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We investigate the quantization of adiabatic charge transport in the insulating ground state of
finite systems. Topological charge pumps are used in experiments as an indicator of topological order.
In the thermodynamic limit, the transport can be related to a topological Berry phase and is thus
strictly quantized. This is no longer true for finite systems. We derive finite-size corrections to the
transport for both non-interacting and interacting systems and relate them to analytic properties of
the single- and many-body Berry curvature. We find that they depend on the details of experimental
realizations of the pumps. While they can be non-negligible even in large systems, a proper choice
of the pumping protocol can suppress these corrections.

I. INTRODUCTION

Charge transport in electronic devices is usually asso-
ciated with dissipation and heat production. Topological
pumping, first introduced by Thouless [1], provides a ro-
bust and controllable alternative for mesoscopic electron-
ics with minimal dissipation [2–4]. In such a topological
or Thouless pump, an adiabatic cyclic variation of param-
eters leads to a strictly quantized transport in an insulat-
ing state of non-interacting fermions, which is related to
an integer topological invariant, the Chern number. The
concept can be generalized to interacting systems and the
quantized transport survives moderate disorder [5, 6]. It
is also closely related to the theory of polarization devel-
oped in the early 1990s [7–10]. Topological pumping does
not rely on interaction effects such as Coulomb block-
ade and can be observed for neutral particles as recently
demonstrated with ultra-cold atoms [11, 12]. Imposing
further symmetries, such as time-reversal symmetry, it
is also possible to construct topological pumps for spins
without net transport of charge [13–16], which has inter-
esting applications in spintronics.

Charge or spin transport in an adiabatic Thouless
pump is quantized, however, only in the thermodynamic
limit of infinite system size [1]. The demand for size
reduction in information technology (IT) makes it neces-
sary to understand and minimize size-related deviations
from quantized transport in topological pumps. This is
the aim of the present paper. Corrections to quantiza-
tion of topological transport had been discussed before,
e.g. in [17], and were attributed to the finiteness of the
critical gap when the system size is finite. Since there is a
critical gap-closing in finite systems with periodic bound-
ary conditions, this argument does not generally apply.
The origin of these deviations is rather the discreteness
of the momentum eigenmodes associated with finite sys-
tems. We show that the corrections decrease, first, poly-
nomially, and then exponentially with system size L. The
corresponding characteristic length scale ξ can be related
to analytic properties of the single- or many-body en-
ergy spectrum. In the case of non-interacting fermions,
ξ is determined by the width of the instantaneous single-

particle band structure, and the transport properties can
be optimized by a proper choice of the path of the Thou-
less pump in parameter space keeping this width as small
as possible at all times.

As a specific example, we first discuss the simplest
non-interacting topological charge pump, the Rice-Mele
model at half-filling. It describes fermions hopping on
a one-dimensional lattice with staggered on-site energies
and alternating hopping amplitudes [18–20]. We deter-
mine the characteristic length scale ξ analytically and
verify it with numerical results. We then consider one-
dimensional models with interactions. Specifically, we
discuss the super-lattice Bose Hubbard model (SLBHM)
[21, 22] at half-filling which is a bosonic analog of the
Rice-Mele model and possesses a non-degenerate many-
body ground state, but generalizations to other mod-
els including those with artificial dimensions are possi-
ble [23, 24]. Finally, we discuss the extended superlat-
tice Bose Hubbard model (E-SLBHM) at quarter-filling,
which has a two-fold degenerate ground state and a frac-
tional topological charge [25, 26]. As a consequence, a
single cycle of the adiabatic pump leads to a transport
of only half a particle. Using TEBD simulations [27],
we show the exponential scaling of the corrections to
the quantization of the particle transport. Although the
present discussion is focusing on charge pumps, it can be
straightforwardly generalized to spin pumps.

