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Abstract

Small system sizes are a well known source of error in DFT calculations, yet computational

constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides

and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well

characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow

an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that

elastic effect are also important in the description of defects in ionic compounds and can lead to

qualitatively incorrect conclusions if inadequatly small supercells are used; moreover, the spurious

self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the

exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies,

employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky

defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms),

and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious

self-interaction was also observed in non-oxide ionic compounds and irrespective of the compu-

tational method used, thereby resolving long standing discrepancies between DFT and force-field

methods, previously attributed to the level of theory. The surprising magnitude of the elastic

effects are a cautionary tale for defect calculations in ionic materials, particularly when employing

computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clus-

ters. We propose two computationally practicable methods to test the magnitude of the elastic

self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would

be expected to be dominant, it is the elastic effects that dictate the need for larger supercells —

greater than 96 atoms.
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I. INTRODUCTION

Finite size effects have been a known limitation since the beginning of atomic scale sim-

ulations of solids1,2. These arise when atomic interactions extend beyond the simulation

boundaries. Most modern atomic scale simulations methods adopt periodic boundary con-

ditions (PBC) to represent crystalline matter and introduce defects through the use of

supercells3. Of primary concern for finite-size effects are long range interactions through

elastic (strain) fields and electrostatic (Coulomb) fields. Elastic self-interactions of point

defects have been studied since the early days of atomic scale simulations, first for simple

elemental metals4–7, and later for ionic crystals3,8. This was dictated by necessity, as the

exhisting computational resources limited the size of force-field simulations to tens of atoms

— now 1012 atoms can be modelled9. While the computational power available to atomic

scale modellers has increased dramatically, the typical simulation size used for density func-

tional theory (DFT) calculations has not increased accordingly, in favour of ever increasing

sophistication in the description of the electronic state. However, much of the old knowl-

edge regarding the importance of accounting for elastic self-interactions seems to be lost or

ignored in many recent reports.

In ionic materials, where typically point defects are charged, Coulomb interactions are

assumed to be predominant. Consequently, a large body of research has focussed on pre-

dicting and countering the electrostatic self-interaction energy in DFT, producing a number

of charge correction schemes with increasing degrees of complexity and sophistication10–17.

On the other hand, elastic self-interactions, which are thoroughly accounted for in metals

and iono-covalent materials2,3,18,19, have largely been neglected in strongly ionic compounds,

being perceived of secondary importance to electrostatic interactions. Here we show that for

charge neutral defects, the elastic interactions are non-negligible and lead to a qualitative

change in defect stability.

We consider exemplar cases of metal oxides with fluorite structure (CeO2, ThO2, UO2

and actinide oxides) that have been extensively studied in the past due to their engineering

applications including solid oxide fuel cells (SOFC), electrolyzer cells, ion conductors, cat-

alysts and nuclear fuel. Specifically we consider the formation of charge-neutral Schottky

clusters ({V ··
O : V ′′′′M : V ··

O }
×), which are known to reduce oxygen mobility20–23, degrade the

electrolytic properties of SOFC23–25 and govern the distribution and retention of gaseous
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fission products in nuclear fuel26–30. We also extend the study to non-oxide ionic compounds

with fluorite structure (CaF2) and anti-fluorite structure (Be2C, also ionic31,32) to show that

the phenomenon is not limited to oxides.

The formation and migration of charge-neutral clusters in these metal oxides has been

extensively investigated with ab-initio simulations23,24,30,33–49, but nearly all of the studies

were carried out with simulation cells containing up to 96 atoms (2× 2× 2 supercell) with

few instances where larger supercells were used48,50–52. Of the three possible configuration

that a Schottky cluster may exhibit (see figure 1), the DFT studies consistently report the

the SD[110] configuration as the lowest energy cluster. One exception is the publication by

Yu et al. 53, however their reported Schottky energies appear to be orders of magnitude

smaller than all other published work. On the other hand, modelling studies employing

empirical force-fields, and thus frequently using very large periodic simulations cells or the

Mott-Littleton approach54, often report the inverse: that SD[111] is more favourable than

