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Nearly aligned graphene on hexagonal boron nitride (G/BN) can be accurately modeled by a Dirac Hamilto-
nian perturbed by smoothly varying moiré pattern pseudospin fields. Here, we present the moiré-band model
of G/BN for arbitrary small twist angles under a framework that combines symmetry considerations with input
from ab-initio calculations. Our analysis of the band gaps at the primary and secondary Dirac points highlights
the role of inversion symmetry breaking contributions of the moiré patterns, leading to primary Dirac point
gaps when the moiré strains give rise to a finite average mass, and to secondary gaps when the moiré pseu-
dospin components are mixed appropriately. The pseudomagnetic strain fields which can reach values of up to
∼ 40 Tesla near symmetry points in the moiré cell stem almost entirely from virtual hopping and dominate over
the contributions arising from bond length distortions due to the moiré strains.

PACS numbers: 73.22.Pr, 71.20.Gj,31.15.aq

I. INTRODUCTION

Graphene is a single-atom thick sheet of carbon atoms ar-
ranged in a honeycomb lattice [1–5]. In the past few years,
hexagonal boron nitride (hBN) which also consists of van
der Waals coupled bipartite honeycomb lattice layers, has
emerged as a miracle substrate for graphene [6, 7]. While
graphene is a semimetal with a linear band crossing at the
neutrality point, hBN is an insulator with a large bandgap of
∼ 5.8 eV [8–10] due to its lack of inversion symmetry. Re-
cent experiments have made it clear that graphene is very flat
with reduced density of puddles when it is placed on hBN
substrate [11], allowing high carrier mobilities without sac-
rificing mechanical stability [6]. This drastic improvement
in sample quality opened the door to the observation of new
physics, including the discovery of new graphene fractional
quantum Hall states [12, 13], Fermi velocity renormalization
[14], and anomalously large magneto-drag [15]. However,
the influences of interlayer coupling between graphene and
hBN become much stronger and are readily observed when
both lattices have similar orientations. The interlayer cou-
pling between carbon atoms in graphene and boron and nitro-
gen atoms in boron nitride is very large (300−450meV) [16],
allowing for the possibility of strong substrate-induced distor-
tions of the isolated graphene electronic structure when placed
on a hBN substrate. Ab-initio theory has predicted that com-
mensurate graphene on hBN (G/BN) would inherit a 50 meV
bandgap from the substrate [17].

Due to ∼ 1.7% lattice mismatch between graphene and
hBN lattices [10, 16, 18], moiré supperlattices whose peri-
odicity depends on the twist angle, were observed in the scan-
ning tunneling microscopy [11] and atomic force microscopy
[19]. It has been shown that these results do not rely on the
twist angle taking on discrete values giving commensurate su-
perlattices, but hold for any continuous value [20]. Collec-

tively, these results imply that G/BN should not have a band
gap. However, the experimental observation of sizeable band
gaps [19, 21–23] has led to theories where the nonzero av-
erage mass generation introduced by the partial commensura-
tion of the G/BN layers [24, 25], and electron-electron interac-
tion effects [26, 27] play a relevant role. Other manifestations
of the moiré pattern effects in G/BN include the Hofstadter
butterfly [28, 29], topological valley current [30, 31], tunable
Van Hove singularities in the low-energy regime [32], and the
emergence of secondary Dirac cones (sDC) at the edge of the
moiré Brilluoin Zone (mBZ) [23, 29].

In this work we present a theory of the moiré band model
of G/BN for arbitrary twist angles under a framework that
combines symmetry considerations and microscopic ab ini-
tio models for the moiré patterns [16, 33]. Electronic struc-
ture theories of nearly aligned G/BN are most simply mod-
eled through the continuum Hamiltonian of graphene subject
to moiré patterns that vary slowly on an atomic scale. In this
case we can formulate effective low energy theories in which
the Hamiltonian has the periodicity of the moiré pattern and
use the simplifications of Bloch’s theorem to obtain the moiré
band [20, 34], thus bypassing the need to diagonalize large su-
percell approximants of incommensurable crystals often done
for studying twisted bilayer graphene [35–39]. By establish-
ing a unified framework that uses symmetry considerations
[33] and microscopic ab initio moiré band models [16, 24] we
provide realistic estimates of the first harmonics parameters
in G/BN and analytical expressions for the behavior of the
band gap near the primary and secondary Dirac points. Our
analysis allows us to understand the dependence of the moiré
band Hamiltonian parameters on twist as well as the atomic
lattice configuration through the study on rigid and relaxed
structures, which in turn allows us to distinguish the strain
fields resulting from virtual hopping and the effects of bond
distortions due to relaxation strains. For the latter we further
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distinguish the changes in the moiré pattern due to modifica-
tions in stacking registry from the modifications in the intrin-
sic band structure of graphene due to the bond length distort-
ing strains. Using approaches established in Refs. [16, 24] we
examine how the twist and lattice relaxation can influence the
band gap at the primary and secondary Dirac cones identify-
ing the relevance of inversion asymmetric terms for opening
up a band gap.

