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ABSTRACT 

High-throughput first-principles calculations based on density functional theory 

(DFT) is a powerful tool in data-oriented materials research. The choice of 

approximation to the exchange-correlation functional is crucial as it strongly affects the 

accuracy of DFT calculations. This study compares performance of seven 

approximations based on Perdew-Burke-Ernzerhof (PBE) generalized gradient 

approximation (GGA) with and without Hubbard U and van der Waals corrections, 

which are PBE, PBE+U, PBED3, PBED3+U, PBEsol, and PBEsol+U, and the strongly 

constrained and appropriately normed (SCAN) meta-GGA on the energetics and crystal 

structure of elementary substances and binary oxides. For the latter, only those with 

closed-shell electronic structures are considered, examples of which include Cu2O, 

Ag2O, MgO, ZnO, CdO, SnO, PbO, Al2O3, Ga2O3, In2O3, La2O3, Bi2O3, SiO2, SnO2, 

PbO2, TiO2, ZrO2, HfO2, V2O5, Nb2O5, Ta2O5, MoO3, and WO3. Prototype crystal 

structures are selected from the Inorganic Crystal Structure Database (ICSD), and cation 

substitution is used to make a set of existing and hypothetical oxides. Two indices are 

proposed to quantify the extent of lattice and internal coordinate relaxation during a 

calculation. The former is based on the second invariant and determinant of the 

transformation matrix of basis vectors from before relaxation to after relaxation, and the 

latter is derived from shifts of internal coordinates of atoms in the unit cell. PBED3, 

PBEsol, and SCAN reproduce experimental lattice parameters of elementary substances 

and oxides well with few outliers. Notably, PBEsol and SCAN predict the lattice 

parameters of low dimensional structures comparably well with PBED3, even though 

these functionals do not explicitly treat van der Waals interactions. SCAN gives 

formation enthalpies and Gibbs free energies closest to experimental data, with mean 

errors (MEs) of 0.01 and -0.04 eV, respectively, and root-mean-square errors (RMSEs) 

are both 0.07 eV. In contrast, all GGAs including those with Hubbard U and van der 

Waals corrections give 0.1 to 0.2 eV MEs and at least 0.11 eV RMSEs. Phonon 

contributions of solid phases to the formation enthalpies and Gibbs free energies are 

estimated to be small at less than ~0.1 eV/atom within the quasiharmonic approximation. 

The same crystal structure appears as the lowest energy polymorph with different 

approximations in most of the investigated binary oxides. However, there are some 
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systems where the choice of approximation significantly affects energy differences 

between polymorphs, or even the order of stability between phases. SCAN is the most 

reasonable regarding relative energies between polymorphs. The calculated transition 

pressure between polymorphs of ZnO and SnO2 is closest to experimental values when 

PBED3, PBEsol (also PBED3+U and PBEsol+U for ZnO), and SCAN are employed. In 

summary, SCAN appears to be the best choice among the seven approximations based 

on the analysis of the energetics and crystal structure of binary oxides, while PBEsol is 

the best among the GGAs considered and shows a comparably good performance with 

SCAN for many cases. The use of PBEsol+U alongside PBEsol is also a reasonable 

choice, given that U corrections are required for several materials to qualitatively 

reproduce their electronic structures. 

 

 

I. INTRODUCTION 

Metal oxides are an important class of materials because of its abundance and 

diversity of functionalities. Their applications include, but not limited to, capacitors, 

thermistors, varistors, magnets, electronic devices, phosphors, catalysts, and 

photocatalysts [1-10]. A fair amount of experimental and theoretical research has been 

conducted on metal oxides from both fundamental and technological points of view. As 

a result, crystal structures and fundamental properties are now known for many oxides. 

For instance, there are more than 70,000 entries of metal oxides in the Inorganic Crystal 

Structure Database (ICSD), where there are 40,000 distinct oxides with different 

stoichiometries and space groups [11].  

Data-oriented approaches are rapidly growing in recent years and have been 

applied to materials research. In particular, high-throughput first-principles calculations 

based on density functional theory (DFT) [12,13] are powerful when generating large 

data for both known and hypothetical materials [14-18]. With the aid of methods for 

high-throughput computations [17,19-25], such data have been used in many studies for 

understanding the tendency of physical and chemical properties and exploring novel 

materials [26-43], some of which effectively combine machine learning techniques 

[33-36]. High-throughput first-principles calculations have also been used for studying 
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metal oxide systems, for instance to explore transparent conducting oxides [37,38], 

photocatalysts [39-41], and high-κ dielectrics [42]. 

DFT in conjunction with the Kohn-Sham scheme [12,13] fundamentally allows 

us to quantify the total energies of many-electron systems from the charge density only. 

However, since the exact functional form is not known, the choice of approximation to 

the exchange correlation remains an important issue [44]. The local density 

approximation (LDA) [13] and the generalized gradient approximation (GGA) [45] are 

commonly used approximations. It is known that functionals within the LDA and GGA 

cannot give accurate total energies simultaneously for diverse systems with different 

crystal and electronic structures, and tend to underestimate and overestimate the lattice 

constants, respectively. These shortcomings affect the physical quantities such as the 

band structure, vibrational frequencies, ionization potential, defect formation properties, 

and so forth. Therefore, many variants of the GGA and beyond, such as meta-GGAs 

[44,46-48], and those with additional correction terms for describing on-site Coulomb 

[49,50] and van der Waals interactions [51-54] have been designed so far to improve the 

accuracy.  

Approximations that include non-local exchange, such as hybrid functionals 

[55-59] and the screened exchange [60], have been reported to perform better in the 

prediction of structural and electronic properties for a variety of semiconductors and 

insulators [61-67]. In addition, approaches based on many-body perturbation theory, as 

well as explicit many-body calculations, can yield even more accurate results [68-71]. 

However, such calculations are computationally demanding and so ill-suited for 

high-throughput studies. In addition, one-electron states from the LDA and GGA often 

serve as inputs in not only these many-body methods but also non-self-consistent hybrid 

functional approaches for accelerating calculations [72,73]. There exist a number of 

recent studies comparing the performance of various GGA and meta-GGA functionals 

[74-77], but we are not aware of a study that systematically investigates the differences 

in relative energy between polymorphs of the same stoichiometry. 

In this article we investigate how the use of different approximations to the 

exchange-correlation functional affects the lattice parameters of elementary substances 

and binary oxides as well as the relative energy between different polymorphs of binary 
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oxides. We focus on binary oxides with formally closed-shell electronic structures. 

Although studies including systems with partially occupied d states are unarguably 

important, they are in a different class of materials from the viewpoint of electronic and 

magnetic structure, and are very likely to require different treatment compared to the 

closed-shell systems. We consider the Perdew-Burke-Ernzerhof (PBE) functional [78], 

which is currently the most popular GGA functional, and the PBEsol functional [79] 

that is a modification of the PBE functional tuned for solids. For low dimensional (LD) 

semiconductors and/or insulators, it is well known that the van der Waals interactions 

play a crucial role for predicting the lattice parameters, for instance, interlayer distances 

in layered structures. Recently, Grimme et al. designed a procedure to make dispersion 

corrections to standard DFT functionals (DFT-D3), which is based only on relative 

atomic positions, and tested their approach on interactions between molecules and/or 

complexes [53]. We therefore consider their D3 correction to PBE (PBED3) and 

evaluate its performance on periodic oxide crystals. In addition, these GGA functionals 

with Hubbard U correction [49,50], which are denoted as PBE+U, PBED3+U, and 

PBEsol+U, are employed to improve the description of localized d and f states. The 

need for such corrections has been reported for not only partially filled states but also 

formally filled and empty states [49,50,80-83]. The performance of the recently 

proposed strongly constrained and appropriately normed (SCAN) meta-GGA [48] is 

also investigated. Differences in crystal structure, formation energy, and phase transition 

pressure between theory and experiment are discussed, together with a procedure to 

quantitatively express the amount of lattice and internal coordinate deformation.   

 

II. METHODOLOGY 

A. First-principles calculations 

First-principles calculations were conducted using the projector 

augmented-wave method [84] and the approximations to the exchange-correlation 

interactions including PBE [78], PBED3 [53], and PBEsol [79], and the SCAN 

meta-GGA [48] as implemented in the VASP code [85,86]. The effect of adding the 

Hubbard U was additionally considered on the basis of Dudarev’s formulation [50]. The 

effective U value, U-J , which is hereafter denoted as Ueff, was set at 3 eV for the 
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valence d states of Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Ru, Rh, Pd, La, Hf, Ta, W, Re, Os, Ir, 

Pt and Au, and 5 eV for the valence d states of Fe, Co, Ni, Cu, Zn, Ga, and Ag. In 

addition, Ueff of 5 eV was applied on the 4f states of Ce. These Ueff values are mostly the 

same as those used to obtain fitted elemental-phase reference energies (FERE) by 

Stevanović et al. [87]; Ueff for Fe, Co, and Ni were changed to 5 eV as self-consistent 

Ueff derivations give Ueff values closer to 5 eV rather than 3 eV [88,89]. The +U 

corrections were applied to oxides of group 4, 5, and 6 elements with d0 formal 

electronic configurations because the corrections would be necessary when treating their 

defects, where electrons locally enter the d orbitals, or when comparing results with 

metal oxides having other oxidation states. Non-zero Ueff values were also employed for 

Zn and Ga because correction to the semicore d-states may become necessary to avoid 

excessive hybridization with oxygen 2p orbitals [81].  

Seven kinds of approximations in total, which are PBE, PBE+U, PBED3, 

PBED3+U, PBEsol, PBEsol+U, and SCAN, are considered in the present study. When 

comparing results with and without +U over a same set of systems, we may include 

results with Ueff=0, i.e. those without +U, in the set of +U results. This treatment is 

necessary, for instance, to compare means of differences between calculated and 

experimental formation enthalpy over the same set of systems. In such cases, the 

approximation is denoted using (+U) in brackets, for example as PBE(+U). A plane 

wave basis set with an energy cutoff of 550 eV was used. Even k-point meshes were 

used in geometry optimization, which were determined on the basis of the convergence 

of total energies: the criterion of the total energy change was set at 0.005 meV per atom 

per the number of incremental k points. 

Experimentally reported structures of binary oxides investigated in this study 

were taken from the ICSD [11], and those listed in Table I were used as “prototypes”, 

which are each a representative of a given crystal structure. The cation of the prototype 

was substituted with an isovalent cation shown in Table II to form a set of known and 

hypothetical oxide structures. However, not all crystal structures reported in the ICSD 

were selected as prototypes. Structures containing sites with partial occupancies were 

not considered. Other reasons for not considering include no establishment of the crystal 

structure (example: low temperature tridymite), excessively large unit cells (example: 



7 
 

ICSD coll code 86279, Si96O192 in the Zeolite-ZSM-5-frame structure type; the largest 

primitive cell in this study contains 40 atoms), and no existence of compounds that are 

computationally metastable by less than 0.2 eV/atom in all approximations (example: 

ICSD coll code 51176, Nb2O5 in the Nb2O5 (HP) structure type). Lattice parameters and 

internal coordinates were relaxed such that stresses and atomic forces are less than 0.2 

GPa and 0.01 eV/Å (0.001 GPa and 0.0003 eV/Å for LD structures as defined in 

Section IIIA). No symmetry breaking was allowed during relaxation, but relaxation to a 

supergroup of the original space group type is possible via geometry optimization. 

The formation enthalpy and Gibbs free energy were assessed via phonon 

calculations and thermodynamic function evaluation within the quasiharmonic 

approximation. The finite displacement approach as implemented in the Phonopy code 

[90] was used with the PBEsol functional and the VASP code. The pressure was set to 0 

GPa in the calculations. The Gibbs free energy (G) at 298 K and 0 GPa was evaluated 

via minimization of the Helmholtz free energy with respect to the volume. The enthalpy 

(H) was obtained by adding temperature times entropy to the Gibbs free energy. 

Experimental data at 298.15 K and 0.1 GPa was employed instead of calculated values 

for the O2 gas phase when obtaining the formation enthalpy and Gibbs free energies of 

oxides: zero point energy EZPE = 0.05 eV/atom, H-E0 = 0.09 eV/atom, and G-E0 = -0.27 

eV/atom [91], where E0 is the total energy excluding vibrational contributions at 0 K. 

