Se
glasses62,77.

Corresponding total coordination numbers can then be cal-
culated (Table I) using

ni = nii +∑
i6= j

ni j, (1)

and e.g. (1-x)nSGe = xnGeS. Results show a nearly perfect
agreement with what can be expected from 8-N rule, at least
for compositions at x <40%. One finds, indeed, that Ge atoms
have a coordination number close to nGe=4, whereas sulphur
atoms have nS ≃2. For the composition Ge40S60, due to an im-
portant fraction of Ge-Ge bonds and to coordination defects,
nGe reduces to 3.57 (3.73 in the corresponding selenide77),
and nS slightly increases. An investigation of the population of
coordination numbers ni

Ge (with i=3,4,5) shows, indeed, that
while Ge-S glasses with x<33% have n4

Ge=100%, once the Ge
content is larger, three and five-fold Ge emerge which leads to
a global decrease to nGe=3.57. Similarly, an increased fraction
of three-fold sulphur is obtained for this Ge-rich composition,
and this also contributes to the growth of nS.

B. S-S and Se-Se correlations contrasted

For the chalcogen-chalcogen correlations, the gap between
the first and second principal peaks is actually found to be
somewhat larger when the partials gSS(r) and gSeSe(r) are be-
ing compared, indicating a less structure for the selenide glass
between the first and the second shell of neighbours. This can

1 1.2 1.4 1.6 1.8
r/dXX

0

0.5
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2.5

g X
X
(r

)
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Figure 6: (Color online) Left: Calculated neighbor distributions in
Ge25S75 (black lines) and Ge25Se75 (red curves, adapted from62) as
a function of a rescaled distance r/dXX where dXX is the first peak
of the partial chalcogen-chalcogen correlation function (2.19 Å and
2.36 Å for S-S and Se-Se, respectively). The thick lines correspond
to the partial gSS(r) and gSeSe(r) also displayed in Fig. 4c. Blue bars
define the first and second neighbour distances d1 and d2 for the Ge-
S glasses. Right: A typical fragment of S-rich Ge-S glasses showing
the distances d1 and d2.

be detected from the tail appearing on the left side of the sec-
ondary peak, i.e. at r ≃3 Å (red curves in Fig. 4c and blue
arrow). This tail arises from a more compacted second coor-
dination shell, and, particularly, from the 3- and 4th selenium
neighbors (Fig. 6, left). In order to contrast both systems,
gSS of Fig. 4c can be rescaled by the homopolar bond dis-
tance dSS corresponding to the principal (first or homopolar)
peak of the function gSS(r). A similar procedure can be re-
alized for Ge-Se glasses to lead figure 6 which represents
now such a rescaled chalcogen-chalcogen pair correlation
function gXX(r) (X=S,Se). Corresponding 3 and 4-neighbour
distributions are found at larger r/dXX distances in the sulphur
glasses, i.e. r = 1.4dS−S as compared to the selenium system
(r = 1.2dSe−Se). On might argue that this can be an effect due
to compaction but it is worth emphasizing that Ge-Se displays
a smaller density32 as compared to Ge-S33. It can be also de-
tected that the amplitude and the average position (d1 and d2,
blue bars in Fig. 6) of the two first neighbour distributions
contributing to the prepeak in gSS(r) are not equal, and these
also turn out to be composition dependent with the amplitude
of the peak at d1 continuously decreasing with Ge content for
x <33%. In fact, the second distribution at d2 is identified
with a homopolar distance close to a GeS4/2 tetrahedron (Fig.
6, right), and is on average slightly shorter (2.15 Å) when
compared to the one having no Ge tetrahedra in its vicinity
(d1=2.22 Å for Ge20S80). This might result from an increased
Coulombic interaction due to the Ge4+ centers.