SD[110]
55–57 — although, there is large variation in results as the quality of the potentials

precludes the apparent stability of Schottky clusters. It is unclear to what extent the dis-

crepancy between empirical and ab-initio results is due to the different level of theory (DFT

v.s. force-fields) or to finite size effects. In this paper we show that DFT and reliable force-

field potentials are indeed in agreement if the results are compared across the same supercell

sizes. Notably, two studies employed 3× 3× 3 supercell (324 atoms) of ThO2
51,52. Murphy

et al.52 report similar trends between DFT and force-field simulations for increasing super-

cell size, however the discrepancy regarding the most favourable cluster configuration still

remained. Although not belonging to the family of fluorite compounds, Bradley et al. 50

also employed a 324-atoms supercells of m-HfO2 to study defect clusters.

FIG. 1: Three possible configurations of the bound SD in the fluorite structure, defined by

the arrangement of the anion vacancies around the cation vacancy.
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In this letter, we show that charge neutral Schottky clusters interact over long ranges

through elastic fields, and that the commonly used 96-atom supercell is inadequately small

to capture the correct ground state of Schottky clusters. We then show that the root cause

of this finite size effect is spurious interaction between strain fields across PBC, and not

electrostatic or electronic effects. Additionally, the elastic finite size effect is not described

accurately by linear elastic theory, owing to the complex mode of relaxation. We conclude

by proposing two methods to estimate, albeit approximately, the magnitude of the elastic

self-interaction for any ionic system.

II. METHODOLOGY

Force-field simulations were performed with the LAMMPS code58,59, using the many-

body potential of Cooper, Rushton and Grimes (CRG)57, as this potential set proved to be

reliable and transferable60–64 across a wide range of MO2 compounds. DFT simulations were

carried out with VASP65, using the PBE exchange-correlation functional66, PAW pseudo-

potentials with the maximum number of valence electrons available67 and a plane-wave

cut-off of 500 eV. Details of the k-point grids and evidence of convergence to within 1 meV

is provided in the supplementary material68. c-ZrO2 was also initially investigated, but due

to the stability of m-ZrO2 it was not possible to retain the cubic symmetry during relaxation

of defects in large cells, even by constraining some degrees of freedom.

On-site Coulomb correction terms have been included for CeO2 and UO2, following

the majority of the published literature42–48,69–76: Dudarev et al. ’s formalism77 for CeO2

with U{Ce4f} = 5.0 eV, U{O2p} = 5.5 eV; and Liechtenstein’s formalism78 for UO2 with

U{U5f} = 4.5 eV and J{U5f} = 0.51 eV. U-ramping79 (for CeO2) and occupation matrix

control69,73 (for UO2) were used to avoid metastable states. Details are provided in the

supplementary material68 together with results obtained without +U to emphasis that the

findings are not sensitive to the choice of simulation parameters. UO2 was described with

collinear 1k antiferromagnetic ordering, as this is the best collinear approximation of the

true (non-collinear 3k AFM80,81) magnetic ordering of UO2
44–48,71–73.

In ionic materials, the formation energy of a defect d with charge q is conventionally
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calculated as

Ef
d = Edef − Eperf ±

∑
α

nαµα − qµe + Echcor + Eelcorr (1)

where Edef and Eperf is the DFT total energies of the defective or pristine supercells, µα is

the chemical potential of all species added or removed to form the defect, µe is the fermi

level of the system normalised by the valence band maximum, Echcorr is a charge correction

term, following a number of possible schemes10–17, and Eelcorr is the energy due to elastic

self-interaction, seldom accounted for in ionic compounds. Since (a) the defects considered

here are charge neutral, (b) the composition of the defects is precisely one stoichiometric

formula unit (i.e. µMO2 =
Eperf

x
, where x the number of formula units in the supercell), and

(c) the elastic self-interaction is the subject of the study, the defect formation energy of a

Schottky cluster is simplified to:

Ef
SD =Edef − Eperf −

Eperf

x
(2)

Ef
SD =E(Mx−1O2x−2)−

x− 1

x
E(MxO2x) (3)

in line with previous publications43–45 (except for the explicit inclusion of elastic self-

interaction term). This simplification conveniently removes any dependence of our results

from external factors such as chemical potential of reference elements, or apparent bang gap

of the material.