  

B. Detection of significant relaxation 

Significant spontaneous relaxation can happen during a calculation, especially 

when the initial structure is highly unstable. Large changes in the crystal structure can 

happen on the lattice, internal coordinates, or both. 

Figure 1 shows relaxation of Li2O in the rhombohedral 102 Anti-CdCl2(3R) 

prototype with PBE. There is not much change in internal coordinates, but the c/a ratio 

of the conventional cell decreases significantly from 4.46 to 2.50. The resulting 

structure is the 103 Anti-Fluorite-CaF2 prototype; 102a , 102b , and 102c  basis vectors 

of the conventional cell of the 102 Anti-CdCl2(3R) prototype are related to the 103a , 
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103b , and 103c  basis vectors of the conventional cell of the 103 Anti-Fluorite-CaF2 

prototype by 
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On the other hand, Fig. 2 shows relaxation of CaO in the hexagonal 206 HgS prototype 

with PBE. The change of c/a ratio is very small from 2.42 to 2.45, but the internal 

coordinates undergo a large change. The coordination of atoms increases from two-fold 

to six-fold and cations and anions position on top on each other along the c-axis upon 

relaxation. The final structure is the 201 NaCl prototype, where the 206a , 206b , and 

206c  basis vectors of the conventional cell of the 206 HgS prototype is related to the 

201a , 201b , and 201c  basis vectors of the conventional cell of the 201 NaCl prototype 

by 
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In another example, Fig. 3 shows relaxation of hexagonal 303 Al2O3 in the 303 La2O3 

prototype with PBE. The c/a ratio changes from 1.56 to 2.54 and there is a large change 

in internal coordinates as a gap appears between Al2O3 layers.  

Based on the above observations, there is a serious need to decide whether the 

crystal structure after relaxation can be judged to still belong to the original prototype. 

In particular, it does not make sense to call a structure with the original prototype name 

when the structure has relaxed to a different prototype. This issue raises the problem of 

designing a robust and automatic procedure without relying on visual inspection to 

quantitatively describe the extent of relaxation. Hydrostatic, or isotropic, expansion and 

contraction of the unit cell is not considered as a concern because substituting atoms 

will naturally change the bond length and change the cell volume. However, excessive 

deviatoric deformation, such as large c/a ratio change in hexagonal or tetragonal crystal 
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families, and/or significant change in internal coordinates must be regarded as a 

deviation from the original prototype.  

We hereby propose a method that quantitatively indicates the extent of 

relaxation using a limited number of indices. In essence, the deviatoric deformation of 

the lattice is evaluated based on invariants of the transformation matrix linking lattice 

vectors before and after relaxation, and the average displacement of internal coordinates 

is used to evaluate relaxation of atoms within the lattice.  

The basis vectors of the primitive cell before and after relaxation are defined as 

( )cba ,,  and ( )cba ′′′ ,, , respectively, and are not retaken during relaxation. In other 

words, after an infinitesimal relaxation of the lattice, the basis vectors infinitesimally 

change without a discrete jump. We define the transformation matrix M  as 

( ) ( )Mcbacba ,,,, =′′′ , which can be written as and separated into two parts as 

( ){ } MMM ′= 31det , where M ′  can be interpreted as a volume-conserving 

transformation. If a supercell related by the matrix P  to ( )cba ,,  and ( )cba ′′′ ,,  are 

used, or in other words, if ( )Pcba ,,  and ( )Pcba ′′′ ,,  are used instead of ( )cba ,,  and 

( )cba ′′′ ,, , then we find ( ) ( )PMP cbacba ,,,, =′′′ or 

( ) ( ) ( ){ } ( ) 1311 ,,det,,,, -- PMPMPMP ′==′′′ cbacbacba . Three quantities related to M ′

and 1-PMP ′ , which are the invariants of M , are the same for any P . These three 

values are used to express the extent of deformation of the lattice. The first and third 

order invariants are the trace and determinant of M ′ , respectively, and the determinant 

is unity by definition. The second order determinant is most interesting. The von Mises 

criterion, also known as the maximum distortion strain energy criterion, uses the 

second-order invariant of the deviatoric stress tensor ijσ ′  and states that a material 

would fail if the von Mises stress, ( ) jiijσσ ′′23 , exceeds the yield stress. In a similar 

spirit, we use an index based on the second order invariant of M ′ ,  
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32 −′′= jiijMMLR , 

as a measure of lattice deformation. LR2 becomes 0 when there is no change in the 

lattice vectors, which is also the case in transformation of cubic lattices without 

symmetry breaking because M ′  is the identity matrix by virtue of symmetry. A large 

LR2 represents a large deviatoric deformation of the lattice. One can also use indices 

based on the trace, ( ) 331 −′=−′= iiMMtrLR , or the determinant of M , 

( ) 1det3 −= MLR , which are both defined to be zero in case of no transformation. 

However, LR1 could not appropriately capture the change in interaxial angles as only the 

diagonal elements of M ′  are sampled, whereas LR2 depends on all nine elements. 

3LR  is useful when there is interest in volume change of the unit cell, but is irrelevant 

in the current study. 

No collective drift of atoms is assumed when discussing the relaxation of 

internal coordinates. This requirement is typically imposed in most calculation schemes 

as otherwise the average force on atoms would be never non-zero and atoms would 

continue to collectively drift along a certain direction. Comparison of displacement of 

internal coordinates in Cartesian coordinates before and after change in lattice vectors is 

meaningless. Denoting the fractional coordinates of atom i before relaxation as 

( )T,, iii zyx  and after relaxation as ( )T,, iii zyx ′′′ , we define the coordinate relaxation 

index as  

 

( )( ) ∑∑ −′−′−′′′′=
ii

iiiiii zzyyxxCR 1,,,,
2Tcba . 

 

In words, we convert displacements in fractional coordinates to actual distances in 

Cartesian coordinates using the relaxed basis vectors, and then we find the root mean 

square of the displacements. CR becomes 0 when there are no degrees of freedom in 
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internal coordinates and there is no symmetry breaking in the interactions. The 

dimension of CR in this definition is length, but can be normalized using the average 

volume per atom and made dimensionless as  

( )( )

( )∑

∑
′′′

−′−′−′′′′
=′

i

i
iiiiii zzyyxx

RC
1,,det

,,,,

3

2T

cba

cba
, 

where the sum of i is over all atoms in a unit cell. We stress that the change in internal 

coordinates must be referred to the relaxed lattice, not the original lattice. Taking the 

original lattice as the reference is attractive when discussing the difference between 

experimental and computed structures of the same crystal, but is not suitable when 

comparing results of crystals with different constituent elements. Assume we have 

experimental information on bixbyite (C-type rare earth) structure La2O3 with lattice 

parameter 11.4 Å, and use this as an initial structure to investigate the as-yet-unreported 

bixbyite structure Al2O3. The calculated lattice parameter is about 8.9 Å, which has 

more than 20% difference from La2O3. The relaxation in internal coordinates of Al2O3 

from those in La2O3 should definitely be scaled to the lattice parameter of Al2O3.  

A “significant relaxation” in this study is defined as a relaxation exceeding at 

least one of 2.02 >LR  and 25.0>CR Å, where the original prototype is regarded as 

the crystal structure before relaxation. It is impossible to provide a universally valid 

threshold, but these values appear to be reasonable in the scope of our work. We do not 

blindly consider that the original prototype is the “correct” crystal and a large LR2 or CR 

in one approximation over another is a failure of an approximation. The same crystal 

structure (lattice parameters and internal coordinates) is used as the initial structure for a 

given prototype regardless of the cation species. Non-zero LR2 is expected for non-cubic 

lattices and non-zero CR if there is at least one unfixed internal coordinate. We simply 

want to detect and remove structures that underwent excessive relaxation because we 

are interested in discussing the lattice parameters and formation energy for a given 

prototype. Significant relaxation cases, including 102 anti-CdCl2(3R) prototype to 103 

anti-Fluorite-CaF2 prototype in Li2O, Na2O, and K2O, and from 205 HgO, 206 HgS, 207 

Massicot prototypes to 201 NaCl prototype in MgO, CaO, SrO, BaO, and CdO, to name 
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a few, were successfully identified and removed from further analysis. 

 

III. Results and discussion 

A. Lattice parameters 

The errors in lattice parameters between calculations and experiments are 

investigated. Computational lattice parameters are evaluated at 0 K. The experimental 

lattice parameters are obtained from the ICSD according to the following preference 

criteria: (1) high pressure data are avoided (>1 MPa) and data with pressure information 

close to 0.1 MPa are preferred over data with no information, (2) high temperature data 

are avoided (>1000 K) and data with temperature information close to 293~300K are 

preferred over data with no information, and (3) data with small R-value are preferred 

over data with large R-value or no information. 

Lattice parameters are first investigated for elementary substances and then for 

binary oxides. In addition to the mean error (ME), the mean absolute error (MAE) and 

root mean square error (RMSE) are also evaluated. Outlier values are of interest because 

an approximation with somewhat large ME with less chance of an extremely large error 

could be more preferable than another with a smaller ME but gives widely off values in 

occasional cases. The largest positive and negative errors are also assessed for this 

reason. The dimensionality of the crystal is expected to strongly affect errors in the 

lattice parameters. LD structures are defined to have relatively large spacing between 

atoms along one or more axis, in contrast to three-dimensional (3D) structures. 

Examples of the LD structures include molecular crystals (examples are crystalline I 

that consists of I2 dimers and arsenolite As2O3), one-dimensional chain-like structures 

(examples are crystalline Te and montroydite HgO), and layered structures (examples 

are graphite C and litharge PbO). Results are tabulated for lattice parameters of 3D 

structures (a, b, and c combined), and lattice parameters of LD structures along spacing 

(LD-s, short for LD-spacing) and along no spacing (LD-nos, short for LD-no spacing).  

 

 

1. Elementary substances 

The coll code and structure type as defined in the ICSD, space group type, and 
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lattice parameters of elementary substances are given in Supplementary Table I. 

Calculation results for individual elementary substances for each approximation are 

given in Supplementary Tables II-VIII. The investigated elementary substances are one 

representative each for all elements other than noble gases, lanthanides (except La and 

Ce), Po and heavier elements, and elements that are gaseous at room temperature (H, N, 

O, F, Cl). Diamond and graphite allotropes are evaluated for C as an exception. LD 

structures are the following: As, Bi, and Sb (As structure type according to the ICSD, 

spacing along c), Br and I (I2, along a, b, and c), graphite C (graphite(2H), along c), P 

(P(black), spacing along b), S (S8(Fddd), along a, b, and c), Se (Se(beta), along a, b, and 

c), and Te (Se(gamma), along a and b). There are 51 3D elementary substances and 153 

lattice parameters in total. In addition, there are 10 LD elementary substances, where 

U=0 in all cases, with 19 LD-s and 11 LD-ns lattice parameters, respectively. As a result, 

means are taken over 153, 19, and 11 lattice parameters for 3D, LD-s, and LD-nos, 

respectively. Magnetization is considered in Cr (antiferromagnetic), Co, Fe, Mn, and Ni 

(each ferromagnetic).  

Table III compares errors between approximations for elementary substances. 

The ME and MAE results show that PBE is the closest to experimental values for 3D 

structures. However, this does not immediately suggest that PBE is the best 

approximation. The RMSE is smallest in PBED3 and PBEsol at 2.1% and 2.2%, 

respectively, and the value for PBE of 3.2% is about 1% larger. The RMSE of SCAN, 

which is 2.7%, is better than PBE but worse than PBEsol, Furthermore, the LD-s ME, 

MAE, and RMSE in PBE are much larger than the other approximations, which 

indicates that PBE does not describe LD structures well. This is an expected result for 

PBE that neglects van der Waals interactions. On the other hand, PBEsol and SCAN 

performs surprisingly well despite the fact that, unlike PBED3, it does not explicitly 

model van der Waals interactions as in PBE. Adding +U corrections consistently worsen 

MAE and RMSE, hence adding +U should be avoided when trying to reproduce the 

lattice parameters. 

Table IV gives the largest positive and negative errors in each approximation 

for elementary substances. The PBE results are discussed first (Supplementary Table II). 