C. Homopolar bondings

Next, we calculate from the trajectories the fraction of ho-
mopolar bonds in the Ge-S glasses and compare them with
previous results on Ge-Se62 and bond statistics obtained from
Reverse Monte Carlo modelling of Ge-Te78. Figure 7 shows
the evolution of Ge-Ge and chalcogen-chalcogen (S-S, Se-Se,
Te-Te) bonds with increasing Ge content.
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lines) homopolar bonds in Ge-S (red), Ge-Se62 (black) and Ge-Te78

(green) glasses as a function of Ge content. The cutoff has been cho-
sen at the minimum of each pair correlation function. The thin lines
represent the RCN model of equs. (2)-(3).

For all, a decrease of the chalcogen-chalcogen bonds is ob-
tained, accompanied by a growth of Ge-Ge bonds, the results
exhibiting clear differences when the different families of bi-
nary chalcogenides are being directly compared. At low Ge
composition (x <20 %), all Ge-based chalcogenides includ-
ing Ge-Te78 behave similarly, and this arises from the fact that
GeTe4/2 motifs are dominated by a tetrahedral geometry6 for
x <20 % so that the same short range order is encountered for
all. At larger Ge content however (x >20 %), the decrease of
Te-Te bond population behaves differently, and deviates from
the S-S and Se-Se curves, and this arises from the increasing
presence of Ge defect octahedra which increases the possibil-
ity of homopolar bonding in the structure. The presence of
such octahedra and the existence of the crystalline polymorph
GeTe79 (GeTe2 does not exist) contrasts with lighter chalco-
genides, and modifies the tendency towards local chemical or-
der (100 % heteropolar) that prevails in the 25<x<33 % re-
gion for Ge-S and Ge-Se glasses. Also, in Ge-Te the remain-
ing Ge tetrahedra are found to involve predominantly Ge-Ge
bonds80 which also leads to additional chemical disorder with
respect to what would be expected from the nominal compo-
sition.

The weaker amplitude of the pre-peak in gGeGe(r) in Ge-S
glasses (Fig. 4c) leads to a lower population of Ge-Ge bonds,
and only 4.73 % of Ge-Ge bonds are found in Ge40S60, a
result that contrasts with the behaviour of Ge-Se (13.2 % in
Ge40Se60). Also, the combined trends of Ge-Ge and (S-S,Se-
Se) does not lead to a minimum in the heteropolar bond statis-
tics as detected for Ge-Te78 or in other chalcogenides81. This
difference in behaviour can be roughly explained by the fact
that Ge-Te glasses follow bond statistics that are close to the
random covalent network (RCN) picture for which the popu-

lations are given by:

pRCN
GeGe =

16x2

r̄2 (2)

pRCN
XX =

4(1− x)2

r̄2 (3)

with X = (S,Se) and which assumes a continuous increase of
Ge-Ge bonds with Ge content (thin black lines in Fig. 7).
However, such a distribution leads to a maximum for the het-
eropolar distribution pRCN

GeX at x=1/3, in contrast with numeri-
cal findings78,81 which exhibit an opposite trend (minimum in
pGeX ). On the other hand, at a crude level the distribution for
Ge-S (Fig. 7) is found to be closer to a chemical ordered net-
work (CON) picture for which it is assumed that there are no
Ge-Ge bonds for x <33 % Ge and no S-S bonds for x >33 %
so that pCON

XX ∝(1-3x). However both FPMD results and neu-
tron diffraction results42 indicate a small but significant depar-
ture from this CON picture because such homopolar defects
are present in the glasses at the stoichiometric composition
(33.3 %, Fig. 3).

D. Ring statistics

Topological intermediate range order of Ge-S glasses can
then be evaluated. We use for this purpose a ring statistics al-
gorithm that is part of the Rigorous Investigation of Networks
Generated using Simulation (RINGS) code82. We have used
a cutoff distance of 2.6 Å, corresponding to the minimum rm

of the pair distribution function (Fig. 3). This algorithm is
based on the King83-Franzblau84 shortest path search to find
rings containing a maximum of a number of given atoms. The
shortest path is searched starting from two of the near-
est neighbors of a given node (atom), and then propagated
from neighbour to neighbour.