II. NON-INTERACTING FERMIONS

We first discuss one-dimensional topological insulators
of non-interacting fermions on a lattice with period a = 1
and finite number L of unit cells, which is described by a
single-particle Hamiltonian H. For simplicity, we restrict
ourselves to one-dimensional band insulators, but the
generalization to higher spatial dimensions is straight-
forward. Due to discrete translational invariance, the
crystal momentum is conserved and can be restricted to
the first Brillouin zone q ∈ {−π, π} (~ = 1). In a finite
system with periodic boundary conditions, the crystal
momentum takes on discrete values qj = 2πj/L − π,
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for j = 1, 2, ..., L. It is convenient to introduce the
momentum-shifted Hamiltonian H(q) = e−iqx̂H eiqx̂.
The eigenfunctions of H(q) are cell-periodic Bloch func-
tions unq(x) = e−iqxψnq(x), where the index n denotes
the nth Bloch band.

We now assume that the parameters of the Hamil-
tonian are varied in time with period T , i.e. H(t) =
H(t+ T ) and that the system remains in a gapped state
at all times. If the parameter variation is sufficiently
slow and encircles a gap-closing point, there can be an
adiabatic charge (spin) transport. As shown by Thou-
less et al. [1, 28], this transport is strictly quantized in
the thermodynamic limit L→∞, and can be related to
an integer topological invariant. We will now revisit this
derivation.

The instantaneous (adiabatic) eigenstates of H(q, t)
are e−iqx̂|un(q, t)〉. In order to determine the adiabatic
current and the transported charge, we need to consider
corrections to theses states up to the first order in the
rate of change of the Hamiltonian. Assuming a non-
degenerate ground state |u0(q, t)〉 with a finite energy
gap, we find in the lowest order of time-dependent per-
turbation theory

|ψ0(q)〉 = |u0(q)〉+ i
∑
n 6=0

|un(q)〉〈un(q)|∂tu0(q)〉
εn(q)− ε0(q)

. (1)

Here, εn(q) are the instantaneous eigenenergies and we
dropped the overall dynamical phase factor which will
be cancelled later on as well as the dependence on t for
notational convenience. The single-particle velocity oper-
ator v̂ = −i[x̂, H] reads in the momentum-shifted frame
v̂(q) = e−iqx̂v̂eiqx̂ = ∂H(q)/∂q, which yields in the state
|ψ0(q)〉:

v0(q) = 〈ψ0(q)| v̂ |ψ0(q)〉 (2)

=
∂ε0(q)

∂q
+ i
∑
n6=0

(
〈u0|∂qH(q)|un〉〈un|∂tu0〉

εn(q)− ε0(q)
− c.c.

)

=
∂ε0(q)

∂q
+ i

(〈∂u0

∂t

∣∣∣∂u0

∂q

〉
−
〈∂u0

∂q

∣∣∣∂u0

∂t

〉)
.

In the last step we have used that 〈u0(q)|∂qH(q)|un(q)〉 =
〈∂qu0(q)|un(q)〉 (ε0(q)− εn(q)), which follows directly
from the eigenvalue equation of the momentum-shifted
Hamiltonian.

In an insulating state, we have to add the contribu-
tions of all occupied momentum modes to obtain the total
current. In particular, for systems with only the lowest

Bloch band occupied, JL = 1
L

∑L
j=1 v0(qj). The total

charge (particle number) QL, transported in a period T ,
is then given by the integral of the current. Taking into
account that the time-independent Hamiltonian does not
support a current when summing over all quasi-momenta

of a band, one finds

QL =

∫ T

0

dt JL ≡
∫ T

0

dt
1

L

L∑
j=1

Ω0(qj , t) (3)

=

∫ T

0

dt
1

L

L∑
j=1

i

(〈∂uj0
∂t

∣∣∣∂uj0
∂q

〉
−
〈∂uj0
∂q

∣∣∣∂uj0
∂t

〉)
.

where |uj0〉 ≡ |u0(qj)〉 and Ω0(q, t) is the Berry curvature
of the n = 0 Bloch band. In the thermodynamic limit,
L→∞, the sum in eq.(3) can be replaced by an integral
1
L

∑L
j=1 fj =

∫ π
−π

dq
2πf(q) and one obtains an integral over

a closed surface of a torus

QL = −i
∫ T

0

dt

∫ π

−π

dq

2π

(〈∂u0

∂q

∣∣∣∂u0

∂t

〉
−
〈∂u0

∂t

∣∣∣∂u0

∂q

〉)
,

(4)
which is an integer number [1].