The eye-catching absolute error is the huge +31.3% in PBE and PBE(+U), which is the 
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c lattice parameter of Hg (Ueff=0). The error in lattice parameter a=b is moderate at 

3.8 %. The experimental structure of Hg is a rhombohedral cell where the face-centered 

cubic (fcc) structure is compressed in the [111] direction. However, in PBE, the lattice 

gradually expands along the c-axis upon relaxation until the fcc structure is attained. 

Other PBE lattice parameters of 3D structures where the absolute error is more than 5% 

compared to the experimental value are: c of Cd (5.5%, hexagonal close-packed (hcp) 

structure), a=b=c of Ce (-8.3%, fcc structure), c of In (8.6%, tetragonal In structure), 

and c of Zn (5.1%, hcp structure). On the other hand, the largest absolute error in PBE 

and PBE(+U) in a LD structure is 27.8%, which is the a lattice parameter of Br (Ueff=0). 

The error in lattice parameter a of isostructural I is also similarly large at 26.8%. Br and 

I have the same structure type (I2), which is a molecular crystal composed of dimers. 

The error in the lattice parameter c of graphite is as large as 19.3%. Other PBE lattice 

parameters of LD structures (Ueff=0 for all systems) where the error is more than 5% 

compared to the experimental values are (all are along directions with spacing): b of Br 

(-8.2%), b of P (7.9%), a and b of S (19.5% and 18.3%, respectively), and b and c of Se 

(22.6% and 5.5%, respectively). Errors exceeding 5% or more in PBE(+U) lattice 

parameters (Supplementary Table III) of 3D structures appear in c of Cd (Ueff=0), a=b=c 

of Cr (11.1%, body-centered cubic (bcc) structure), c of Hg (U=0), c of In (Ueff=0), 

a=b=c of Mn (15.2%, Mn(alpha)-Mn(cI58) structure), and c of Zn (-9.9%, hcp 

structure). Comparing PBE and PBE+U, the Ce lattice parameter error is reduced from 

-8.3% to -4.5%, but the absolute errors of Mn, and Zn have increased significantly. In 

contrast, PBED3 lattice parameters (Supplementary Table IV) with absolute error 

exceeding 5% are very limited: a=b=c of Ce (-10.8%), a=b=c of Li (-5.0%, bcc 

structure), and b of Br (-10.7%). However, adding U (Supplementary Table V) increases 

the lattice parameters of 3D crystals with absolute error exceeding 5% to a=b=c of Ce 

(-7.8%), a=b=c of Cr (13.4%), a=b=c of Li (Ueff=0), a=b=c of Mn (12.7%), and c of Zn 

(-8.3%). Again, we see worsening in outlier values by addition of Hubbard U. On the 

other hand, the number of PBEsol lattice parameters (Supplementary Table VI) with 

absolute error exceeding 5% increases from PBED3 to: c of Cr (-12.3%), a=b=c of Ce 

(-11.1%), a=b=c of Mn (-5.3%), a and b of Br (6.5% and -13.5%, respectively), and b of 

I (-7.0%). Moreover, adding U (Supplementary Table VII) increases the number of such 
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lattice parameters of 3D crystals to a=b=c of Ce (-8.2%), c of Co (9.9%), a=b=c of Cr 

(7.7%), a=b=c of Mn (12.9%), and c of Zn (-8.6%). SCAN lattice parameters with 

absolute errors more than 5% are a=b=c of Ce (-10.2%), a=b of Hg (14.7%), c of Hg 

(-12.6%), a=b=c of Mn (-5.3%), b of Br (-9.4%), and a of I (6.7%). Looking at all seven 

approximations, some elementary substances frequently show up with relatively large 

absolute errors. Ce and Br typically have large absolute lattice parameter errors (the 

error of Ce in PBE+U is -4.5%), and the absolute error in at least one lattice parameter 

exceeds 7% in all approximations with Hubbard U in Cr (a=b=c), Mn (a=b=c), and Zn 

(c). The sign of the error changes from negative to positive by adding U in Cr and Mn 

for all approximations, thus tuning the value of Ueff may lead to a better reproduction of 

the lattice parameter in these two elementary substances.  

In summary, although PBE shows the smallest ME and MAE in 3D structures, 

it does not perform well for LD structures, as expected. The MAE and RMSE for LD 

structures are small in PBED3, PBEsol, and SCAN. PBED3 or PBEsol, both without U, 

reproduces experimental lattice parameters well with fewer outliers having absolute 

error over 5%. The performance of PBEsol and SCAN is notable, given that these 

functionals do not include explicit van der Waals corrections.  

 

2. Binary oxides 

Table V compares errors between approximations for binary oxides with 

respect to experimental lattice parameters. There are 64 3D oxides and 192 lattice 

parameters total as well as 16 LD oxides with 25 LD-s and 23 LD-ns lattice parameters, 

respectively. Magnetization is not considered. Experimental data is given in 

Supplementary Tables IX and X and calculation results for individual oxides for each 

approximation are given in Supplementary Tables XI-XXIV. In contrast to results for 

elementary substances in Table III, PBED3 and PBEsol with and without Hubbard U as 

well as SCAN give smaller ME, MAE, and RMSE than PBE with and without U. 

Adding Hubbard U tends to increase the MAE and RMSE in all approximations. 

Therefore, PBED3, PBEsol, and SCAN appear to be reasonable choices simply on the 

basis of this table. 

Table VI shows the largest positive and negative error in lattice parameter for 
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binary oxides. For PBE, the maximum absolute error for 3D crystals (Supplementary 

Table XI) is c of B2O3 in the 305 B2O3 prototype (5.8%), and the largest in LD crystals 

(Supplementary Table XII) is c of Cs2O in the 102 Anti-CdCl2(3R) prototype (18.3%, 

with spacing). There are more cases of maximum absolute error exceeding 10%, which 

are all found along directions with spacing: c of V2O5 in the 502 V2O5(P21/m) prototype 

(13.1%), c of PbO in the 208 Litharge prototype, b of CrO3 in the 601 CrO3 prototype 

(11.8%), and a of MoO3 in the 602 MoO3 prototype (16.8%). Adding Hubbard U 

(Supplementary Tables XIII and XIV) does not result in a significant change in error in 

the crystals mentioned above. However, errors the lattice parameters of Ag2O in the 101 

Anti-CdI2 prototype (LD, spacing along c) significantly worsens to a=b=11.1% and 

c=-8.9%. The absolute errors of other lattice parameters do not exceed 10%. In contrast, 

the largest error in PBED3 (Supplementary Tables XV and XVI) and PBED3(+U) 

(Supplementary Tables XVII and XVIII) is c of Cs2O in the 102 Anti-CdCl2(3R) 

prototype (5.6%, LD, direction with spacing, Ueff=0), followed by c of Bi2O3 in the 303 

La2O3 prototype (-5.5% , 3D, U=0). These are the only lattice parameters where the 

absolute error exceeds 5% in PBED3; a=b of Ag2O in the 101 Anti-CdI2 prototype 

additionally becomes 5.0% in PBED3+U. On the other hand, the largest error in PBEsol 

(Supplementary Tables XIX and XX) is again c of Cs2O in the 102 Anti-CdCl2(3R) 

prototype (9.0%, LD, direction with spacing, Ueff=0), followed by a of MoO3 in the 602 

MoO3 prototype (7.1%, LD, direction with spacing.) and c of Bi2O3 in the 303 La2O3 

prototype (-6.3% , 3D, Ueff=0). Adding +U (Supplementary Tables XXI and XXII) 

increases the error of a of MoO3 in the 602 prototype to 7.8% and the error of c of Ag2O 

in the 101 Anti-CdI2 prototype becomes to -5.2% (LD, direction with spacing). The 

absolute value of no other error exceeds 5% in PBEsol and PBEsol(+U). Lastly, only 

two lattice parameters have an absolute error larger than 5% in SCAN (Supplementary 

Tables XXIII and XXIV), which are c of Bi2O3 in the 303 La2O3 prototype (-6.0%) and 

c of Cs2O in the 102 Anti-CdCl2(3R) prototype (5.2%). These two lattice parameters are 

exactly those where the absolute error exceeded 5% in PBED3.  

This overview of systems with large absolute errors (outliers) shows that, as in 

the case of elementary substances, specific lattice parameters of specific systems tend to 

give large errors and that PBED3 and SCAN tend to give slightly lower absolute errors 
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in outlier crystals compared to PBEsol. In summary, PBED3 and SCAN appear to be the 

best approximations when describing lattice parameters of binary oxides, while PBEsol 

performs reasonably well even for LD structures, as in the case of elementary 

substances.  

 

B. Extent of relaxation from the experimental structure 

Indices of relaxation LR2, CR, and CR’, which are defined in IIB, are obtained 

for binary oxides listed in Supplementary Tables IX and X and are listed in 

Supplementary Tables XXV-XXVII. The indices are zero by virtue of symmetry in 

some systems, namely prototypes 103 Anti-Fluorite-CaF2, 104 CuO2, 201 NaCl, 411 

Fluorite-CaF2, and 607 ReO3, so these are not considered here. In addition, LR2 is zero 

in cubic 301 Bixbyite-Mn2O3 and 307 As2O3 (cF80) prototypes, which are excluded 

from subsequent mean derivations. Table VII summarizes the means of LR2, CR, and 

CR’ over 3D and LD structures in the seven approximations. The mean LR2 is 0.000 for 

all approximations in 3D systems, which show that the lattice deformation during 

relaxation is small. The ME of lattice parameters in 3D structures was 1.3% and 1.4% in 

PBE and PBE(+U), respectively, and between -0.2% and 0.4% in the other 

approximations (Table V). Therefore, the deformation of lattice parameters of 3D 

structures during relaxation is almost isotropic in all approximations, although the 

amount in PBE and PBE+U is much larger than the other approximations. On the other 

hand, the mean LR2 of LD systems is 0.010 and 0.014 in PBE and PBE(+U), 

respectively, which is an order of magnitude larger than the other approximations. This 

result is consistent with the anisotropic relaxation in LD systems for PBE and PBE(+U) 

that is shown in Table V. The means of CR and CR’ shows a consistent trend to decrease 

in the order of PBE and PBE(+U), PBEsol and PBEsol(+U), PBED3 and PBED3 (+U), 

and SCAN. Therefore, SCAN best reproduces the experimental internal coordinates. 

 

C. Formation enthalpy and Gibbs free energy 

The relation between experimental formation enthalpy ΔHf(exp), or Gibbs free 

energy ΔGf(exp) at 298 K versus calculated formation enthalpy ΔHf(calc) or Gibbs free 

energy ΔGf(calc) is considered in this section. Firstly, the vibrational contributions to the 
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formation enthalpy and Gibbs free energy are discussed. The vibrational contribution to 

the enthalpy with respect to the formation energy at 0K excluding vibrational effects, 

ΔHf
vib, and the corresponding value for Gibbs free energy, ΔGf

vib, for selected systems 

are listed in Table VIII. The change in the Gibbs free energy when the vibrational 

contribution is accounted for in the reference O2 gas only, ΔGf
vib,O, is also shown. The 

vibrational contribution to the formation enthalpy is very small overall, and the largest 

contribution is 0.06 eV/atom in BeO. This contribution comes mainly from the zero 

point energy of BeO (0.11 eV/atom). The effect of vibrational contribution other than 

zero point energy is very small in BeO; the difference between Gibbs free energies at 

0K and 300K is only 0.01 eV/atom. On the other hand, the contribution is larger in 

systems with weaker bonds. The largest difference between Gibbs free energies at 0K 

and 300K among the systems shown in Table VIII is PbO at 0.05 eV/atom.  

There is a systematic, sizable contribution of 0.13 to 0.22 eV to the formation 

Gibbs free energy. Most of the contribution comes from O2 gas since the absolute value 

of ΔGf
vib-ΔGf

vib,O is typically less than 0.05 eV, although it is 0.09 eV/atom in BeO. In 

summary, the vibrational contribution to the formation enthalpy and the vibrational 

contribution other than O2 to the formation Gibbs free energy is expected to be less than 

0.1 eV/atom. 