Figure 8 shows the ring statistics R(n) for the five composi-
tions of interest in the Ge-S system. These results also recover
recent ring statistics on the selected compositions GeS2

36 and
GeS4

40, and results are found to be similar. It is important to
emphasize that all size n of rings are involved in both glass
system, i.e. odd or even sized rings. Also, no restriction is
made for purely heteropolar rings (ABAB rings58) so that
all sorts of rings containing all possible homo- (Ge-Ge and
S-S) and heteropolar (Ge-S) based rings are enumerated.
The presence of odd- and even sized rings (e.g. GeS2) is
clearly detectable from Fig. 8). For GeS2, this situation con-
trasts with corresponding stoichiometric oxide glasses (SiO2,
GeO2) which have only heteropolar bonds and whose network
structure will contain only even sized rings86,87. The differ-
ence with oxides arise from the presence of homopolar bonds
(Ge-Ge, S-S, Fig. 7) which permit to have closed loops of
odd size. The presence of such motifs is, thus, an indication
of the presence of homopolar bonds, this indication being of
particular crucial importance for the stoichiometric GeS2 (or
GeSe2

62) compositions. However, such odd-sized rings are
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Figure 8: (Color online) Calculated number of rings R(n) in amor-
phous GexS1−x (blue bars) for different Ge compositions using the
RINGS method82 . Results are compared to the calculated statistics
of Ge-Se glasses62,77 (red bars).

encountered at all compositions covering the S- or Ge- rich
domain of the glass-forming region.

In Fig. 8 we, furthermore, find that the increase of Ge
content tends to increase the number of possible ring struc-
tures. At low Ge content (i.e. 10 %), one finds only a limited
number of rings (R(n) <6) due to the chain-like nature of the
structure. We do not find any S8 like rings which are found
experimentally at low Ge content33. The size of the system
(120 atoms) may not be sufficient to detect such ring struc-
tures. A recent numerical investigation40 on GeS4 on a larger
system (480 atoms) has led to similar statistics but this com-
position probably does not contain any S8 any more. Clas-
sical molecular dynamics simulations88 performed on larger
system sizes (1000 atoms) have shown that the emergence of
such S8 rings is largely driven by relaxation phenomena, and
transition states allowing for the conversion of rings into poly-
meric sulphur chains, and may, therefore, not be available on
typical simulation times (ps-ns).

As mentioned above, because the Ge content leads to an
overall increased tendency to cross-link the glass network, a
global growth of all types of rings82 is acknowleged (Fig. 8).
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Figure 9: (Color online) Number of small rings R(n) (3 < n < 8)
in amorphous GexSe1−x

62 (a) and GexS1−x (present work, (b)) as a
function of Ge composition x. The grey zone indicates the experi-
mentally determined intermediate phase30,33).

The distribution is dominated by two populations, i.e. very
small rings (n <7) and larger rings (13> n >9), the former
containing either four (ES motifs), five or six atoms. These
rings represent the elementary building blocks of the outrig-
ger raft model89 that has been proposed for GeSe2 and GeS2,
and remains quite popular in the literature. However, it has
been shown recently62 that the calculated rings statistics in
GeSe2 does not match the one proposed for this simple struc-
tural model. The calculated ring ratio for 4,5 and 6-fold rings
is, indeed, 10:8:7, respectively, i.e. quite different from the
one of the outrigger raft structure (1:2:2 of Fig. 2 in Ref. 89).
The present GeS2 also supports this conclusion because we
find a ratio of about 8:4:5, respectively, also different from the
one obtained for GeSe2

62, the latter containing a larger frac-
tion of 5-fold rings. This increased presence of 5-rings essen-
tially arises from a larger fraction of homopolar Ge-Ge bonds
present in the structure of Ge-Se which promote the smallest
odd rings (Fig. 9). Finally, one recognizes that the outrig-
ger raft model does not contain Ge-Ge bonds while only 5-
fold rings (R(5)) are assumed to contain homopolar chalcogen-
chalcogen bonds. The detail of the analysis of GeS2 shows
that a variety of Ge-Ge, Ge-S and S-S bonding types are
present in 5- and 6-fold rings, in contrast with the proposed
structure89.