The linear elastic theory approximation to Eelcorr was calculated with the aid of the aneto

script18 from the stress tensor of the relaxed simulations and using elastic constants obtained

from DFT simulations through lattice perturbation to retain self-consistency. Selected cal-

culations were repeated where atomic relaxation was restricted to atoms within a relaxation

radius from the defect centre, and all other atoms were kept fixed at the perfect lattice site.

III. RESULTS AND DISCUSSION

The effect of finite PBC was first investigated using the CRG potential. Figure 2 shows

the formation energy (filled symbols) of bound Schottky clusters in various actinide oxides

and CeO2. It is clear that, irrespective of the cation species, the SD[111] defect is the most

favourable when simulated in large enough supercells (containing 324 atoms or more), but

the SD[110] is the most favourable in the smaller simulation cell containing 96 atoms. The
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FIG. 2: Defect formation energy (before and after relaxation) from CRG potentials versus

supercell size (form 2× 2× 2 to 5× 5× 5) for three bound Schottky configurations in

actinide oxides and CeO2. Values for ThO2 were taken from52.

results of calculations before geometry relaxation is also presented in the top panel, showing

no cross-over of defect energies.

To show that the crossover was not a peculiarity of the CRG potential form, DFT calcu-

lations were performed with supercells containing 96, 324 and 768 atoms on selected oxides

(CeO2, ThO2, UO2) as well as CaF2 and Be2C (Figure 3). Be2C has considerably small

lattice parameter, therefore a further supercell containing 1500 atoms was also considered.

It is evident that DFT and force-field calculations are in agreement, and crossover between

SD[111] and SD[110] occurs between the ∼10 �A supercells (96 atoms) and the ∼16 �A supercells

(324 atoms). The trend is predicted for CaF2 and Be2C as well as the oxides. Importantly,

including the energy penalty predicted from linear elastic theory (dashed lines) does not

correct the trend.

It is well known that point defects in ionic materials interact chiefly though their charges,

and although the Schottky clusters have no overall charge, they are still comprised of three

charged defects (V2−
anion − V4+

cation − V2−
anion) that may individually interact across periodic

boundaries. In addition, SD[100] and SD[110] also exhibit effective dipoles since the geometrical

centre of the positive charges does not align with that of the negative charges. SD[111] does

not have an associated dipole since it is a linear defect with mirror symmetry. Nevertheless,
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FIG. 3: Defect formation energies from DFT as a function of supercell size (labels indicate

atoms in supercell). UO2 simulations were limited to 324 atoms, due to the additional

complexity and computational cost of OMC.

to show that electrostatic interactions alone cannot account for this peculiar finite size

effect, all charge-charge, charge-dipole, and dipole-dipole interactions have been evaluated

independently (Figure 4). Three point charges (two positive and one negative with no overall

charge) have been arranged in a dielectric medium with the same configurations as the three

bound Schottky defects, and then replicated in a repeating array of 10×10×10 to model the

effect of PBC, where the distance between replicas was increased progressively to simulate

larger supercells. Dielectric constants, lattice parameter and the magnitude of charges are

arbitrary. However, a range of q2

εa
ratios have been modelled, all yielding the same qualitative

behaviour.

Figure 4 shows that as the supercell size increases, the energy contribution from self-

interaction across periodic boundaries tend to zero (see insets), therefore the total energy

of each system converges toward the internal energy of the point charge triplet, consisting
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FIG. 4: Total electrostatic energy of SD modelled as point charges arranged in a dielectric

medium with periodic boundaries. Insert: energy contribution from self-interaction across

supercell boundaries.

entirely of Coulomb interactions. It is clear that the three point charge configurations

(representative of the three Schottky clusters) never cross over at any separation, hence, the

electrostatic interactions alone do no account for the change in relative stability of Schottky

clusters. This is reassuring, given that CaF2 shows similar trend to CeO2, ThO2 and UO2

despite a factor of 1
2

difference in ionic charges (Figure 3).