Next we compare ΔHf(calc) and ΔGf(calc) against ΔHf(exp) and ΔGf(exp). Based on 

the aforementioned results for selected oxides, vibrational contributions are neglected 

here except for the contribution from O2 when calculating ΔGf(calc). The experimental 

data is obtained from the NIST-JANAF Thermochemical Tables (4th edition) [91], 

CODATA Key Values for Thermodynamics [92], and Thermochemical Data of 

Elements and Compounds [93]. On the computational side, we use the low temperature 

polymorph of the cation elementary substance and the O2 gas as reference states. The 

cation reference state is shown in Supplementary Table I. ΔHf(calc) is estimated by using 

the 0 K, 0 GPa total energy of the electron system for the cation elementary substance, 

its oxide, and O2 molecules. On the other hand, ΔGf(calc) is obtained with respect to the 0 

K, 0 GPa total energy of the electron system for the cation elementary substance and its 

oxide as well as the Gibbs free energy of O2, which is the 0 K, 0 GPa total energy of the 

electron system plus the calculated zero-point energy and entropic contribution in O2 
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using the experimental bond length (1.21 Å) and vibration frequency (1580.19 cm-1) 

[94], which amounts to -0.22 eV/atom at room temperature. 

Figures 4 and 5 are plots of ΔHf(calc)-ΔHf(exp) versus ΔHf(exp) and ΔGf(calc)-ΔGf(exp) 

versus ΔGf(exp), respectively. Individual values of ΔHf(exp), ΔHf(calc), ΔHf(calc)-ΔHf(exp), 

ΔGf(exp), ΔGf(calc), and ΔGf(calc)-ΔGf(exp) are given in Supplementary Tables 

XXVIII-XXXI. The horizontal lines show the mean average of ΔHf(calc)-ΔHf(exp), and 

<ΔHf(calc)-ΔHf(exp)> (Fig. 4), and of ΔGf(calc)-ΔGf(exp), and <ΔGf(calc)-ΔGf(exp)> (Fig. 5), 

respectively, over all considered systems. Table IX shows the ME, MAE, and RMSE of 

ΔHf(calc)-ΔHf(exp) and ΔGf(calc)-ΔGf(exp) for each approximation. The SCAN results are 

significantly different form the other approximations. The ME of ΔHf(calc)-ΔHf(exp) is 

only 0.01 eV whereas the ME ranges between 0.15 to 0.24 eV in the other 

approximations, and the RMSE is slightly larger than one-half of the other 

approximations. On the other hand, the ME of ΔGf(calc)-ΔGf(exp) by SCAN is negative at 

-0.04eV, while the MEs are 0.10 to 0.19 eV in the other approximations. Again, the 

RMSE is small at 0.07 eV compared to the other approximations that range between 

0.11 to 0.13 eV. Aside from <ΔGf(calc)-ΔGf(exp)> of SCAN, the MEs are all positive, 

which indicates that the calculated formation enthalpy and Gibbs free energy tends to 

overestimate respective experimental values. The discrepancy between ΔHf(calc)-ΔHf(exp) 

and <ΔHf(calc)-ΔHf(exp)> as well as ΔGf(calc)-ΔGf(exp) and <ΔGf(calc)-ΔGf(exp)> of most 

systems (the error) are within 0.2 eV, although the largest maximum and minimum 

errors are 0.16 and -0.19 eV, respectively, in SCAN. For approximations other than 

SCAN, the outlier results are always the same regardless of the approximation, such as 

PbO (both 207 Litharge and 208 Massicot prototypes), Al2O3 (302 Corundum-Al2O3 

prototype), and Bi2O3 (309 Bi2O3 prototype). The effect of adding Hubbard U depends 

on the system. ZnO (202 Wurtzite-ZnS(2H)) has positive 

(ΔHf(calc)-ΔHf(exp))-<ΔHf(calc)-ΔHf(exp)> and (ΔGf(calc)-ΔGf(exp))-<ΔGf(calc)-ΔGf(exp)> without 

U but negative with U, and is the other way around in CrO3 (601 CrO3). Although Zn 

and Ga have fully occupied 3d orbitals, the effect of adding U is significant; the 

calculated enthalpy differs by 0.2 and 0.3-0.4 eV, respectively, between with and 

without U. 

In summary, the SCAN meta-GGA consistently gives excellent formation 
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enthalpy and Gibbs free energy, while those derived from calculations using other GGA 

approximations tend to consistently overestimate experimental data. PBED3 and 

PBEsol show ~0.05 to 0.1 eV smaller errors than PBE for both with and without 

Hubbard U. The systematic error in GGA has been addressed previously. For instance, 

Wang et al. [95] proposed a correction of 1.36 eV per O2 on the basis of six 

non-transition metal cation oxides, while Stevanović devised the FERE scheme where 

252 enthalpies of formation were used to derive a correction per atom for 50 elements 

[87]. 

 

D. Relative energies between prototypes 

1. Monovalent cation oxides 

There is not much difference between results using different approximations, as 

shown in Fig. 6 and Supplementary Tables XXXII-XXXVIII. Hubbard U is non-zero in 

Cu, Ag, and Au only. The 104 Cu2O prototype (cuprite structure) is favored with all 

approximations for Cu2O, Ag2O, and Au2O. Cations and O are two- and four-fold 

coordinated, respectively, in this structure. Cu2O and Ag2O are known as stable 

compounds, but Au2O is not; the only known gold oxide with a crystallographically 

well-characterized structure and sufficient stability under ambient conditions is Au2O3 

[96]. On the other hand, Cs2O and Tl2O stabilize in the 101 Anti-CdI2 and 102 

Anti-CdCl2(3R) prototypes. These are both layered structures where each layer consists 

of a monolayer of six-fold coordinated O sandwiched by three-fold coordinated cations. 

Tl2O in the “anti-CdI2 type structure” with Z=6 and space group type R 3m (number 

166) is reported [97], but this is not the same as any prototype considered in this study. 

Closing the gaps between layers in the 102 Anti-CdCl2(3R) prototype results in the 103 

Anti-Fluorite-CaF2 prototype that is favored by Li2O, Na2O, and K2O (also see Fig. 1). 

Rb2O is slightly metastable by 5 meV/atom compared to the 102 Anti-CdCl2(3R) 

prototype in PBE, while Rb2O is stable in the 103 Anti-Fluorite-CaF2 prototype in other 

approximations. As the cation size increases from Li toward Cs and Tl, the energetic 

benefit of increased coordination number by taking the 103 Anti-Fluorite-CaF2 

prototype would become less preferable compared to the cost in retaining the rigid 

coordination of the cubic 103 Anti-Fluorite-CaF2 structure with fixed internal 
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coordinates. One may be tempted to use electronegativity to explain that a layered 

structure is stable in CsO2 but not in lighter alkaline metal oxides as the Cs-O bond 

would become very ionic and the ionic charge of Cs in Cs2O becomes more positive 

compared to other group 1 counterparts, and therefore Cs layers on both sides should 

repel each other. However, this electronegativity argument does not hold for Tl as Tl is 

much more electronegative than group 1 elements but still prefers a layered structure.  

2. Divalent cation oxides 

As in the monovalent case, there is not much difference between results using 

different approximations, as shown in Fig. 7 and Supplementary Tables XXXIX-XLV. 

Hubbard U is non-zero in Zn only, but the relative energies between prototypes are 

almost identical with or without U despite the large value of Ueff = 5 eV. The ground 

states are the same in all approximations: the 201 NaCl prototype in MgO, CaO, SrO, 

BaO, and CdO, 202 Wurtzite-ZnS(2H) followed closely (6-8 meV/atom) by 203 

Sphalerite-ZnS(cF8) (zincblende structure) in BeO and ZnO, 205 HgO with 206 HgS 

barely metastable (1-2 meV/atom) in HgO, and 208 Litharge in SnO and PbO.  

There is a clear rule regarding stable prototypes and cation size: smaller and 

more covalent cations (group 2 Be and group 12 Zn) tend to favor four-fold coordinated 

prototypes, 202 Wurtzite-ZnS(2H), 203 Sphalerite-ZnS(cF8), and 204 BeO(tP8), while 

the six-fold coordinated prototype 201 NaCl is stable in intermediately sized cations 

(group 2 Mg, Ca, Sr, Ba and group 12 Cd). However, in CdO, the 202 

Wurtzite-ZnS(2H) prototype with four-fold coordinated cations is only 6 meV/atom 

metastable compared to the six-fold coordinated ground state 201 NaCl prototype in 

PBE. This difference increases by an order of magnitude in PBED3, PBEsol, and SCAN. 

A combined experimental and theoretical study on the pressure-induced wurtzite to 

rocksalt structure transition in CdxZn1-xO suggests that the zero pressure phase is 

wurtzite at x<0.67 and rocksalt at x>0.67 [98]. The ratio of energy differences between 

201 NaCl and 202 Wurtzite-ZnS(2H) prototypes in ZnO and CdO is expected to be 

about 2:1, assuming a linear change with x and a transition concentration of x = 2/3 

threshold. The absolute energy differences are 149 and 6 meV/atom in PBE, 102 and 63 

meV/atom in PBED3, 110 and 56 meV/atom in PBEsol, and 112 and 74 meV/atom in 

SCAN, respectively. The +U corrections change the relative phase stability in ZnO only 
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slightly, which means that the energy differences in PBED3, PBED3(+U), PBEsol, 

PBEsol(+U), and SCAN are reasonable but not in PBE and PBE(+U). The six-fold 

coordinated 209 Nickeline-NiAs prototype never becomes the most stable prototype but 

is second most stable in CaO, SrO, and BaO, and the energy difference between 201 

NaCl and 209 Nickeline-NiAs decreases as the cation size increases in alkaline earth 

metal oxides. Hg prefers two-fold coordination and therefore forms chain structures 

(prototypes 205 HgO and 206 HgS). SnO and PbO stabilizes in layered structures (207 

Massicot and 208 Litharge) as Sn2+ and Pb2+ has “lone pairs” of valence s-electrons that 

interact weakly between layers of SnO or PbO [99].  

The following analysis demonstrates that the choice of approximation 

determines the interlayer distance of two-dimensional structures. The tetragonal 208 

Litharge structure has four atoms in the conventional unit cell. There are two lattice 

parameters, a and c, and one internal coordinate, u. The space group type is P4/nmm 

(number 129), cations occupy 2c sites with coordinate triplets (0, 1/2, u) and (1/2, 0,u ), 

and anions occupy 2a sites with coordinate triplets (0, 0, 0) and (1/2, 1/2, 0). Therefore, 

the interlayer distance is c and the thickness of each layer is 2uc. Tables XI and XIII 

shows information on a, c, c/a, u, and 2uc for SnO and PbO, respectively. The layer 

thickness agrees within 0.01Å and 0.02 Å for SnO and PbO, respectively, between 

experimental data, PBE, PBED3, PBEsol, and SCAN. In contrast, there is one order of 

magnitude larger discrepancy in the lattice parameter c: the result from PBE is 0.5Å and 

0.2 Å larger than experimental data for SnO and PbO, respectively, while c from 

PBED3, PBEsol, and SCAN differ from experimental data by 0.1 Å or less. This means 

that the choice of approximation affects the interlayer distance but not the thickness of 

the layers in “lone pair” systems. 

 

3. Trivalent cation oxides 

The relative energies between stable and slightly metastable prototypes do not 

differ much between approximations, but there are some distinct differences (Fig. 8 and 

Supplementary Tables XLVI-LII). Hubbard U is non-zero in Ga and La only.  

We first investigate trends in Al2O3, Ga2O3, In2O3, Sc2O3, Y2O3, and La2O3. 

The ionic radius of the cation increases from left to right, with the exception of In3+ and 
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Sc3+ where Shannon’s ionic radius [100] is larger in the former compared to the latter. 