E. Temperature behaviour of constraints

Using the atomic trajectories obtained from MD, we can
now estimate the number of constraints per atom as a
function of Ge content and temperature. To calculate nc,
we use recently developed MD-based constraint counting
algorithms5,7, i.e. we estimate the radial and angular excur-
sions between pairs or triplets of atoms, based from the atomic
configurations at fixed thermodynamic conditions (x,T). This
enumeration is directly inspired by the classical mechanics
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Figure 10: Evolution of the number of constraints nc for different
isotherms as a function of Ge content in Ge-S glasses and liquids.
The dotted line is the mean-field estimate nc=2+5x1.

view of mechanical constraints associating large/small radial
or angular motion with the absence/presence of correspond-
ing bond-stretching (BS) and bond-bending (BB) restoring
forces1,2. BS constraints can be simply enumerated from the
coordination number r of the atoms5,7,59, and this leads to a
contributions of nBS

c =r/2 for the BS constraint. To derive an-
gular (BB) constraints, one follows the angular motion around
each individual atom k (k=Ge,S) defined by a set of two neigh-
bors. Over the time trajectory, the corresponding bond angle
distribution Pk(θ) allows defining a mean (the first moment
of Pk(θ)) and a standard deviation σk (the second moment)
that shows a bimodal distribution for the various considered
conditions5,62. Atoms subject to a rigid bending interaction
contribute to the part of the distribution with low σk, which
corresponds to angles acting as a rigid BB constraint. Av-
erages over the whole simulation box then lead to the mean
number of constraints nBB

c per atom. The total number of con-
straints is then nc=nBB

c +nBS
c and can be represented as a func-

tion of Ge content and temperature (Fig. 10).
First, results point out that the MD based constraint count

at low Ge content follows exactly the prediction of a mean-
field constraint count1,2 leading to nc=2+5x at 300 K (dotted
line in Fig. 10). This behaviour is maintained as long as the
system remains at low temperature. However, one acknowl-
edges at large Ge content (40 %) a progressive deviation of
the calculated nc with respect to the mean-field result, indicat-
ing a softenting of constraints, similarly to the previous study
on Ge-Se glasses62. The detail of the analysis shows that this
reduction of nc arises from a breakdown of some angular con-
straints involving the farthest neighbor of a Ge atom, which
leads to a decrease of nBS

c .
An increase of the temperature shows that the 40 % compo-

sition is highly sensitive to temperature changes, and that all
Ge-S compositions start to deviate from the (2+5x) line only
at high temperature. The evolution is found to be mostly trig-
gered by the softening of the BB interactions (Fig. 11). In fact,
while the number of BS constraints is found to be nearly inde-
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n c
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Figure 11: Temperature evolution of the number of constraints in
Ge40S60 for Ge (black) and S (red). The broken lines are least-
squares fit using the Mauro-Gupta form (equ. (4))

pendent of T (weak coordination change), we find a marked
evolution of BB constraints with temperature as nBB

c for Ge
atoms decrease from a value that is slightly lower than the
mean-field estimate of nBB

c =5 at 300 K to about 1 for 1500 K.
Similarly, the S-related number of BB constraints decreases
from nBB

c =1 to nearly zero at high temperature, indicating that
all S-centred angles have substantially softened. These re-
sults actually are partially in agreement with the assumptions
made for a temperature-dependent constraint model of net-
work glasses3. Here, it was assumed that the Se BB constraint
is soft as it induces the breakdown of the medium-range struc-
ture with increasing temperature. However, it has been also
argued that the Ge angular constraint is by far the strongest
constraint due to its sp3 hybridization of the orbitals. This as-
sumption seems to be contradicted from the present detailed
findings given the evolution of nBB