For a finite system, however, the sum over lattice mo-
menta can not be replaced by an integral. As a conse-
quence, the transported charge is no longer quantized. In
the following, we will discuss the deviation of the trans-
ported charge (Q) from its thermodynamic limit (QL)
∆QL = QL − Q. In most relevant cases, the Berry cur-
vature Ω0(q) is analytic in the whole Brillouin zone, i.e.
there exists a strip (−π, π) × (−c, c) in the extension of
the Brillouin zone to the complex q-plane where Ω0(q, t)
is analytic and its derivatives exist to all orders and they
are periodic in q. While generically the difference be-
tween an integral and its approximation by a finite sum
decreases only polynomially in 1/L, it has been shown in
[29] that it can scale exponentially for integrals of peri-
odic functions and is determined by the value of c = c(t)

|∆QL| ≤
∫ T

0

dt
2Me−c(t)L

1− e−c(t)L
. (5)

Here M is a bound on |Ω0(q, t)| within the first Bril-
louin zone. For small systems, |∆QL| scales polyno-
mially as 1/L and turns over to an exponential scaling
for large L. The characteristic length ξ beyond which
the charge transport is approximately quantized is deter-
mined by the values of 1/c(t) along the parameter path
of the pump. If the parameter path is chosen such that
c(t) = c = ξ−1 is constant in time, a simple exponential
scaling emerges. For systems sizes L smaller than ξ the
transport is no longer integer quantized.

We will now show that ξ is determined by the curvature
of the band structure εn(q). To see this we write the
Berry curvature in the form

Ω0(q) = i
∑
n 6=0

(
〈u0|∂qH(q)|un〉〈un|∂tu0〉

εn(q)− ε0(q)
− c.c.

)
. (6)

Eq.(6) shows that Ω0(q) attains a pole in the complex
q-plane when the energy gap closes for a complex value
q = q′ + iq′′. Most importantly, in the flat-band limit
where ε(q) = const, the Berry curvature is analytic in
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the whole complex plane and thus the adiabatic charge
transport is strictly quantized irrespective of system size.
Thus choosing a topological pump which operates as close
as possible to the flat-band limit will support strictly
quantized charge transport even for very small systems.

It is interesting to note at this point that while the
transported charge is strictly quantized only in the ther-
modynamic limit, a related quantity, the winding of the
(electric) polarization, is quantized for arbitrary system
size. Within the theory of polarization, King-Smith and
Vanderbildt [7] and Resta [10] showed that in the ther-
modynamic limit L→∞, the adiabatic particle (charge)
current JL coincides with the time derivative of the
many-body polarization

JL→∞ =
∂

∂t
P, P =

1

2π
Im ln

〈
ei

2π
L X̂
〉
, (7)

where X̂ =
∑N
j=1 x̂j is the total position operator of all

N particles. The polarization winding after a full period

of an adiabatic charge pump, ∆P =
∫ T

0
dt ∂tP , is given

by the Chern number of the pump and is thus integer
quantized (for lattice constant a = 1). (Note that 2πP ,
eq.(7), is the phase of a complex exponential. As such, its
winding after going through a full cyclic variation in pa-
rameter space is trivially integer-quantized modulo 2π.)

In the following, we will illustrate our findings for a
simple topological model of non-interacting fermions, the
Rice-Mele model [18], shown in Fig.1 (a). Here, fermions
move along a one-dimensional lattice with alternating
hopping amplitudes t1, t2 ≥ 0 and a staggered on-site en-
ergy offset ∆. In second quantization, the Hamiltonian
reads

H = −t1
∑
j,even

c†jcj+1 − t2
∑
j,odd

c†jcj+1 + h.a.