Compared to the 301 Bixbyite-Mn2O3 prototype, 302 Corundum-Al2O3 becomes 

increasingly stable toward Al2O3 whereas 303 La2O3 stabilizes more toward La2O3. In 

Al2O3, the α-phase (302 Corundum-Al2O3 prototype) is most stable. The θ-phase is used 

as the Pt atom support in CO [101] and NO [102] oxidation catalysts. has applications 

in catalyst supports. This phase is slightly metastable by 9 to 39 meV/atom. Five 

polymorphs of Ga2O3 are experimentally known, which are α- (301 Bixbyite-Mn2O3 

prototype), β- (304 Ga2O3 prototype), γ-, δ-(302 Corundum-Al2O3 prototype), and 

ε-Ga2O3. Experiments show that the β-Ga2O3 structure is stable under ambient 

conditions [103,104], which is in accordance with our calculations. The α-Ga2O3 phase 

is reported not in the ICSD but elsewhere and therefore indicated with a red arrow in 

Fig. 8. 301 Bixbyite-Mn2O3 is most stable in In2O3, Sc2O3, and Y2O3 in all 

approximations. La2O3 is known to be stable in the 303 La2O3 prototype, or A-type 

structure in rare earth sesquioxide nomenclature, at ambient conditions. The 301 

Bixbyite-Mn2O3 prototype, or C-type rare earth sesquioxide structure, is stable in late 

lanthanide sesquioxides but is not obtained when heating La2O3 at ambient pressure 

[105]. Our computational results show that the 303 La2O3 prototype is the most stable 

La2O3 structure in PBED3, PBEsol, and SCAN but is barely metastable (≤ 5 meV/atom) 

in PBED3+U and PBEsol+U and is metastable in PBE and PBE+U (24 and 31 

meV/atom, respectively).  

B2O3 takes a unique structure (305 B2O3 prototype) arising from covalent 

bonding between B and O where B form sp2 hybrid orbitals and become three-fold 

coordinated, and O is two-fold coordinated with the bond angle about 130 degrees. This 

structure is predicted to be stable with any approximation; the other structures are much 

higher in energy and do not appear in the energy range of Fig. 8. 

As2O3, Sb2O3, and Bi2O3 have “lone pair” s-electrons [106] and thus forms 

phases different from group 3 and group 13 (except B) sesquioxides. However, 

prototypes 301 Bixbyite-Mn2O3, 306 As2O3, 307 As2O3(cF80), 308 Sb2O3, and δ-Bi2O3 

(the high temperature form of Bi2O3, not considered as a prototype in this study due to 

existence of partial occupancy on the anion sites, that is known as the fastest solid-state 

oxygen ion conductor at elevated temperature [107]) can be considered as variations of 
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the fluorite structure with various anion defects [106]. In other words, variations of the 

defective fluorite structure appear in almost all of the ternary cation sesquioxides. As2O3 

has two crystalline polymorphs: monoclinic claudetite (306 As2O3 prototype) and cubic 

arsenolite (307 As2O3(cF80) prototype). A Research Council Committee in the USA 

claims that the arsenolite phase is known to be stable below –13 °C [108] while Wells 

states that the low temperature form is the claudetite phase and transitions to the 

arsenolite phase at 110 °C [109]. Our calculations find that the claudetite phase is more 

stable at 0 K than the others by 2-10 meV/atom in all approximations. Sb2O3 is known 

in two forms: cubic α-Sb2O3 (senarmontite, 307 As2O3(cF80) prototype) and 

orthorhombic β-Sb2O3 (valentinite, 308 Sb2O3 prototype). The low temperature form is 

valentinite that transforms to senarmontite at 606 °C [109]. The valentinite phase is the 

lowest energy structure in all approximations. Six polymorphs of Bi2O3 are 

experimentally known, which are monoclinic α- (stable at ambient conditions, 309 

Bi2O3 prototype), tetrahedral β- (310 Bi2O3(tP20) prototype), cubic γ-, cubic δ-, 

orthorhombic ε- (308 Sb2O3 prototype), and triclinic ω-Bi2O3. Moreover, a bixbyite 

structure-related η-Bi2O3 phase is theoretically predicted to be dynamically stable [110]. 

Calculations from all approximations point out that Bi2O3 is most stable in the α-Bi2O3 

phase and β- and ε-Bi2O3 are both metastable within 47 meV/atom from α-Bi2O3. 

 

4 Tetravalent cation oxides 

There is much difference between approximations in the order of stability of 

tetravalent oxide prototypes (Fig. 9 and Supplementary Tables LIII-LIX). The Hubbard 

U is non-zero in Ti, Zr, and Hf only. 

SiO2 is notable for its rich variety of polymorphs. Polymorphs that appear in a 

temperature-pressure phase diagram up to 3300 K and 20 GPa are quartz, tridymite, 

cristobalite, coesite, and stishiovite. Among these, quartz, tridymite, and cristobalite 

have low temperature (α-) and high temperature (β-) forms [111]. The reversible 

displacive transition between low and high temperature forms in quartz is called quartz 

inversion and happens instantaneously around 846 K [112]. Tridymite undergoes a 

number of transitions between about 380 to 440 K and cristobalite shows a transition at 

535 K [113]. Low temperature (α-) quartz is the stable phase at ambient temperature and 
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pressure. Heating at ambient temperature changes the most stable polymorph to β- 

quartz, β-tridymite, and β-cristobalite, while applying pressure at room temperature 

results in transition of the most stable modification to coesite and then stishiovite [114]. 

Additional high temperature and ultrahigh pressure (>20 GPa) phases [115] are a 

disordered NiAs-type structure, a CaCl2-type phase, seifertite [116], and a pyrite-type 

phase. Other known phases include keatite [117] and moganite, which has low and high 

temperature forms (space group types I2/a and Ibam, numbers 15 and 72, respectively) 

with a transition point around 570 K and can be regarded as quartz that is Brazil 

twinned along (101) at the unit cell scale [118]. Many of the polymorphs can be derived 

from a single bcc lattice framework (space group type Im 3m, number 229) but with 

different ordering patterns and deformations. Si occupy 2a sites while O occupy 6b sites. 

The stishovite phase can be obtained when all Si sites are occupied and 1/6 of O sites 

are occupied, β- quartz and coesite when 2/3 and 1/9 of Si and O sites are occupied, 

respectively, and β-tridymite and β-cristobalite when 1/2 and 1/12 of Si and O sites are 

occupied, respectively [114]. The high pressure phases have higher occupancies than 

low pressure phases. Stishiovite becomes stable above approximately 10 GPa [111]. The 

stable region of β-quartz extends up to around 4 GPa while β-tridymite and 

β-cristobalite and can be stable only under about 0.15 and 0.6 GPa, respectively, thus β- 

quartz can be regarded as a high-pressure phase compared to β-tridymite and 

β-cristobalite. The experimental formation enthalpies at 298K of tridymite, cristobalite, 

coesite, stishovite, and moganite compared to quartz at 298K are 11 [119], 7 [91] or 9 

[120] , 17 [120] or 18 [119], 171 [120], and 12 [121] meV/atom, respectively. 

This study investigates α-quartz (415 Quartz, low prototype), α-cristobalite 

(417 Cristobalite-alpha), coesite (418 Coesite), stishiovite (401 Rutile-TiO2), moganite 

(416 Moganite), the CaCl2-type phase (413 CaCl2), seifertite (406 PbO2-alpha), and the 

modified fluorite-type or pyrite-type (414 PdF2(cP12)) phase. The α-tridymite phase is 

not considered as many modifications have been reported [111] and there is no 

consensus on its structure. The existence of many possible modifications in α-tridymite 

is consistent with the numerous transitions found upon heating of tridymite [113]. The 

calculated formation energies increase in the order of α-quartz, coesite, stishiovite, and 

seifertite in all approximations. PBED3, PBEsol, and SCAN gives α-quartz, 
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α-cristobalite, coesite, and moganite within a 20 meV/atom range that is consistent with 

experimental reports [91,119,120]. However, the formation energy of stishiovite 

compared to α-quartz is 88 and 60 meV/atom in PBED3 and PBEsol, respectively, 

which is about 0.1eV less than the experimentally reported value. On the other hand, in 

PBE stishiovite is 185 meV/atom less stable than α-quartz, but the lowest energy 

structure is α-cristobalite that is 8 meV/atom more stable. SCAN shows a good 

compromise, where the calculated formation energy of stishiovite is 127 meV/atom, 

which comes roughly midway between experiment and PBED3, and the lowest energy 

structure is α-quartz, in line with experimental observations. These results suggest that 

PBED3, PBEsol, and SCAN give reasonable formation energies in low pressure phases 

but PBED3 and PBEsol severely underestimate energies of stishiovite and higher 

pressure phases.  

A transition sequence similar to high pressure phases of SiO2 is found in GeO2 

[115,122] and SnO2 [123,124]. The ambient condition phase of GeO2 and SnO2 is the 

401 Rutile-TiO2 prototype, while increasing pressure and temperature results in 

transformation to the 413 CaCl2, 406 PbO2-alpha (α-PbO2-type), and then the 414 PdF2 

(cP12) prototype (modified fluorite-type or pyrite-type). This sequence is recovered by 

all approximations in our calculations except that the symmetry of 413 CaCl2 increases 

and becomes exactly the same as 401 Rutile-TiO2. The 401 Rutile-TiO2 to 406 

PbO2-alpha transition pressure of SnO2 is discussed in Section 6. 

The α-quartz structure (415 Quartz,low prototype) of GeO2 is eliminated in 

PBED3, PBEsol, and SCAN because of excessive relaxation in internal coordinates. Fig. 

10 shows how SiO4 and GeO4 octahedra relax from the original 415 Quartz-low 

prototype. The PBE SiO2 relaxed structure, the original prototype, and PBE and PBED3 

GeO2 relaxed structure are shown from two directions. The amount of relaxation is 

different although the overall structure is kept intact. The SiO4 and GeO4 octahedra tilt 

in opposite directions from the experimental reported prototype, and the amount of 

relaxation is smaller in SiO2, which results in a smaller CR value (Section 2). The two 

GeO2 structures are close to the cutoff threshold of 0.25 Å in this study, and the PBED3 

structure is eliminated while the PBE structure is barely accepted. Determination of the 

threshold is a difficult issue, but a value much larger than 0.25 Å appears to be too 
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excessive. Had we decided to not eliminate the 415 Quartz-low prototype of GeO2, the 

relative energies against the 401 Rutile-TiO2 prototype in PBED3, PBEsol, and SCAN 

are 115, 141, and 119 meV/atom, respectively, which are more than two times larger 

than 49 meV/atom in PBE.  

PbO2 has two major polymorphs, which are orthorhombic α-PbO2 in the 406 

PbO2-alpha prototype and tetragonal β-PbO2 in the 401 Rutile-TiO2 prototype [125]. 

Applying pressure to α-PbO2 results in transition to 413 CaCl2, 414 PdF2 (cP12), 404 

Brookite-TiO2 (HfO2), and then the 412 HfO2 prototype in this order, whereas 

pressurizing β-PbO2 results in reversible transformation to the 414 PdF2(cP12) 

prototype [126]. ICSD data on the 411 Fluorite-CaF2 prototype PbO2 (ICSD coll code 

77468) is removed from Fig. 9 as the crystal structure of cubic PbO2 is now considered 

to be the 414 PdF2 (cP12) prototype [126]. In addition, the cottunite-type PbO2 

[126,127] is actually the 412 HfO2 prototype instead of the VO2 structure as stated in 

the ICSD (ICSD coll codes 189977-189985). As a consequence, PbO2 in 412 HfO2 and 

414 PdF2 (cP12) prototypes are labeled with red arrows in Fig. 9. The calculated energy 

difference between α- and β-PbO2 is within 5 meV/atom in all four approximations. The 

lowest energy prototype is β-PbO2 in PBE and α-PbO2 in in PBED3, PBEsol, and 

SCAN. PbO2 in PBED3 and PBEsol are the only cases where reducing the tetragonal 

symmetry of the 401 Rutile-TiO2 prototype to the octahedral 413 CaCl2 prototype 

reduces the formation energy (2 meV/atom in both cases); however, the observed 

β-PbO2 phase has tetragonal symmetry. Two as-yet-unreported prototypes, which are 

404 Brookite-TiO2(HfO2) and 409 ZrO2 (oP12), are metastable within 10 meV/atom 

from the lowest energy polymorph in PBED3 and PBEsol but not in PBE and SCAN. 

The relative energy of the 409 ZrO2 (oP12) prototype against the lowest energy 

prototype is 5 meV/atom in PBE but is eliminated because the CR is marginally above 

the threshold (0.26 Å). The 409 ZrO2 (oP12) prototype relaxes to the 406 PbO2-alpha 

prototype in SCAN. 

