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Topological phononic states, which facilitate unique acoustic transport around defects and 

disorders, have significantly revolutionized our scientific cognition of acoustic systems. Here, 

by introducing a zone folding mechanism, we realize the topological phase transition in a 

double Dirac cone of the rotatable triangular phononic crystal with C3v symmetry. We then 

investigate the distinct topological edge states on two types of interfaces of our phononic 

insulators. The first one is a zigzag interface wh ich simultaneously possesses a symmetric 

mode and an anti-symmetric mode. Hybridization of the two modes leads to a robust 

pseudospin-dependent one-way propagation. The second one is a linear interface with a 

symmetric mode or an anti-symmetric mode. The type of mode is dependent on the topological 
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phase transition of the phononic insulators. Based on the rotatability of triangular phononic 

crystals, we consider several complicated contours defined by the topological zigzag interfaces. 

Along these contours, the acoustic waves can unimpededly transmit without back-scattering. 

Our research develops a new route for the exploration of the topological phenomena in 

experiments and provides an excellent framework for freely steering the acoustic 

backscattering-immune propagation within topological phononic structures. 

  



I. INTRODUCTION 

The intriguing discovery of a novel state of condensed matter, known as the topological 

order in the quantum spin Hall (QSH) effect system and the topological insulator[1-4], has 

inspired research for analogous states in bosonic systems, such as periodic photonic crystals 

[5-24]. External magnetic fields, which could break the time reversal (TR) symmetry of 

photonic systems, were initially utilized to realize topological orders of photons [6-10]. 

Dynamic modulation of system parameters has been successfully used to emulate effects of 

magnetic fields for desired topological properties [11, 12, 25-29]. Optical bi-anisotropic 

metamaterials, supporting strong spin-orbit interactions analogous to the QSH effects of the 

condensed matter systems, have also been developed [14-16, 30, 31].  

Analogous to photons, phonons can also benefit from topologically robust states. 

Unfortunately, in airborne sound, the traditional spin-orbital interaction mechanism is invalid 

because of the inherent longitudinal nature of the acoustic polarization. Aiming at this issue, 

scientists have conducted abundant explorations. For gyroscopic mechanical systems, the 

phononic helical edge states against defects and disorders have been achieved in 

time-asymmetric gyroscopes emulating “magnetic fields” [32-35]. There are some studies on 

the modulated phononic crystals [61, 62]. For fluid acoustic systems, the topologically 

protected edge modes have been theoretically realized in networks of acoustic cavities with 

circulating airflow [36-40], spatiotemporal modulation [41, 42] or coupled resonators [43-45]. 

However, dynamic instability and inherent noise arising from the moving background are 

detrimental in their engineering applications.  

The phononic honeycomb lattice with C6v symmetry possesses an accident double Dirac 



cone with a four-fold degeneracy [46-51]. When the honeycomb lattice undergoes a symmetry 

inversion, the topological phase transition, inspired by the band inversion near the double Dirac 

cone, leads to a robust pseudospin-dependent one-way edge model [52, 53]. Recently, Dirac 

and Dirac-like cones beyond the honeycomb lattice have been uncovered [45, 54-59]. 

Furthermore, non-circular rods used to control the scattering and the band structure of sound 

have also been investigated [60]. Based on the group theory, the double Dirac cone cannot 

appear in artificial crystal lattices beyond C6v symmetry [52, 63]. Introducing a zone folding 

mechanism, Dirac cones at the K point in the Brillouin zone (BZ) of a honeycomb lattice 

folded to the double Dirac cone at the Γ point [21, 53]. If we can further fold a double Dirac 

dispersion in a phononic crystal beyond the honeycomb lattice and experimentally observe 

the pseudospin-dependent one-way transport, the zone folding mechanism will break through 

the limitation of the point group symmetry to mimic the pseudospin couplings. The phononic 

insulators in triangular lattices possess zigzag and linear interfaces. The distinct topological 

properties on these different interfaces, which have not been exploited, will develop our 

scientific cognition of the QSH effect of sound. Furthermore, the reconfigurability of the 

topological state, obtainable in condensed matter systems, is still absent in phononic systems. 

The well-reconfigurable synthetic acoustic media would offer great flexibility to manipulate 

the topologically protected sound transport.  