−∆
∑
j

(−1)jc†jcj , (8)

where cj , c
†
j are fermionic annihilation and creation oper-

ators at lattice site j. Since the unit cell consists of two
sites, the single-particle energy spectrum has two bands
ε±(q) = ±ε(q)

ε(q) =
√

∆2 + (t1 + t2eiq)(t1 + t2e−iq). (9)

The band gap closes for ∆ = 0 and t1 = t2. For ∆ = 0,
the Rice-Mele model reduces to the Su-Schrieffer-Heeger
model [30]. At half-filling, the latter possesses two differ-
ent topological phases protected by inversion symmetry,
which differ in their Zak (or Berry) phase by π. The
two phases cannot be smoothly connected without clos-
ing the energy gap or breaking the inversion symmetry.
However, introducing the staggered potential allows one
to adiabatically connect the two phases. Performing a
closed loop in the parameter space of ∆ and t1 − t2 en-
circling the origin leads to a quantized transport of a
single charge (in the thermodynamic limit). The charge
transport can be related to an effective Chern number.

Extending lattice momenta to the complex q-plane, i.e.
q = q′+ iq′′ one finds that there is a closing of the energy

gap for q′ = π and cosh (q′′) = A =
∆2+t21+t22

2t1t2
. This yields

for the characteristic length

ξ−1 ' ln
(
A+

√
A2 − 1

)
= ln

(
1 + ∆ε

1−∆ε

)
. (10)

Here ∆ε = ε(q)min/ε(q)max is the energy gap relative to
the total energy width. One recognizes that in the limit
of flat bands, where t1t2 = 0 at all times and conse-
quently ε(q) = constq, the characteristic length vanishes,
ξ = 0. In this limit the adiabatic charge transport is
strictly quantized for any system size L. Away from this
limit there are exponential corrections to the transported
charge, see Fig.1 (c), while the polarization winding ∆P
always attains an integer value, see Fig.1 (d). For small
relative energy gaps the characteristic length can become
rather large (ξ ∼ 1/∆ε) leading to substantial corrections
even for rather large systems.

FIG. 1. (a) Rice-Mele model. (b) Sketch of protocol for charge
pumping in the parameter space of the Rice-Mele model. (c)
Transported charge as a function of angle ϕ in the ∆−(t1−t2)
plane for different values of L. The path for the pump is
parameterized as t1 = 1 − 0.5 cosϕ, t1 = 1 + 0.5 cosϕ, and
∆ = 2/

√
3 sinϕ. (d) The same for the polarization. One

recognizes strictly integer-valued winding of P for all values
of L, while the particle transport is only quantized in the
thermodynamic limit L→∞.

We have verified the system-size dependence accord-
ing to eq.(5) numerically, see Fig.2(a). There we have
plotted the transported charge as a function of system
size obtained from evaluating the finite sum, eq.(3), for a
larger range of system sizes (L = 2, . . . , 30). The param-
eter path of the pump has been chosen in such a way that
c(t) = constt. One clearly recognizes the predicted ex-
ponential scaling and the extracted characteristic length
fit to the estimates given in eq.(10). Fig.2(b) shows the
characteristic length ξ as function of ∆t = t1 − t2 and
∆. The closer the parameter path encircles the criti-
cal point, the larger value ξ takes. In this regime finite
size-corrections to the particle transport can become non-
negligible even for rather large systems.
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FIG. 2. (a) Transported charge as a function of L. Shown
are numerical results obtained from eq.(3) (dots) and ex-
ponential fits (full lines) for parameter paths t1,2 = 1 ±√

(A− 1)/(A+ 1) cosϕ, and ∆ =
√

2(A− 1) sinϕ, and A =
1.1, 1.2, 1.5 (from the top). The fitted length scales fit to the
bounds obtained from eq.(10). (b) Contour plot of character-
istic length scale of finite-size corrections for the Rice-Mele
model as a function of t1 − t2 and ∆, eq.(10), cut at ξ = 10.
(The octagonal shape of the inner part is due to finite numer-
ical precision.)