TiO2 is one of the most important binary transition metal oxides because of its 

numerous applications [128,129]. There are three polymorphs at ambient conditions: 

rutile (401 Rutile-TiO2 prototype), anatase (402 Anatase-TiO2 prototype), and brookite 

(403 Brookite-TiO2 (TiO2) prototype). The brookite phase [130] is the most difficult to 
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form among these three, and the rutile phase is experimentally suggested to be slightly 

stable compared to the anatase phase [131-133] (0.02 eV/atom difference in 

NIST-JANAF tables [91]). Applying pressure to the anatase phase yields orthorhombic 

columbite-type TiO2-II (406 PbO2-alpha prototype) and monoclinic baddeleyite TiO2-III 

(405 Baddeleyite-ZrO2 (mP12) prototype) [134-136]. Other known phases are TiO2(R) 

(407 VO2 prototype) [137], TiO2(B) (408 VO2 (HT) prototype) [138], and TiO2(H) 

[139]. 

Rutile (401 Rutile-TiO2) is not the most stable polymorph with PBE, PBED3, 

PBEsol, and SCAN in our results. Instead, PBE, PBEsol, and SCAN calculations 

indicate that the anatase structure (402 Anatase-TiO2) is most stable, and the brookite 

structure (403 Brookite-TiO2 (TiO2)) is most stable in PBED3. One possible reason is 

too delocalized 3d electrons in PBE. Forcing the rutile structure to be the lowest energy 

structure is possible by adding the empirical Hubbard U correction, as shown in our 

results regarding PBE+U, PBED3+U, and PBEsol+U. Another trick is using a hybrid 

functional with nonlocal Fock exchange mixing over 70% [140]. However, these 

computational results are at 0K and do not include finite temperature effects. Trail et al. 

calculated finite temperature effects from anharmonic vibrations and total energies 

including many-body effects using diffusion quantum Monte Carlo calculations for 

rutile, brookite, and anatase phases of TiO2 [141]. Anharmonic contributions were based 

on the vibrational self-consistent field method [142] and PBEsol total energies were 

employed. The maximum difference in relative free energy of TiO2 polymorphs 

between 0K and 300K is at most ~2 meV/atom in Trail et al. [141]. Therefore, when 

vibrational effects are accounted for, the relative energies in our work may change by 

few meV/atom, but probably not at a scale of few tens of meV/atom. According to Trail 

et al. [141], the ground state is anatase, and the relative difference in Helmholtz free 

energy between brookite and anatase slightly increases with increasing temperature. TIn 

contrast, the Helmholtz energy of rutile decreases compared to anatase with increasing 

temperature, making rutile the most stable above ~600 K. Our PBEsol energy difference 

between rutile and anatase TiO2 is 14 meV/atom. This energy difference becomes zero 

at around 1000 K when the change in Helmholtz free energy with increasing 

temperature according to Trail et al. [141] is considered as a correction. A similar result 
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has been reported using a quantum Monte Carlo method and density functional 

perturbation theory with LDA [128]. From another point of view, the relative energy of 

anatase (402 Anatase-TiO2), TiO2-II (406 PbO2-alpha) and TiO2-III (405 

Baddeleyite-ZrO2 (mP12)) phases should increase in this order based upon experimental 

results when the pressure is increased; this is the case in PBE, PBE+U, and SCAN. 

HfO2 takes the 405 Baddeleyite- ZrO2 (mP12) prototype at ambient conditions. 

Varying the temperature and pressure leads to formation of two orthorhombic structures 

(orthorhombic I, space group type Pbca, number 61 and orthorhombic II, space group 

type Pnma, number 62), a tetragonal structure (space group P42/nmc, number 137) and a 

cubic structure (411 Fluorite-CaF2 prototype) [143-145]. We note that the internal 

coordinates for the Brookite-TiO2 structure (space group type Pbca) of TiO2 are 

significantly different from those of HfO2 and ZrO2, therefore are considered different 

prototypes (403 Brookite-TiO2 (TiO2) and 404 Brookite-TiO2 (HfO2), respectively). 

Moreover, both 407 VO2 and 412 HfO2 prototypes have space group type Pnma and 

same formula units in the conventional cell (four). Whether the experimentally observed 

tetragonal structure coincides with the 410 Zirconia-HT-ZrO2 prototype is unknown. 

Our calculations show that the 405 Baddeleyite-ZrO2 (mP12) prototype is the most 

stable structure except for PBE+U where it is degenerate within 1 meV/atom with the 

401 Rutile-TiO2 prototype. Prototypes not experimentally found but are metastable 

within 30 meV/atom are 401 Rutile-TiO2 and 413 CaCl2 (PBE+U, PBED3+U, 

PBEsol+U), 402 Anatase-TiO2 (PBE, PBE+U), 406 PbO2-alpha (PBE, PBE+U, 

PBED3+U, PBEsol+U), 409 ZrO2 (oP12) (all approximations). In particular, only 409 

ZrO2 (oP12) appears in this list with PBED3, PBEsol, and SCAN. 

More polymorphs are experimentally reported for ZrO2. The structure under 

ambient conditions is 405 Baddeleyite-ZrO2 (mP12) prototype. The tetragonal 410 

Zirconia-HT-ZrO2 and cubic 411 Fluorite-CaF2 structures can be obtained by heating, 

and three orthorhombic structures can be obtained by applying pressure (orthorhombic-I, 

II, III, in order of increasing pressure) [146]. The 409 ZrO2 (oP12) prototype was 

proposed as the structure of orthorhombic-I [147] but Leger et al. rejected this claim 

and found that its space group type is Pbca and the lattice parameters are close to those 

of the Brookite-TiO2 structure, which also has the Pbca space group type. Our 
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calculations corroborate Leger et al.’s finding as the 404 Brookite-TiO2 (HfO2) 

prototype has lower energy than the 409 ZrO2 (oP12) prototype in all approximations. 

The orthorhombic-II phase is the 412 HfO2 prototype. On the other hand, our 

calculations consistently show that the 405 Baddeleyite-ZrO2 (mP12) prototype is the 

lowest energy structure. Low energy structures within 30 meV/atom of the 405 

Baddeleyite-ZrO2 (mP12) prototype other than the experimentally found 409 

ZrO2(oP12) prototype, are 401 Rutile-TiO2 and 413 CaCl2 (PBE+U), 402 Anatase-TiO2 

(PBE, PBE+U), 404 Brookite-TiO2 (HfO2) (all approximations), and 406 PbO2-alpha 

(PBE, PBE+U).  

 

5 Pentavalent cation oxides 

Results are given in Fig. 11 and Supplementary Tables LX-LXVI. Hubbard U 

is non-zero in all cations. The ground state structure of V2O5 at ambient conditions is 

orthorhombic α-V2O5 (501 V2O5 prototype), and increasing pressure yields monoclinic 

β-V2O5 (502 V2O5 (P21/m) prototype) and monoclinic δ-V2O5 (503 Sb2O5 prototype), in 

this order [148]. Orthorhombic γ’-V2O5 (space group Pnma) [149] is known as a 

metastable phase. Our calculations show that in all approximations α-V2O5 is most 

stable, followed by β-V2O5 and δ-V2O5. Many modifications are reported for Nb2O5, 

which include R-, P- (or η-), M- (or β-, α’-) N-, H- (or α-), B-(or ζ-), T- (or γ-), and TT- 

(or δ-, γ’-) Nb2O5 (Section 9.15.2.6.1 in Landolt-Börnstein, new series, group III, 

volume 17, subvolume g) [150]. Kodama et al. suggests that the stable structure under 

ambient conditions is P-Nb2O5, which becomes B-Nb2O5, then H-Nb2O5 upon heating 

[151,152]. Only the monoclinic B- (ζ-) Nb2O5 is considered as a prototype (503 Sb2O5) 

in this study. The tetragonal P-(η-)Nb2O5 is not found in the ICSD and one site in H- 

(α-)Nb2O5 is partially occupied [153], therefore these are excluded from our 

calculations. PBED3, PBED3+U, PBEsol, PBEsol+U, and SCAN give the 

experimentally reported 503 Sb2O5 as the lowest energy prototype and at least 12 

meV/atom more stable than the 501 V2O5 prototype, while PBE and PBE+U states that 

the 501 V2O5 prototype is slightly stable by 8 and 1 meV/atom, respectively, than 503 

Sb2O5. The crystal structure of Ta2O5 at ambient pressure is difficult to solve as the 

multiplicity fluctuates between 11 to 14 depending on the synthesis conditions and 
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single crystals are very difficult to obtain [154]. High pressure phases of Ta2O5 include 

B- and Z-Ta2O5 [155]. Our calculations on Ta2O5 yield similar results to those of Nb2O5, 

where the experimentally obtained (albeit high pressure) B-Ta2O5 structure (503 Sb2O5 

prototype) is stable than the as-yet-unreported 501 V2O5 prototype in PBED3, 

PBED3+U, PBEsol, PBEsol+U, and SCAN, which is the same trend as in Nb2O5. 

 

6. Hexavalent cation oxides 

Results are given in Fig. 12 and Supplementary Tables LXVII-LXXIII. 

Hubbard U is non-zero in all systems. In CrO3, the experimentally reported 601 CrO3 

prototype appears as the unique or lowest energy prototype in all approximations. Four 

phases of anhydrous MoO3 are reported in the literature, which are orthorhombic 

α-MoO3 (602 MoO3 prototype) that is thermodynamically stable under ambient 

conditions, metastable monoclinic β-MoO3 and β’-MoO3 (605 WO3 (mP32) prototype), 

and high-pressure monoclinic MoO3–II [156]. WO3 has numerous polymorphs at 

ambient pressure: upon heating, the monoclinic ε-WO3 phase (603 WO3 (mP16) 

prototype) transitions to the triclinic δ -WO3 phase (604 WO3 (aP32) prototype) at 

-25 °C, then to the monoclinic γ-WO3 phase (605 WO3 (mP32) prototype) at 20-30 °C, 

orthorhombic β-WO3 phase (606 WO3 (HT) prototype) at 330 °C, and finally to the 

tetragonal α-WO3 phase at 740 °C (Ref. [157] and within). These WO3 polymorphs 

have structural distortions (rotation of WO6 octahedra and displacement of W from the 

octahedron center) from the cubic ReO3 structure (607 prototype) found in the tungsten 

bronze framework, which is the perovskite structure but without atoms in the A site 

[158]. Calculations on MoO3 indicate that the α-MoO3 phase is never the most stable 

structure but the ε-, δ-, γ-, and β-WO3 phases, whose energies are similar within 3 

meV/atom, are instead more stable. The α-MoO3 phase is 17-51 meV/atom less stable 

than the most stable prototype. For WO3, the latter four phases are stable and lie within 

1 meV/atom in PBE, PBE+U, PBEsol, and SCAN. However, β-WO3 is clearly stable 

compared to ε-, δ-, and γ-WO3 in PBED3 and PBED3+U. The ReO3 structure (607 

ReO3 prototype) is metastable compared to ε-, δ-, γ-, and β-WO3 phases in WO3 by at 

least 12 meV/atom, which shows that distortions from the defective perovskite 

framework lower the energy in WO3. 
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E. Phase transition pressure 

Prediction of the phase transition pressure is one criterion to evaluate the 

performance of an approximation. For instance, Cu2O is known to transition from the 

cuprite structure (104 Cu2O prototype) to an intermediate hexagonal phase at 10 GPa, 

and then transition to the 102 Anti-CdCl2(3R) prototype at 13 to 18 GPa [159]. Ag2O 

transitions from the cuprite structure (104 Cu2O prototype) to the intermediate 

hexagonal phase found in Cu2O at 0.4 GPa [159]. ZnO transitions from the 202 

wurtzite-ZnS(2H) prototype to the rocksalt structure (201 NaCl prototype) around 9 

GPa [160-163] and reverts to the 202 Wurtzite-ZnS(2H) prototype upon decompression 

around 2 GPa [162]. SnO2 transitions from the 401 Rutile-TiO2 prototype to the 413 

CaCl2 prototype at 11.8 GPa under hydrostatic conditions, the α-PbO2-type phase (406 

PbO2-alpha prototype) starts to appear under non-hydrostatic conditions above 12.5 GPa, 

and finally transitions to a modified fluorite-type phase (414 PdF2(cP12) prototype) 

above 21 GPa [123]. Upon decompression, the internal coordinate u of O in 8c sites of 

the modified fluorite phase significantly increases at 14.2 GPa, indicating that this phase 

becomes no longer stable below this pressure. 