Beyond electrostatic effects, electronic effects may also lead to a change in behaviour

with increasing supercell size. This has been well documented for charge neutral vacan-

cies in Si82–84, where small simulation cells (64-atoms or fewer) predict a retention of Td

symmetry, while larger cells correctly identify a reduction of local symmetry to D2d, as ob-

served experimentally. The symmetry reduction, and associated energy reduction, is due

to a Jahn-Teller distortion85, and consequently the effect is strongly sensitive to Brillouin

zone sampling as well as supercell size83. SiC is another example of covalent material where

similar effects have been observed86. Jahn-Teller effects are not limited to covalently bonded

materials, in fact they are known to be important in many oxides73,87. However, the finite-

size effect observed in the current study was consistently reproduced with GGA, GGA+U

and force field potentials (with fixed charges on atoms), suggesting that electronic effects

cannot be at the heart of the matter.
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The source of the cross-over is instead found in the elastic interactions. Figures 2 shows

that prior to geometry relaxation there is no cross-over in stability between SD[110] and

SD[111]. This is also shown for DFT calculations in the supplementary material88. Thus

relaxation is hampered in the smallest supercell. Figure 5 depicts the atomic displacements

caused by the three bound Schottky clusters in the largest DFT cell of CeO2. The boundaries

of the smaller supercells are superimposed on the image to highlight that the strain field

exceeds the bounds of the 2 × 2 × 2 supercell (96 atoms). The displacement fields are

better quantified in Figure 6, where the atomic displacements are plotted as a function

of distance from the cation vacancy. The atomic displacements obtained from the largest

supercell, reveal that at a distance of 7 �A from V ′′′′Ce (i.e. between the 2× 2× 2 and 3× 3× 3

boundaries) O atoms are being displaced by as much as 11.5 pm, which is not insignificant.

More importantly, when comparing the atomic displacements within the first 10 �A across

different supercell sizes, it is evident that the fingerprint of atomic relaxation in the 96-

atom supercell is fundamentally different from that of the larger supercells, i.e. not only

the magnitude but also the shape of the strain field is different. On the other hand, the

fingerprint of atomic displacements changes only marginally when increasing supercell size

further.

FIG. 5: (110) slice (three atomic layers) of the 768-atoms supercell of CeO2. Dashed lines

represents the boundaries of the smaller supercells. Grey and red squares represent the Ce

and O vacancies respectively, green arrow represent the displacement magnitude scaled up

by a factor of 5. First nearest neighbour atoms exceed the colour map with displacements

of up to 26 pm.

The fact that the shape of the displacement fields are fundamentally different between

10



2x2x2 3x3x3 4x4x4

2x2x2 3x3x3 4x4x4

2x2x2 3x3x3 4x4x4

5 5 10 5 10 15

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

distance from cation vacancy (Å)

at
om

ic
 d

is
pl

ac
em

en
t (

Å)
SD

[100]
SD

[110]
SD

[111]

FIG. 6: Atomic displacements caused by Schottky clusters in CeO2 supercells. Red and

turquoise crosses represent O and Ce atoms respectively. Black vertical lines represent half

of the supercell length, following the same key of Figure 5. Beyond those lines, some atoms

are closer to the periodic replica of the defect than the central defect.

the 96-atom supercell and the larger supercells indicates that atomic relaxation is hampered

by artificial restoring forces stemming from the PBC. This frustration of atomic relaxation

can only provide a positive contribution to the total energy of the system.

Generally, it is possible to predict the energy contribution arising from elastic self-

interaction through methods based on linear elastic theory, which combining the elastic

dipole tensor of the simulation with the elastic constants of the material3,18. However, Fig-

ure 3 shows that the aneto correction, which has been proven successful in a variety of

metallic and covalent systems18,89–93, cannot counter the finite size effects observed here.

The inability of linear elastic theory to predict the energy contribution in ionic compounds

is attributed to the complex relaxation pattern caused by the defect. Figure 5 clearly

shows that the pattern of atomic displacements is not consistent with a simple compression

(acoustic) wave, where all atoms move coherently towards the vacancies to accomodate the

defect volume. The relaxation field more closely resembles of an optical mode, where anions

and cations exhibit distinct and more complex displacement patterns. This is evidenced more

clearly in Figure 7, where the radial component of the displacement vector is compared

against that of an isostructural metallic compound (Al2Au). In the metallic compound,
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the atomic relaxations are nearly exclusively towards the vacancy cluster (negative radial

displacements), and the effect diminishes nearly monotonically with distance. In the ionic

compound, each shell of anions and cations exhibit both inwards and outward displacements

(with the exception of the first oxygen shell). As with any optical mode, this behaviour may

only arise in compound materials, explaining why it has not been observed in well studied

elemental materials. In addition, Figure 7 shows that the phenomenon is restricted to ionic

compounds, where alternating shells of anions and cations move in opposite directions in

response to displacement of charge (e.g. neighbouring ions).
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FIG. 7: Radial displacement, dr, caused by Schottky clusters in CeO2 and Al2Au.

dr = d · r, where d is the displacement vector and r is the position vector with respect to

the cation vacancy.