III. INTERACTING SYSTEMS

A. Thouless pump for non-degenerate ground
states

The above discussion can be extended to interacting
many-body systems or systems with disorder. Let us first
consider the case of an interacting lattice model with a
non-degenerate ground state. The transport in a system
of size L upon time-periodic changes of the Hamiltonian
can be calculated in a similar way as in section II, replac-
ing the single-particle wave functions by the many-body
eigenstates |Φn〉. Assuming a finite energy gap between
the many-body ground state |Φ0〉 and the excited states,
the transported charge in a period T can be expressed as

QL = − i

L

∫ T

0

dt
∑
n6=0

〈Φ0|P |Φn〉〈Φn|∂tΦ0〉
E0 − En

+ c.c. (11)

Here P =
∑N
i=1 pi = −i

∑N
i=1 ∂/∂xi denotes the total

momentum of all N particles.
Niu and Thouless have shown that in the thermody-

namic limit N,L → ∞ with N/L = const., the trans-
ported charge in an insulating state can be related to an
integral of an appropriate Berry curvature over a closed
surface and thus is integer quantized [5]. To see this they
considered the ground state of the N -particle Hamilto-
nian with twisted boundary conditions: i.e.

Φ(x1, . . . , xj + L, . . . , xN ) = eiβΦ(x1, . . . , xj , . . . , xN )
(12)

for all j ∈ {1, ..., N}. Here β = αL is a continuous pa-
rameter that can be varied from −π and π. A canoni-
cal transformation |Ψ〉 = exp{−iα

∑
j xj}|Φ〉 transforms

the problem to one with periodic boundary conditions

and new Hamiltonian H(α) = e−iαX̂HeiαX̂ . H(α) con-
tains a gauge potential α, i.e. all particle momenta

pj = −i∂/∂xj are replaced by p̃j = −i∂/∂xj + α, i.e.

P → P̃ . The corresponding many-body eigenstates and
eigenenergies become α dependent, i.e. |Ψn(α)〉 and
En(α).

Let us now consider the pumped charge in the
ground state of H(α). Making use of 〈Φn|P̃ |Φ0〉 =
〈Φn|∂α|Φ0〉(E0 − En) one finds

Q(α) = − i

L

∫ T

0

dt

∑
n 6=0

〈∂αΦ0|Φn〉〈Φn|∂tΦ0〉 − c.c.


= − i

L

∫ T

0

dt

(〈∂Φ0

∂α

∣∣∣∂Φ0

∂t

〉
−
〈∂Φ0

∂t

∣∣∣∂Φ0

∂α

〉)
.(13)

Averaging over all values of α in {−π/L, π/L} yields

Q̄ =

∫ π

−π

dβ

2π
QL =

L

2π

∫ π/L

−π/L
dαQL(α) (14)

= − i

2π

∫ T

0

dt

∫ π/L

−π/L
dα

(〈∂Φ0

∂α

∣∣∣∂Φ0

∂t

〉
−
〈∂Φ0

∂t

∣∣∣∂Φ0

∂α

〉)
.

Q̄ is an integral of the many-body Berry curvature
Ω0(α, t) over a closed surface and is thus integer quan-
tized. Niu and Thouless argued that for L→∞

QL ≡ Q(α = 0) = Q̄ (15)

and the transported charge becomes integer quantized.
To obtain the finite-size corrections we note that the

difference between Q̄ and QL = Q(0) is just the error
of the mid-point approximation of the integral, which is
given by a similar expression as in eq.(5) [29]

∣∣QL − Q̄∣∣ ≤ ∫ T

0

dt
2Me−1/ζ

1− e−1/ζ
=

∫ T

0

dt
2Me−L/ξ

1− e−L/ξ
(16)