Among the above, two pressure-induced phase transitions are investigated in 

this study, which are wurtzite to rocksalt structure in ZnO and α-PbO2-type to modified 

fluorite-type structure in SnO2. Experimental information on hysteresis is available in 

these transitions [123,162], which means that the thermodynamic transition pressure is 

likely to lie between the transition pressures upon compression and decompression. 

Calculated transition pressures are listed in Table XII along with experimental values 

[98,123,160-166]; the local density approximation (LDA) and LDA+U are compared in 

addition to the six approximations in this section. 

The experimental temperature (T, unit K) dependence on the transition pressure 

(P, unit GPa) of ZnO is P=8.0-0.0023T in Inoue [165] and P=6.7-0.0012T in Kusaba et 

al.[164]. The change in transition pressure in the two relations are 0.69 and 0.36 GPa, 

respectively, between 0K and 300K and 2.3 and 1.2 GPa, respectively, between 0K and 

1000K. The P-T relation is nonlinear in the LDA results by Seko et al. [167]; with 

vibrational effects, the transition pressure is 7.65 GPa at 0 K but decreases to about 7.4 
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GPa at 300 K and about 5.0 GPa at 1000 K. The 0K transition pressure increases by 1 

GPa to 8.65 GPa when vibrational effects are not taken into account. In short, changing 

the temperature from 300K to 0K increases the transition pressure by few 0.1 GPa both 

in experiment and calculation, and neglecting vibrational effects increases the transition 

pressure by about 1 GPa. On the other hand, Ono et al. deduced the relation 

P=16.7(±0.5)-0.0021(±0.0015)(T-1000) as the experimental phase boundary between 

α-PbO2-type and modified fluorite-type structures in SnO2 [166]. Simple extrapolation 

yields P=14.6 GPa and 15.2 GPa at 0 K and 300K, respectively. In summary, the 

difference in transition pressure between 0 K and 300 K is about few 0.1 GPa, and 

including vibrational effects may result in a change in transition pressure of ~1 GPa.  

Turning to the results of our calculations, the effect of U on the transition 

pressure of ZnO is very small. PBE and PBE+U values, 11.7 and 11.9 GPa, respectively, 

are too large compared with the upper bound of the experimental values of ~ 9 GPa 

even when we take vibrational effects into account that would reduce the computational 

transition pressure by ~1 GPa. On the other hand, the lower bound of the experimental 

transition pressure of SnO2 at 300K is 14.2 GPa, and the 0 K transition pressure is 

estimated to be lower by ~0.6 GPa. LDA (12.8 GPa) therefore appears to underestimate 

the transition pressure of SnO2. In summary, PBED3, PBEsol (also PBED3+U and 

PBEsol+U for ZnO), and SCAN give reasonable transition pressures in both cases. 

 

IV. CONCLUSIONS 

This study compared performance of seven approximations, which are PBE, 

PBE+U, PBED3, PBED3+U, PBEsol, PBEsol+U, and SCAN, regarding the energetics 

and crystal structure of elementary substances and binary metal oxides with closed-shell 

electronic structures. Prototype crystal structures were selected from the ICSD, and 

cation substitution was employed to make a set of existing and hypothetical oxides. A 

universally applicable procedure is proposed that uses one index each for lattice and 

internal coordinate relaxation that quantitatively and automatically evaluates the extent 

of relaxation. PBE and PBE+U show relatively large deformation during relaxation 

from the experimental structure, and the relaxation is relatively anisotropic in 

low-dimensional structures. On the other hand, the internal coordinates of SCAN are the 
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closest to the experimentally reported values. 

PBED3, PBEsol, and SCAN reproduced experimental lattice parameters of 

elementary substances and oxides well with few outliers. Notably, PBEsol and SCAN 

are found to predict the lattice parameters of low dimensional structures comparably 

well with PBED3, even though these functionals do not explicitly treat van der Waals 

interactions. SCAN reproduces the formation enthalpy and Gibbs free energy well, with 

ME of 0.01 and -0.04 eV, respectively, and RMSE is 0.07 eV in both formation enthalpy 

and Gibbs free energy. In contrast, all GGAs and those with Hubbard U and van der 

Waals corrections give 0.1 to 0.2 eV ME and at least 0.11 eV RMSE in the formation 

enthalpy and Gibbs free energy. Phonon calculations for selected systems indicate that 

the vibrational contribution from solid phases to the enthalpy and Gibbs formation 

energy is small at less than ~0.1 eV/atom. 

The same crystal structure appears as the lowest energy polymorph with 

different approximations in most of the investigated binary oxides. However, there are 

some systems where the choice of approximation significantly affects energy 

differences between polymorphs, or even the order of stability between phases. The 

energy differences between 201 NaCl and 202 Wurtzite-ZnS(2H) prototypes in ZnO and 

CdO are reasonable with PBED3, PBED3+U, PBEsol, PBEsol+U, and SCAN but not 

with PBE and PBE+U. Applying U corrections give the rutile structure in TiO2, which is 

the easiest to obtain experimentally, as the lowest energy prototype. However, reported 

quantum Monte Carlo studies suggest that anatase should actually be the ground state 

[128,141]; the anatase phase is the ground state in PBE, PBEsol, and SCAN. Only PBE, 

PBE+U, and SCAN give the correct stability order of polymorphs derived when anatase 

TiO2 is pressurized (anatase to TiO2-II then TiO2-III), but PBE and PBE+U give 

as-yet-unreported polymorphs of Nb2O5 and Ta2O5 as the lowest energy structure, 

respectively. No approximation gives α-MoO3, which is the experimentally stable 

polymorph, as the calculated lowest energy polymorph. PBED3 and PBED3+U indicate 

that the high temperature β-WO3 phase is stable by ~20 meV/atom compared to low 

temperature ε-, δ-, and γ-WO3 phases, but these four polymorphs are almost degenerate 

in the other approximations. These observations suggest that SCAN is the most 

reasonable regarding relative energies between polymorphs. The calculated transition 
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pressure between polymorphs of ZnO and SnO2 is closest to experimental values when 

PBED3, PBEsol (also PBED3+U and PBEsol+U for ZnO), and SCAN are employed, 

even when zero-point energy contribution and temperature dependence of the transition 

pressure are considered.  

In summary, SCAN appears to be the best choice among the seven 

approximations based on the analysis of the energetics and crystal structure of binary 

metal oxides, while PBEsol is the best among the GGAs considered, and shows a 

comparably good performance with SCAN for many cases. The use of PBEsol+U along 

with PBEsol would also be a reasonable choice as applying +U corrections dramatically 

improve the description of the electronic structure for materials with localized states. 
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Table I. List of prototype structures selected from the ICSD. The structure type in ICSD 

is used as the prototype name unless shown otherwise. Internal coordinates for TiO2 in 

the Baddeleyite-ZrO2(mP12) structure type differs significantly from HfO2, thus is 

considered a separate prototype from the latter.  

 

Protot
ype 
ID 

ICSD 
Coll 
code 

Space 
group 
type 

Space 
group 
numb

er 

Z ICSD structure type Notes 

101 20368 P 3 m 164 1 Ag2F Prototype name: 
Anti-CdI2 

102 27919 R 3 m 166 3 CdCl2 (3R) Prototype name: 
Anti-CdCl2(3R) 

103 77676 Fm 3 m 225 4 Fluorite-CaF2 
Prototype name: 

Anti-Fluorite-CaF2
104 261853 Pn 3 m 224 2 Cu2O Cuprite structure 
201 163628 Fm 3 m 255 4 NaCl Rocksalt structure 
202 162843 P63mc 186 2 Wurtzite-ZnS (2H) 

203 29082 F 4 3m 216 4 Sphalerite-ZnS 
(cF8) 

Zincblende 
structure 

204 18147 P42/mnm 136 4 BeO (tP8) 
205 40316 Pnma 62 4 HgO Montroydite HgO 
206 639125 P3121 152 3 HgS Cinnabar HgO 
207 15402 Pbcm 57 4 Massicot 
208 62842 P4/nmm 129 2 Litharge 
209 173921 P63/mmc 194 2 Nickeline-NiAs 

301 169172 Ia 3  206 16 Bixbyite-Mn2O3 
δ-Ga2O3 

C-type rare earth 
sesquioxide 

302 75560 R 3 c 167 6 Corundum-Al2O3 
α-Al2O3 
α-Ga2O3 

303 192270 P 3 m1 164 1 La2O3 
A-type rare earth 

sesquioxide 

304 83645 C2/m 12 4 Ga2O3 
θ-Al2O3 
β-Ga2O3 

305 16021 P31 144 3 B2O3 
306 238641 P21/n 14 4 As2O3 Claudetite As2O3 

307 238612 Fd 3 m 227 16 As2O3 (cF80) Arsenolite As2O3 
α-Sb2O3 

308 240207 Pccn 56 4 Sb2O3 
β-Sb2O3 
ε-Bi2O3 

309 168567 P21/c 14 4 Bi2O3 α-Bi2O3 
310 189995 P 4 21c 114 4 Bi2O3 (tP20) β-Bi2O3 
401 39166 P42/mnm 136 2 Rutile-TiO2 Stishovite SiO2 
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β-PbO2 
402 9852 I41/amd 141 4 Anatase-TiO2 

403 36408 Pbca 61 8 Brookite-TiO2 
Prototype name: 
Brookite-TiO2 

(TiO2) 

404 79913 Pbca 61 8 Brookite-TiO2 
Prototype name: 
Brookite-TiO2 

(HfO2) 

405 94887 P21/c 14 4 Baddeleyite-ZrO2 
(mP12) TiO2-III 

406 415269 Pbcn 60 4 PbO2-alpha Seifertite SiO2 
TiO2-II 

407 75179 Pnma 62 4 VO2 TiO2 (R) 
408 41056 C2/m 12 8 VO2 (HT) TiO2 (B) 
409 67004 Pca21 29 4 ZrO2 (oP12) 
410 173966 P42/nmc 137 2 Zirconia-ZrO2 (HT)

411 173967 Fm 3 m 225 4 Fluorite-CaF2 
Yttrium stabilized 
zirconia structure 

412 83863 Pnma 62 4 HfO2 
Cottunite-type 

PbO2 

413 281599 Pnnm 58 2 CaCl2 
Rutile with 

lowered symmetry 

414 281601 Pa 3  205 4 PdF2 (cP12) 
“Pyrite-type” 

“Modified 
fluorite-type” 

415 62405 P3221 154 3 Quartz,low α-quartz SiO2 
416 67669 C2/c 15 12 Moganite α-moganite SiO2 
417 77452 P41212 92 4 Cristobalite (alpha) α-cristobalite SiO2 
418 172286 C2/c 4 16 Coesite Coesite SiO2 
501 60767 Pmmn 59 2 V2O5 α-V2O5 
502 59961 P21/m 11 2 V2O5 (P21/m) β-V2O5 

503 71317 C2/c 15 4 Sb2O5 
δ-V2O5 

B-(ζ-)Nb2O5 
B-Ta2O5 

601 16031 Ama2 40 4 CrO3 
602 151751 Pnma 62 1 MoO3 α-MoO3 
603 84168 Pc 7 3 WO3 (mP16) ε-WO3 
604 80053 P 1  2 4 WO3 (aP32) δ-WO3 

605 16080 P21/n 14 2 WO3 (mP32) γ-WO3 
β’-MoO3 

606 50728 Pcnb 60 4 WO3 (HT) β-WO3 

607 108651 Pm 3 m 221 2 ReO3 
Tungsten bronze 

framework 
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Table II. Cation species considered in this study. 
 

Valence Elements 
+1 Li, Na, K, Rb, Cs, Cu, Ag, Au, Tl 
+2 Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Sn, Pb 
+3 Sc, Y, La, Al, Ga, In, B, As, Sb, Bi 
+4 Ti, Zr, Hf, Si, Ge, Sn, Pb 
+5 V, Nb, Ta  
+6 Cr, Mo, W 

 
 

 

Table III. Mean error (ME), mean absolute error (MAE), and root mean square error 

(RMSE) of lattice parameters of elementary substances. Data are given for 3D 

structures (3D) as well as lattice parameters of low-dimensional structures in axes with 

(LD-s) and without (LD-nos) spacing between atoms. Individual errors are given in 

Supplementary Tables II-VIII. (+U) values are not given for LD structures as Ueff=0 for 

all LD systems. 