II. TUNABLE TOPOLOGICAL PHONONIC INSULATOR 

Focusing on the above issues, we construct a phononic crystal formed with rotatable 

triangular prisms and illustrated in Fig. 1a. The double Dirac cone, by increasing the degrees of 

freedom to twofold states, can efficiently mimic the analogue of the pseudospins coupling and 



the QSH effect in a spin-1 acoustic system [52, 53, 64]. However, according to the point group 

symmetry, the double Dirac cone is nonexistent in our phononic crystal with C3v symmetry [52, 

63]. To breakthrough this limitation, the zone folding mechanism [21, 53] is employed. When 

taking a primitive hexagonal unit cell (marked by the blue line in Fig. 1a), this phononic crystal 

with C3v symmetry carries Dirac dispersions at the K1 points in the BZ (Fig. 1b). When taking 

the larger hexagonal unit cell (marked by the red line in Fig. 1a), a double Dirac dispersion at 

the Γ2 point is formed by folding four branches with Dirac dispersions (Fig. 1c and Note 1 of 

Supplemental Material) [21, 53]. The four-fold degeneracy at the double Dirac cone possesses 

two phononic modes, classed as the symmetric (S) mode and the anti-symmetric (A) mode 

(inserted in Fig. 1c). As Dirac cones are independent of the filling ratio [54], the degeneracy of 

the folded double Dirac cone cannot be lifted by tuning its filling ratio (Fig. S2 of 

Supplemental Material). A viable alternative to lift the degeneracy of this double Dirac cone is 

breaking the mirrored symmetry [63]. The angular dependent frequencies for the four band 

edges at the Γ2 point are illustrated in Fig. S3 of Supplemental Material. Rotating the triangular 

prisms left or right by 30o, the phononic crystal yields the widest bandgap at the original double 

Dirac cone (shown in Fig. S3 of Supplemental Material). The complete bandgap stems from 

the symmetry breaking because of the mismatch of the mirrored symmetries between the lattice 

and triangular prisms. The phononic crystal with a reduced inversion symmetry induces a 

pairwise coupling between the original Dirac bands (inserted in Fig. 1d): the upper symmetric 

(Su) mode and the lower anti-symmetric (Al) mode, as well as the upper anti-symmetric (Au) 

mode and the lower symmetric (Sl) mode. These symmetric and anti-symmetric modes are 

perfectly identical with those in the phononic honeycomb lattice with C6v symmetry [52]. For 



all frequencies in the proximity of the original double Dirac cone, these hybridized eigenmodes 

can efficiently emulate new pseudo-up-spin and pseudo-down-spin [21, 31, 52, 53, 64]. When 

the triangular prisms are rotated from left (or right) with an angle of 30o to right (or left) with an 

angle of 30o, a band inversion takes place (Fig. S3 and Fig. S4 of Supplemental Material). This 

confirms a topological phase transition between triangular prisms with different rotational 

directions and provides a platform to configure the topological interface for robust one-way 

transport.  

a

Unit cell Brillouin zone

1
2

α

b

Fr
en

qu
en

cy
 (H

z)

A mode

S mode

Fr
en

qu
en

cy
 (H

z)

c
S mode

S mode

A mode

A mode

d

Bandgap

Su mode

Sl mode

Au mode

Al mode

Γ1(2)

K1 M1

M2
K2

M1 Γ1 K1 M1

M2 Γ2 K2 M2M2 Γ2 K2 M2  

Figure 1| Schematic of phononic crystal and its band structures. a, Left panel: a geometric arrangement of 

phononic crystal consisted of rotatable triangular prisms with a lattice constant 10mm. The length of the 

triangular prism is 6.8mm. Right panel: BZs of the primitive and larger hexagonal unit cells. b, Band structure 

with a Dirac cone at the K point in the BZ of the primitive unit cell. c, Band structure with a double Dirac cone 

at the Γ point in the BZ of the larger hexagonal unit cell. d, Band structure with a complete bandgap induced by 



rotating triangular prisms 300. Pressure field distributions at the Dirac and double Dirac cones are inserted in b-d. 

Dash lines are symmetric axis. Numerical methods are presented in Method 1 of Supplemental Material. 

 

As shown in Fig. 2a, we consider a triangular phononic lattice. There are two typical 

classes of interfaces across which the topological phases of phononic crystals are opposite. The 

first one is the zigzag interface along the x-direction. The triangular prisms located at the top 

and bottom respectively rotate left and right by 30o (Fig. 2b). Because of the topological phase 

transition, a pair of edge states respectively exhibiting S and A modes emerge within the 

overlapped bulk bandgap of two distinct phononic crystals (Fig. 2b). These topological edge 

modes characterize the topological helical states, analogous to the unidirectional 

spin-polarized one-way propagation in condensed matter systems [21, 31, 52, 53, 64]. 

Therefore, although the mirrored symmetry breaking yields a bandgap in which the acoustic 

propagation is efficiently prevented, the spins of edge states localized at the topological 

interface lead to a pseudospin-dependent one-way propagation. In this case, Gaussian beams 

can effectively transport through the zigzag interface (Fig. S5 of Supplemental Material). 

Furthermore, when triangular prisms locaed at the top and bottom are switched, the same band 

structure and the same propagation phenomenon can be obtained (Fig. S6 of Supplemental 

Material).  