c for germanium atom that
soften already at rather low temperature, whereas the BS con-
straints almost do not vary. Using the Mauro-Gupta form3

for the prediction of the temperature behaviour of constraints
ni

c(T )=qi(T )ni
c(0) with i=(BS,BB):

q(T ) =

[

1− exp
(

−
∆F∗

kBT

)]νtobs

(4)

we can establish the associated activation energies ∆F∗ of
corresponding constraints. Here ν is a vibrational attempt
frequency and tobs a typical observation time90. We find
∆F∗=0.41(0) eV and 0.32(8) eV for Ge and S BB constraints,
respectively, and this permits to determine the onset tempera-
tures Tα of broken constraints via91:

kBTα =
∆F∗

2−1/νtobs − 1
(5)

leading to Tα=1316 K and 1109 K for Ge and S BB con-
straints, respectively. These values are found to differ from
those obtained for Ge-Se3, i.e. it was found Tα >700 K and
218 K for Ge and Se, respectively. It would be interesting to
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check if the empirical model built for Ge-Se3 can be proposed
for Ge-S using the presently established parameters.

The other main outcome of the constraint analysis is that
changes induced by temperature are small for temperatures
lower than 1200 K and for x ≤ 33 % so that a constraint count
at low temperature can hold in liquid and also in the vicinity
of the glass transition. These conclusions are consistent with
recent results on Ge-Se melts from neutron spin-echo spec-
troscopy showing that the rigidity concept can be extended
from the glass to the liquid92. In this work, parameters giv-
ing the temperature dependence of the relaxation patterns of
binary chalcogen melts have indeed shown to be linearly de-
pendent with the low temperature mean coordination num-
ber r̄, and thus to follow the count achieved at low temper-
ature. Similarly, relaxational phenomena in Ge-Se using the
low temperature constraint approach have also been reported
from liquid-state NMR93.

V. SUMMARY AND CONCLUDING REMARKS

In this article, we have focused on the atomic structure
of Ge-S glasses with changing Ge content. These represent
archetypal chalcogenide systems that can serve for the exper-
imental validation of flexible to rigid transitions1,2. The un-
derstanding of their physical and chemical properties in con-
nection with structural and vibrational properties are of great
interest given that a certain number of optoelectronic applica-
tions of ternary or multicomponent glassy materials use such
binary Ge-Se and Ge-S as starting materials.

In order to gain more details into the network structure, we

have used recently optimized First Principles Molecular Dy-
namics (FPMD) simulations to investigate in detail the effect
of Ge composition on various properties in the Ge-S system
by focusing on five target compositions Ge10S90, Ge20S80,
Ge25S75, Ge33S67 (GeS2) and Ge40S60. The direct compar-
ison of the calculated pair correlation function g(r) and the
structural factor S(k) with results from neutron diffraction
shows an agreement of unprecedented accuracy, and provides
a validation of the structural models. These can then be used
to extract other key features that emerge as the network is
progressively cross-linked. The addition of Ge atoms into
the base sulphur-rich network leads, indeed, to a continuous
growth of 4- and 6-membered rings, whereas 5-fold rings do
not seem to increase upon Ge addition. The trends are qual-
itatively consistent with those determined from the Raman
investigation31,33. There is a lower tendency in Ge-S to form
homopolar Ge-Ge bonds, as compared to Ge-Se, and these
occur, indeed, at a composition (33 %) that is lower than in
selenides (25 %) and tellurides (20 %).

However, although some structural differences between Ge-
Se and Ge-S glasses have emerged from the detailed FPMD
investigation, and given that these compositions spanning
elastic phases predicted by Rigidity Theory yield almost iden-
tical rigidity (20 %) and stress (25 %) transitions33, one is,
ultimately led to believe that local topology and the network
connectivity driven by the 8-N rule determines the location
of the IP of these two glass binaries.

PB acknowledges support from NSF grant DMR-08-53957.
P.S. Salmon and E. Bychkov are acknowledged for providing
their experimental data on diffraction.
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