Here Ω0(β) is analytic in β ∈ {−π, π} × {−ζ−1, ζ−1} or
equivalently in α ∈ {−π/L, π/L} × {−ξ−1, ξ−1}. Thus
the finite-size corrections to adiabatic charge transport
are determined by the analytic properties of the many-
body Berry curvature corresponding to the Hamiltonian
H(α) in a complex-valued gauge field α = α′ + iα′′. The
characteristic length ξ of finite-size corrections can be
obtained from the closure of the many-body gap ∆E(α)
for a complex α.

Estimating ξ requires analytic knowledge of the many-
body gap which is in general rather involved. We
will thus restrict ourselves in the following to verifying
the exponential size-scaling numerically. To this end
we use TEBD (time-evolving block decimation) simu-
lations [27] with periodic boundary conditions. Specif-
ically we consider the bosonic analogue of the Rice-
Mele model, the super-lattice Bose Hubbard model [21].
The Hamiltonian is identical to (8), with bosonic rather
than fermionic operators and with an additional term
H1 =

∑
j(U/2)nj(nj − 1) describing onsite repulsion

with strength U > 0. In the hard-core limit, realized
for U � t1, t2, |∆| the model can be mapped to the Rice
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Mele model. In Fig.3 we show the dependence of the
transported charge on the number of sites N . The re-
sults verify the exponential scaling.

FIG. 3. Transported charge in the superlattice Bose Hubbard
model at half-filling as function of φ for different number of
sites N . The path for the pump is parameterized as t1,2 =
1± 0.5345 cosφ, ∆ = 1.2649 sinφ, and onsite interaction U =
153.4508. The insert shows the deviation of the transported
charge after one cycle from unity.

B. Thouless pump for degenerate ground states
and U(n) Berry phase

Due to interactions, the ground state can sponta-
neously break the discrete translational symmetry of the
underlying model and multiple degenerate ground states
can exists. In such a case a topological pump can transfer
one of the ground states into the other states and multiple
pump cycles are required to return to the original bulk
state. The topological invariant describing such a quan-
tized charge pump in the thermodynamic limit is then a
U(n) Berry phase, where n is the degree of degeneracy.
The above discussion can straightforwardly be general-
ized to this case. The only difference is that the Berry
curvature is integrated over the time of a cycle return-
ing the broken-symmetry bulk state to itself, which is a
multiple of the time period of the underlying many-body
Hamiltonian.

We will now illustrate this for the example of the
extended SLBHM [25, 31]. This model is similar to
the SLBHM but contains in addition nearest and next-
nearest neighbor interactions V1 and V2 respectively.

H = −t1
∑
even

a†jaj+1 − t2
∑
odd

a†jaj+1 −∆
∑
j

(−1)jnj

+
∑
j

(
U

2
nj(nj − 1) + V1njnj+1 + V2njnj+2

)
(17)

Here nj = a†jaj . For sufficiently large values of U and V1,2

this model has Mott-insulating (MI) ground states with

fractional filling, which spontaneously break the trans-
lational symmetry of the superlattice. MI phases exist
for fractional fillings ρ = 1/4, 1/3, 1/2.... In the follow-
ing we will consider the ρ = 1/4 MI state which is doubly
degenerate. For ∆ = 0 the Hamiltonian is inversion sym-
metric and possesses four distinct ground-state phases il-
lustrated in Fig.4 for the atomic limit (U � V1 > V2 �
min[t1, t2]). These phases can be distinguished by their
behavior under inversion at a fixed bond and by the Zak
phase with respect to that bond, which defines a topo-
logical quantum number [26]. A Thouless pump trans-
fers the bulk state into itself only after two cycles and is
associated with a U(2) Berry phase. As a consequence
the pumped charge in a single cycle averaged over he
bonds and in the thermodynamic limit is 1/2. This is
illustrated in Fig.5 (a), where we show numerical re-
sults obtained by TEBD. Since TEBD simulations are
very difficult for periodic boundary conditions we here
choose open boundary conditions. To avoid the influ-
ence of the edges we calculate the transported charge
only at bonds in the center of the chain. We consider
conditions where the distance to the boundaries is much
larger than the localization length of the edge states and
where this length is smaller than the anticipated charac-
teristic length scale of the transport. We also make sure
that the Thouless pump does not lead to transitions into
higher bands at the edges. Due to the density-wave char-
acter of the ground state the transported charge differs
for different bonds but averages to about 0.5. In Fig.5
(b) we illustrate the charge transport for different system
sizes normalized to the ideal values that take into account
that in a single pump cycle the occupied edge state moves
from the left to the right. As expected ∆Q/∆Qideal ap-
proaches unity with increasing system size and when the
difference of the tunneling rates is larger.