 

 

ME MAE RMSE 

3D LD-s LD-nos 3D LD-s LD-nos 3D LD-s LD-nos 

PBE 0.2% 8.0% 1.1% 1.5% 9.0% 1.2% 3.2% 10.7% 1.3% 

PBE(+U) 1.2%   2.2%   4.1%   

PBED3 -1.4% -2.2% -0.2% 1.7% 2.9% 0.8% 2.1% 2.9% 1.5% 

PBED3(+U) -0.5%   2.3%   3.5%   

PBEsol -1.4% -1.6% -0.2% 1.7% 3.3% 0.7% 2.2% 4.2% 1.2% 

PBEsol(+U) -0.5%   2.0%   3.1%   

SCAN -0.7% 0.5% 0.3% 1.5% 2.1% 0.8% 2.7% 3.3% 1.2% 
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Table IV. Largest positive and negative errors in lattice parameters of elementary 

substances. Data are given for 3D structures (3D) as well as lattice parameters of 

low-dimensional structures in axes with (LD-s) and without (LD-nos) spacing between 

atoms. Individual errors are given in Supplementary Tables II-VIII. (+U) values are not 

given for LD structures as Ueff=0 for all LD systems. 

 
Largest positive error Largest negative error 

3D LD-s LD-nos 3D LD-s LD-nos 

PBE 31.3% 27.8% 4.3% -8.3% -8.2% -0.2% 

PBE(+U) 31.3%   -9.9%   

PBED3 3.6% 3.8% 0.9% -10.8% -10.7% -4.6% 

PBED3(+U) 13.4%   -8.3%   

PBEsol 4.9% 6.5% 0.8% -12.3% -13.5% -3.6% 

PBEsol(+U) 12.9%   -8.6%   

SCAN 14.7% 6.7% 3.4% -12.6% -9.4% -0.7% 

 

 

Table V. Mean error (ME), mean absolute error (MAE), and root mean square error 

(RMAE) of lattice parameters of binary oxides. Data are given for 3D structures (3D) as 

well as lattice parameters of low-dimensional structures in axes with (LD-s) and without 

(LD-nos) spacing between atoms. Individual errors are given in Supplementary Tables 

XI-XXIV. 

 

 

ME MAE RMSE 

3D LD-s LD-ns 3D LD-s LD-ns 3D LD-s LD-ns 

PBE 1.3% 6.2% 2.3% 1.4% 3.4% 4.1% 1.1% 4.6% 2.4% 

PBE(+U) 1.4% 5.9% 3.0% 1.6% 3.9% 4.7% 1.2% 5.5% 3.4% 

PBED3 0.3% 0.2% 0.4% 0.8% 1.1% 0.9% 1.0% 1.8% 0.9% 

PBED3(+U) 0.4% 0.0% 0.8% 1.0% 1.3% 1.2% 1.2% 2.0% 1.6% 

PBEsol 0.0% 0.5% -0.3% 0.7% 0.7% 1.4% 1.0% 2.8% 1.1% 

PBEsol(+U) 0.1% 0.4% 0.1% 1.0% 0.9% 1.8% 1.2% 3.0% 1.6% 

SCAN -0.2% 0.5% 0.1% 0.6% 0.7% 1.0% 0.8% 1.4% 1.1% 
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Table VI. Largest positive and negative errors in lattice parameters of binary oxides. 

Data are given for 3D structures (3D) as well as lattice parameters of low-dimensional 

structures in axes with (LD-s) and without (LD-nos) spacing between atoms. Individual 

errors are given in Supplementary Tables XI-XXIV. 

 

 Largest positive error Largest negative error 

 3D LD-s LD-ns 3D LD-s LD-ns 

PBE 5.8% 18.3% 9.0% -4.4% 0.5% -0.2% 

PBE(+U) 5.8% 18.3% 11.1% -4.4% -8.9% -0.7% 

PBED3 2.8% 5.6% 1.7% -5.5% -2.3% -1.4% 

PBED3(+U) 3.1% 5.6% 5.0% -5.5% -4.8% -1.4% 

PBEsol 3.8% 9.0% 1.0% -6.3% -4.0% -3.1% 

PBEsol(+U) 3.1% 9.0% 3.5% -6.3% -5.2% -3.1% 

SCAN 2.0% 5.2% 2.2% -6.0% -2.1% -1.6% 

 

 

Table VII. Means of indices of deformation (LR2, CR, CR’) for 3D and LD structures in 

various approximations. Individual indices are given in Supplementary Tables 

XXV-XXVII. 

  

 LR2 CR (Å) CR’ 

3D LD 3D LD 3D LD 

PBE 0.000 0.010 0.051 0.101 0.008 0.018 

PBE(+U) 0.000 0.014 0.052 0.102 0.009 0.018 

PBED3 0.000 0.001 0.037 0.051 0.007 0.010 

PBED3(+U) 0.000 0.002 0.039 0.047 0.007 0.009 

PBEsol 0.000 0.003 0.039 0.063 0.007 0.012 

PBEsol(+U) 0.000 0.003 0.040 0.064 0.007 0.012 

SCAN 0.000 0.001 0.030 0.037 0.005 0.007 
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Table VIII. Vibrational contributions to the formation enthalpy at 298K (ΔHf
vib) and 

formation Gibbs free energy at 298K (ΔGf
vib) calculated using the PBEsol functional for 

selected systems. The change in the Gibbs free energy when the vibrational contribution 

is accounted for in the reference O2 gas only, ΔGf
vib,O, and ΔGf

vib-ΔGf
vib,O are also 

shown. The values are relative to the formation energy at 0K excluding vibrational 

effects. Units are in eV/atom.  

 

Compound Prototype ΔHf
vib ΔGf

vib ΔGf
vib,O ΔGf

vib-ΔGf
vib,O 

BeO 202 Wurtzite-ZnS (2H) 0.06 0.22 0.13 0.09 
MgO 201 NaCl -0.04 0.15 0.13 0.02 
PbO 208 Litharge 0.03 0.14 0.13 0.01 

Al2O3 302 Corundum-Al2O3 -0.02 0.13 0.16 -0.03 
Ga2O3 304 Ga2O3 -0.01 0.14 0.16 -0.02 
In2O3 301 Bixbyite-Mn2O3 -0.01 0.15 0.16 -0.01 
La2O3 303 La2O3 0.03 0.14 0.16 -0.02 
SnO2 401 Rutile-TiO2 0.05 0.15 0.18 -0.03 
PbO2 406 PbO2-alpha 0.05 0.13 0.18 -0.04 
TiO2 402 Anatase-TiO2 0.05 0.14 0.18 -0.04 
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Table IX. Mean error (ME), mean absolute error (MAE), and root mean square error 

(RMAE) of the difference between calculated and experimental formation enthalpy, 

ΔHf(calc)-ΔHf(exp), and Gibbs free energy, ΔGf(calc)-ΔGf(exp), for each approximation. 

Individual errors in formation enthalpy and Gibbs free energy are given in 

Supplementary Tables XXIX and XXXI, respectively. Units are in eV/atom. 

 

 ΔHf(calc)-ΔHf(exp) ΔGf(calc)-ΔGf(exp) 
 ME MAE RMSE ME MAE RMSE 

PBE 0.24 0.24 0.13 0.19 0.20 0.13 
PBE(+U) 0.22 0.23 0.13 0.17 0.19 0.12 
PBED3 0.18 0.20 0.12 0.14 0.16 0.12 

PBED3(+U) 0.17 0.18 0.12 0.12 0.14 0.12 
PBEsol 0.17 0.18 0.11 0.12 0.14 0.11 

PBEsol(+U) 0.15 0.16 0.12 0.10 0.13 0.11 
SCAN 0.01 0.06 0.07 -0.04 0.06 0.07 

 
 
Table X. Lattice parameters and internal coordinates of SnO. Units: a, c, and 2uc in 

angstroms, c/a and u are dimensionless. Experimental data is ICSD coll code 16481. 

 

 a c c/a u 2uc 

Experiment 3.803 4.838 1.272 0.238 2.306 

PBE 3.858 5.027 1.303 0.231 2.320 

PBED3 3.824 4.729 1.237 0.246 2.324 

PBEsol 3.798 4.723 1.244 0.245 2.310 

SCAN 3.794 4.863 1.282 0.237 2.301 
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Table XI. Lattice parameters and internal coordinates of PbO. Units: a, c, and 2uc in 

angstroms, c/a and u are dimensionless. Experimental data is ICSD coll code 62842. 

 

 a c c/a u 2uc 

Experiment 3.974 5.022 1.264 0.235 2.361 

PBE 4.050 5.523 1.364 0.215 2.372 

PBED3 4.031 4.943 1.226 0.239 2.364 

PBEsol 3.988 5.033 1.262 0.235 2.364 

SCAN 3.982 5.106 1.282 0.232 2.366 

 
 
 
Table XII. Transition pressures for 202 Wurtzite-ZnS (2H) to 201 NaCl rocksalt 
prototype in ZnO and 406 PbO2-alpha to 414 PdF2 (cP12) prototype in SnO2. Ueff=0 in 
SnO2, hence no values are shown for +U. 
 

ZnO SnO2 
PBE 11.7 18.2 

PBED3 7.9 14.7 
PBEsol 8.9 14.5 
LDA 9.1 12.8 

SCAN 8.0 17.6 
PBE+U 11.9  

PBED3+U 7.6  
PBEsol+U 8.6  
LDA+U 8.2  

Experiment 
6.3 [164] 7.3 

[165] 9 
[98,160-163] 

14.2-21 [123] 
15.2 [166] 
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Fig. 1. Relaxation of Li2O from the 102 Anti-CdCl2(3R) prototype. Green balls: Li, red 
balls: O. 
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Fig. 2. Relaxation of CaO from the 206 HgS prototype (viewed from two directions). 
Blue balls: Ca, red balls: O. 
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Fig. 3. Relaxation of Al2O3 from the 303 La2O3 prototype. Blue balls: Al, red balls: O. 
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Fig. 4. Experimental formation enthalpy, ΔHf(exp), versus difference between calculated 

and experimental formation enthalpy, ΔHf(calc)-ΔHf(exp). The average of ΔHf(calc)-ΔHf(exp) 

over all systems, <ΔHf(calc)-ΔHf(exp)>, for each approximation is shown: solid and broken 

lines indicate values without and with (+U), respectively. 
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Fig. 5. Experimental formation Gibbs free energy, ΔGf(exp), versus difference between 

calculated and experimental formation Gibbs free energy, ΔGf(calc)-ΔGf(exp). The average 

of ΔGf(calc)-ΔGf(exp) over all systems, <ΔGf(calc)-ΔGf(exp)>, for each approximation is 

shown: solid and broken lines indicate values without and with (+U), respectively. 
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Fig. 6. Relative formation energies for monovalent cation oxides. Blue arrows indicate 

structures reported in the ICSD.  
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.  

Fig. 7. Relative formation energies for divalent cation oxides. Blue arrows indicate 

structures reported in the ICSD, and red arrows are from another literature: ZnO in the 

202 Sphalerite-ZnS (cF8) prototype [169].  
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Fig. 8. Relative formation energies for trivalent cation oxides. Arrows indicate 

structures reported in the ICSD. Blue arrows indicate structures reported in the ICSD, 

and red arrows are from another literature: Ga2O3 in the 301 Bixbyite-Mn2O3 prototype 

[103]. 
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Fig. 9. Relative formation energies for quadrivalent cation oxides. Blue arrows indicate 

structures reported in the ICSD, and red arrows are from other literature: SiO2 in the 

413 CaCl2 prototype [115], SnO2 in the 406 PbO2-alpha prototype [123,124], and PbO2 

in the 404 Brookite-TiO2 (HfO2), 412 HfO2, 413 CaCl2, and 414 PdF2 (cP12) prototypes 

[126]. 
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Fig. 10. Orientation of SiO4 and GeO4 tetrahedrons in the 415 Quartz-low structure as 

viewed from two different directions. 
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Fig. 11. Relative formation energies for pentavalent cation oxides. Blue arrows indicate 

structures reported in the ICSD.  
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Fig. 12. Relative formation energies for hexavalent cation oxides. Blue arrows indicate 

structures reported in the ICSD. 
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