The spurious interaction results in a change in shape of relaxation near the defect core,

which cannot be captured by the dipole tensor: the dipole tensor may be obtained from

(a) the (anisotropic) stress tensor and/or strain tensors on the cell, or (b) by convergent

summation of atomic displacements and/or restoring forces on atoms94. In both cases the

dipole tensor may only capture a truncation of the strain field, and not a change in shape

of the core of the field (i.e. the “optical relaxation”), which is illustrated particularly clearly

in Figure 6 by comparison between the 2× 2× 2 and 3× 3× 3 supercells for which there is

a notable change in relaxation displacements for atoms even within 5 �A of the defect. These

12



core atoms are <6 �A away from the defect replica in the 2× 2× 2 supercell.

As further evidence that the source of the self-interaction energy is the inhibition of elastic

relaxation, we have performed calculations where only atoms within a given radius of the

defect centre were allowed to relax while all other atoms were “clamped” at perfect lattice

positions, see Figure 8. Provided that the relaxation radius is less then half the supercell

length, Rrelax = L
2
, this constraint ensures that no strain is transmitted across the PBC.

Thus the relaxation field, although artificially truncated at the given radius, is entirely due

to the defect and not its periodic replicas.
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FIG. 8: Formation energies of Schottky defects in CaF2 as a function of relaxation radius,

whereby all atoms beyond that radius are forcefully kept fixed in their perfect lattice sites.

Lower panels provide an enlarged view of the crossover region. Vertical black line represent

the largest radius that may be accommodated in the supercell without overlap

(Rrelax = L
2
). First and last point in each plot represent a single point calculation and a

complete relaxation, respectively.

When the relaxation radius is less then half the supercell length (i.e. the region of atoms

that are allowed to relax fits entirely within the supercell), SD[110] appears less favourable

than SD[111], consistent with the findings obtained from very large supercell simulations.

Only when the relaxation radius is larger than half the cell length (i.e. atoms within the

sphere are responding to the strain field of the defect and its replicas), does the apparent

13



cross-over in stability manifest in the 96-atom supercell. This is a further confirmation that

the phenomenon is due to the interaction of strain fields across PBC in the smaller supercells.

Constraining atomic positions as a function of distance from the defect allows one to

isolate the relaxation strain component of the defect energy. And by iterating that procedure

over increasing relaxation radii, it is evident that the behaviour is distinctly not monotonic,

with two clear steps at the 4th and and 8th nearest neighbour. This is at odds with the

behaviour expected from a continuum elastic medium.

It is concluded that if inadequately small supercells are used, 96 atoms or less for fluorite

structure oxides, the spurious self interaction is beyond the reach of linear elastic theory, and

thus cannot be corrected for without further calculations. It is not always possible to increase

the simulation size, especially when performing calculations with computationally expensive

methods, such as hybrid functionals, ab-initio molecular dynamics or time-dependent DFT.

Thus, here we propose two computationally practicable methods to ascertain whether finite

size effects are significant in the system of interest:

1. One option is to use a lower level of theory method to perform the convergence test.

In the current work, we have shown that CRG force-field potential was as predictive

as DFT in the analysis of the spurious self-interaction. Thus, if reliable force-field po-

tentials are for the system of interest, these may be used to test supercell convergence.

Similarly, for hybrid calculations, one could use LDA or GGA functionals to test the

supercell size convergence. Note however, that this is a two-stage approach: in the

first instance one must test that within the same supercell size the two methods yield

similar trends. Quantitative agreement is not expected, but any qualitative agree-

ment between the two methods observed in the small simulation size is expected to

be preserved in larger simulations cells (as shown in the current work). Note that this

method cannot be extended to electronic self-interaction, as these are highly sensitive

to the description of the electronic states84.