FIG. 4. Schematics of Thouless pump for ρ = 1/4. The
ground state is two-fold generate and two pump cycles are
needed to return to the initial bulk state.

IV. SUMMARY AND OUTLOOK

Adiabatic topological transport of charge in insulat-
ing ground states is in general not quantized in finite
systems. We derived an analytical upper bound to devi-
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(a) (b)

FIG. 5. (a) Transported charge across successive bonds in
the unit cell of ExtSLBHM (see inset) as function of φ in
the atomic limit. The pump cycle is parameterized t1,2 =
1
2

(
1 ∓ cos(φ)

)
, ∆ = sin(φ). Here N = 18 lattice sites and

open boundary conditions are considered. Note that due to
the two-fold degeneracy two pump cycles are needed for an
integer particle transport. (b) Averaged transported charge
∆Q normalized to ∆Qideal in a system with open boundary
conditions. Dashed lines show results for N = 18 and N = 34
for t1,2 = 1

2

(
1.1 ∓ 0.9 cos(φ)

)
, ∆ = 1.56 sin(φ). The devia-

tions of transported charges from their ideal values are |∆Q−
∆Qideal| = 0.0067 and 0.001 respectively. Full line correspond
to N = 18 and N = 34 for t1,2 = 1

2

(
1.05 ∓ 0.95 cos(φ)

)
,

∆ = 0.95 sin(φ). Here, |∆Q − ∆Qideal| = 0.0038 and 0.0012
respectively. ∆Qideal takes into account the contributions of
the edge states at the beginning and the end of the pump
cycle, ∆Qideal = 0.5294 for N = 18 and 0.5151 for N = 34.
Parameters for both figures are V1 = 4, V2 = 2 and U = 40.

ations from integer values for both non-interacting and
interacting systems, which results from the discreteness
of momentum space in finite systems and is determined
by analytic properties of the Berry curvature. Specifi-
cally, we considered the Rice-Mele model as an exam-
ple of a non-interacting model exhibiting topological or-

der. Through dynamical simultations of a charge pump
and direct evaluation of the finite sum eq.(5), we verified
the exponential scaling of the corrections to the quan-
tized particle transport, which agrees with analytic pre-
dictions. Furthermore, we investigated the same effect
for the super-lattice Bose-Hubbard model and the ex-
tended super-lattice Bose-Hubbard model as examples of
interacting systems. A slightly modified argument using
the many-body wave-function can be made for the exis-
tence of exponential finite-size corrections in this case.
However, the evaluation for the explicit expression of
the characteristic length scale is only possible if ana-
lytic knowledge of the many-body gap exists. We ver-
ified the exponential scaling using TEBD. Our findings
suggests that deviations can become non-negligible even
for larger systems, which may explain small corrections
on top of non-adiabatic contributions observed in recent
experiments [11]. On a more conceptual level, our find-
ings highlight the difference between the winding of Berry
(Zak) phase (or polarization) and quantized transport.
While the former indicate the existence of topological or-
der in systems of any size, adiabatic transport strictly
shows topological order only for infinite systems.
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