The other type of interface is a linear one along the y-direction (shown in Fig. 2a). When 

the triangular prisms located at the left and right sides of the linear interface respectively rotate 

left and right by 30o, a topological edge state with an S mode emerges (Fig. 2c). However, when 

the triangular prisms located at the left and right sides of the linear interface are switched, a 



distinct topological edge state with an A mode appears (Fig. 2d). Gaussian beams can 

effectively transmit through the linear interface with the S mode, while blocking the case with 

the A mode (Fig. S7 of Supplemental Material). The reason is that the locally symmetric edge 

state in each unit cell, leads to robust propagation, while the locally antisymmetric one in each 

unit cell leads to a deep suppression of the edge mode (see Note 2 of Supplemental Material). 

These findings reveal that the phononic crystals with different interfaces exhibit distinct 

topological edge states, which will greatly enhance our scientific cognition of topological 

insulators and provide an excellent platform for the realization of the distinct propagation 

characteristics of sound in an acoustic system. 
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Figure 2| Topological phononic insulator and its edge band structures. a, A schematic of our topological 

phononic insulator with different interfaces along the x direction and the y direction. b, Left panel: band 



structure of a supercell consisting of 18×2 phononic crystals with a Zigzag interface along the x direction. Right 

panel: pressure field distributions of the supercell at k=0. Edge modes of the blue and red lines are respectively 

symmetric and anti-symmetric about the light blue node, due to the point symmetry of the geometrical structure. 

c, Top panel: band structure of a supercell consisting of 12×2 phononic crystals (the left part turns left and the 

right part turns right) with a linear interface along the y direction. Bottom panel: the pressure field distribution of 

the supercell at k=0. The edge mode is mirror symmetric about the dash line. d, Top panel: band structure of a 

supercell consisting of 12×2 phononic crystals (the left part turns right and the right part turns left) with a linear 

interface along the y direction. Bottom panel: the pressure field distribution of the supercell at k=0. The edge 

mode is anti-symmetric about the dash line. Grey lines are bulk bands. Pale green shaded regions are topological 

bandgaps. Numerical methods are presented in Method 1 of Supplemental Material. 

 

III. PSEUDOSPIN-DEPENDENT EDGE MODE OF TOPOLOGICAL PHONONIC 

INSULATOR 

Here, we utilized a cross-waveguide splitter [30, 52, 65] to measure the pseudospin 

transport of our topological phononic insulator with a very high fidelity. As shown in Fig. 3a, 

the splitter is divided into four sections with four input/output ports, marked as 1, 2, 3 and 4. In 

the top-left and bottom-right sections, triangular prisms are rotated left by 30o. In the top-right 

and bottom-left sections, triangular prisms are rotated right by 30o. The topological interfaces 

are zigzagged. When the acoustic wave propagates from port 1 (or port 3) to port 2 (or port 4) 

by crossing the junction, the triangular prisms rotated left and right are respectively located on 

the left and right sides of the paths. As the pseudospin-dependent state is determined by the 

spatial symmetry, the pseudospin-dependent edge states of the paths with the same spatial 



symmetries are always permitted. In this case, the acoustic wave from port 1 (or port 3) can 

propagate through the junction to port 2 and port 4 (labelled by purple lines). Similarly, the 

structural spatial symmetries of paths from port 2 (or port 4) to port 1 and port 3 are also 

preserved. However, for the path from port 1 to port 3, the rotation directions of the triangular 

prisms located on both sides are counterchanged when crossing the junction. Due to the 

inversion of the structural spatial symmetry, the pseudospin states are also inversed. These 

opposite pseudospin states cannot be excited by each other due to the mismatch of their spin 

configurations, indicating that the acoustic wave cannot propagate from port 1 to port 3. 

Similar results can be obtained for other straight paths (from port 3 to port 1, from port 2 to port 

4 and from port 4 to port 2). Therefore, based on the opposite slope of the dispersion band, the 

individual spin edge state in Fig. 3a, can only support a topological one-way propagation with 

an anticlockwise (purple circular arrows) or clockwise (green circular arrows) direction. This 

conclusion is perfectly consistent with the simulation results illustrated in Fig. 3b-c and the 

experimental measurements presented in Fig. 3e-f. However, this interesting acoustic 

counterpart of the QSH effect cannot emerge in the topological phononic insulators with linear 

interfaces (Fig. 3d and 3g), as their topological edge state only exhibits an S mode or an A mode 

which inherently differ from the zigzag interfaces with both S and A modes. This is an essential 

condition to yield hybridized eigen modes for pseudospin-dependent propagations [21, 52, 53]. 