2. The alternative approach is to use a range-dependent constraint method with Rrelax =

Lmin

2
, as illustrated in Figure 8, to test whether there is qualitative agreement between

the fully relaxed simulations and those where the strain fields were not allowed to

transfer across the PBC. Incidentally, this method also significantly reduces the com-

putational cost of energy minimisation on account of the reduced internal degrees of
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freedom. The size of the discrepancy may be considered as an indicator of the extent

to which strain extends beyond the PBCs.

IV. CONCLUSIONS

Electrostatic self-interactions have long been thought to be the dominant source of finite

size effects in ionic materials. Here we have shown that even in ionic compounds, elastic self-

interactions are non-negligible, causing qualitative and quantitative changes to the energy

and structure of defects. This finite size effect is the source of numerous inaccurate reports

in the ab-initio literature regarding the defect stability of many important functional oxides

including CeO2, ThO2 and UO2. The magnitude of the elastic self-interaciton is such that

it warrants the need for simulations sizes larger than the widely used 96-atoms supercell for

cubic oxide compounds. In addition, we show that the spurious self-interaction cannot be

countered by simple linear elastic theory approaches.

We considered the exemplar cases of charge-neutral Schottky clusters in fluorite-structured

oxides and perform DFT and force-field simulations in supercells of increasing size up to

1500 atoms. Supercells of 96 atoms were not sufficiently large to capture the most stable

neutral Schottky clusters compared to larger cells. This behaviour is observed also for non-

oxide ionic compounds with related structures (prototypical fluorite CaF2, and antifluorite

Be2C), but was not observed in iso-structural metallic compounds. This phenomenon is also

insensitive to the level of theory used (EAM, DFT, DFT+U).

We provide evidence that the finite size effect is not due to electrostatic self-interaction

(accounting for charge-charge, charge-dipole and dipole-dipole interactions), nor electronic

effects (owing to the presence of the self-interaction in force-field calculations with fixed

charges) instead it is caused by spurious interaction of strain fields across PBC. This is

confirmed through the use of range-constrains, where selected atoms were fixed to the per-

fect lattice sites, thereby artificially truncating the strain field before the PBC. In these

simulations the correct order of defect energies was restored. Surprisingly, the spurious self-

interaction energy cannot be accounted for, and therefor corrected with, linear elastic theory.

The failure of linear elastic theory is attributed, through careful analysis of the displacement

fields, to the complex relaxation patterns observed in the ionic compounds, akin to optical

modes.
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Our findings also resolve a long-standing discrepancy between DFT and force-field sim-

ulations regarding the ground state of neutral defect clusters in actinide oxides. This had

typically been attributed to the simplified atomic interactions of the empirical force-field

methods, but we show that good agreement is in fact obtained when comparing across the

same supercell sizes. The fact that the phenomenon is observed at all levels of theory can

be exploited to the practitioners’ advantage, using computationally simpler methods to test

the degree of elastic self-interaction in the system of interest.

Although we have focussed primarily on bound Schottky defects, the findings are likely

relevant to other neutral clusters and their migration pathways, such as {2Y′Zr : V ··
O }
×

and

{2Gd′Ce : V ··
O }
×

in yttria-stabilised-zirconia and gadolinia-doped ceria. Rather than just

being considered a spurious size effect for dilute limit calculations, the elastic effects discussed

here also apply to real materials with high concentrations of Schottky defects, providing an

insight into the interaction between two or more Schottky clusters that come within 10–16�A

of each other. This may be an important factor in the nucleation of voids in nuclear fuels

and SOCF.

The current work should serve as a cautionary tale for future simulations of all ionic sys-

tems, especially those where computational requirements dictate the use of small supercell

sizes. Whilst proving that 96-atom supercells are inadequate for point defect analysis in

fluorite-structured oxides, every solid state system would have different supercell require-

ments. In the current paper we provide two computationally efficient methods to ascertain

whether elastic finite-size effects are significant for the system of interest: 1) comparison

with lower level of theory (as exemplified here using force-field CRG potentials), 2) compar-

ison with range-constrained simulations (where selected atoms have been fixed to the perfect

lattice sites to hamper propagation of strain fields).
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