This topological pseudospin behavior also vanishes in the non-topological structure (Fig. S8 of 

Supplemental Material).  
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Figure 3 | Acoustic pseudospin-dependent edge mode at topological cross-waveguide splitter. a, Photo of our 

topological cross-waveguide splitter. The anticlockwise (clockwise) edge circulating propagation is indicated by 

the purple (green) circular arrows. b, c, Simulated acoustic pressure field for cases with Zigzag interfaces at a 

frequency of 18.42 kHz. d, Simulated acoustic pressure field for the case with linear interfaces at a frequency of 

18.42 kHz. e-g, Experimental transmission spectra for cases b-d. Tij indicates the transmission spectra from port 

i to port j (i, j=1, 2, 3,4). Shadow regions indicate topological bandgaps. Experimental methods and 

measurements are presented in Method 2 of Supplemental Material. 

IV. TOPOLOGICALLY PROTECTED ACOUSTIC PROPAGATION AGAINST 

DEFECTS 



To verify the robust transport property of our topological phononic insulator, two cases 

with different defects were intentionally introduced. The first one is an incomplete 

cross-waveguide splitter with several cavities (rounded by green circles). The other one is a 

cross-waveguide splitter with several disordered triangular prisms which inversely rotate 

(rounded by green circles). Cavities and disorders are not spin-mixing defects, indicating that 

the topological characteristics of our phononic insulator are not broken by these “nonmagnetic” 

impurities [9, 52, 64]. Simulated acoustic pressure fields, illustrated in Figs. 4a-4b, show that 

the acoustic waves from port 1 can effectively detour cavities and disorders, transmitting to the 

ports 2 and 4. Experimental transmission spectra, plotted in Figs. 4c-4d, further verify the 

robustly pseudospin-dependent propagation of sound in the topological cross-waveguide 

splitter with “nonmagnetic” defects. 

 



Figure 4 | Robust one-way transport. a-b, Simulated acoustic pressure field at a frequency of 18.42 kHz in the 

topological phononic insulator with cavities and disorders. c-d, Experimental transmission spectra. T12, T13 and 

T14 indicate the transmission spectra from port 1 to ports 2, 3 and 4. Shadow regions indicate topological 

bandgaps. 

V. RECONFIGURABLE GUIDING OF THE TOPOLOGICAL EDGE MODE 

Triangular prisms in our topological phononic insulator can freely rotate around their 

central axes. By rotating some triangular prisms in the left direction and the other ones in the 

right direction, arbitrarily sharped contours between distinct phononic crystals can be created. 

To confirm this robust reconfigurable transport property, two nodes (A3 and A4) respectively 

located at the upper-right and bottom-left regions are selected. Fig. 5a shows that the acoustic 

wave from the input port 1 effectively passing through the nodes A3 and A4, and finally 

reaches the output port 2. Fig. 5c shows that the acoustic wave from the input port 1 effectively 

passing through the nodes A4 and A3, and finally reaches output port 2. Compared with the 

transmission spectra of ordinary phononic crystals with gapped band structures, the 

transmission spectra measured for the above two configurations of topological phononic 

insulators exhibit a high transmission over the bandgap frequency range (Fig. 5b and 5d). The 

other complicated pathways, including an asteroid pathway and a “HNU”-like pathway, are 

illustrated in Fig. S9 of Supplemental Material. This unparalleled ability to freely steer the 

robust topological propagation along arbitrary pathways opens an excellent avenue to design 

tunable topological acoustic devices.  
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Figure 5 | Reconfigurable guiding of topological edge modes. a, c, Simulated acoustic pressure field along the 

pathway through nodes A3 and A4. c, Simulated acoustic pressure field distribution along the pathway through 

nodes A4 and A3. b, d, Experimental transmission spectra for two pathways. The blue and red curves 

respectively indicate the transmission spectra in topological phononic insulators and ordinary phononic crystals. 

Shadow regions are topological bandgaps. 

VI. CONCLUSION 

In conclusion, our topological platform experimentally verified the distinct topological 

properties related with zigzag and linear interfaces of phononic insulators and realized the 

fascinating phononic pseudospin phenomenon to “nonmagnetic” defects. In addition, the 

robust reconfigurable one-way edge state with controllable contour in our topological 

phononic insulator opens up infinite possibilities for manipulating and steering acoustic waves 

along arbitrary paths to any desired point without backscattering. Note that our reconfigurable 



topological phononic insulator can be easily extended to a broad acoustic spectrum, from 

audible sound to ultrasound, and even up to hypersound, by modulating its geometric 

parameters. More importantly, the intriguing topological phenomenon of our reconfigurable 

phononic insulator induced by a folded double Dirac conical dispersion in the phononic lattice 

with C3v symmetry is a milestone in the design of modern topological phononic devices beyond 

C6v symmetry, and generates an impressive potential for applications in a foreseeable future. 
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