The paper is structured as follows. Section II briefly intro-
duces and compares the moiré band presented in earlier liter-
ature. Subsequently, in section III we explain the relaxation
model and the procedure to obtain the modified Hamiltonian
parameters at various twist angles. In section IV we present
the analysis on the resulting moiré band and the band gaps for
the primary and secondary Dirac points, before we present the
summary in section V.

II. MOIRÉ BAND MODEL

The Dirac electrons of monolayer graphene deposited on
a BN substrate at nearly perfect alignment experience peri-
odic moiré pattern perturbations whose length scale depends
on the lattice constant difference between crystals and the
twist angle. Using the BN substrate as a fixed reference
the crystal lattice constant difference is represented through
ε = (aG−aBN)/aBN ≈−1.7 and the twist angle is represented
by θ . A generic approach to analytically describe the moiré
pattern perturbations in van der Waals crystals is based upon
the realization that the interlayer coupling is smoothly vary-
ing over the moiré unit cell since the interlayer distance is
substantially larger than the interatomic distance[20]. Conse-
quently, for a heterostructure with a small lattice mismatch at
a nearly perfect alignment (|ε|, |θ | � 1), the influence of the
substrate is effectively captured by the long wavelength com-
ponents of the moiré pattern as defined by first harmonics ~Gm
[16, 24, 33] which are related to graphene and BN reciprocal
lattice vectors~gm and~gBN

m through the following relations, see
Fig. 1:

~gm = R̂2π(m−1)/6

(
0,

4π

3a

)
, m ∈ {1,2, ...,6} (1)

~Gm =~gBN
m − R̂θ~gm = [(1+ ε)− R̂θ ]~gm

≈ ε~gm−θ(ẑ×~gm).
(2)

We denote the carbon-carbon distance on a graphene sheet as
a ≈ 1.42Å, and R̂θ is a rotation by an angle θ . In the G/BN
systems the reciprocal lattice vector magnitude for the first
harmonics is approximately G = |~Gm| ≈ (4π/3a)

√
ε2 +θ 2.

They define the mBZ, which is . 5% of graphene-BZ’s size
when θ . 2◦ considered in our calculations, see Fig. 2. The
corresponding moiré period lM =

√
3a/
√

ε2 +θ 2 ranges from
∼6 nm up to a maximum of ∼14 nm which is attained in a
perfectly aligned G/BN. The moiré band Hamiltonian, con-
structed by adding the moiré pattern perturbation on top of
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FIG. 1. (Color online) The first harmonics reciprocal space wave
vectors and the moiré Brillouin Zone (mBZ) in a perfectly aligned
G/BN (~Gm, θ = 0) and at a finite twist angle (~G′m, θ > 0). The
relative size of the mBZ with respect to the graphene BZ is defined
by the factor ε̃ =

√
ε2 +θ 2, and is rotated by ϕ under twist, such that

χθ = cos(ϕ) ≈ ε/ε̃ . The Dirac electrons in moiré band are coupled
by interger multiples of these wave vectors which generally lead to
band splitting at the mBZ edges. The primary valley is located at
the mBZ center (Γ), while K and K′ refer to the secondary valleys at
which sDC might be found.

the pristine graphene Hamiltonian,

H = h̄υ~p ·~στ0 +H0(~r)σ0τ0 +Hz(~r)σ3τ3 + ~Hxy(~r) ·~στ3 (3)

= h̄υ~p ·~στ0 +(V0 +V (~r))σ0τ0 +(m0 +m(~r))σ3τ3 +~A(~r) ·~στ3

that is periodic over one moiré length, and we take the Fermi
velocity υ ∼ 106 m/s [14]. We represent the sublattice and
valley pseudospins through σ and τ Pauli matrices and use
the conventions in Refs. [33, 40] where H acts on the four-
component state (ΨAK , ΨBK , ΨBK′ ,−ΨAK′)

T . We have ex-
plicitly separated the ~G = (0,0) Fourier components V0 for
the potential and m0 for the average mass or sublattice poten-
tial difference [18, 24]. The constant V0 represents a global
shift in the Dirac cone’s energy that plays no role in the phys-
ical properties and is set to zero in our present analysis. The
average mass m0 plays an important role in opening a gap at
the primary Dirac cone and it can be increased by commem-
suration strains [24]. The spatially periodic G/BN couplings
give rise to three distinct effects which can be represented by
three local terms in the sublattice pseudospins basis: (1) V (~r)
reflects the periodic sublattice potential, (2) m(~r) describes
the local mass which opens a local gap at the neutrality point,
and (3) ~A(~r) can be interpreted as an in-plane gauge field that
arises due to asymmetric hopping between one carbon atom
and its neighbors on the opposite honeycomb sublattice [41].
The Pauli matrices σi and τi act on the sublattice and valley
degrees of freedom respectively. The form of Eq. (3) reflects
the time-reversal symmetry present in the G/BN system. (In
the representation we use τ3 and ~σ are odd under time rever-
sal.) In this work, we limit our analysis to the primary valley
τ3 = 1.

There are two common ways to construct the moiré pat-
terns Hamiltonians in the literature. In Ref. [33] the moiré
pattern Hamiltonians are parametrized using symmetry con-
siderations that are distinguished by inversion-symmetric and
inversion-asymmetric coupling coefficients, which are de-
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noted as ui and ũi respectively. The other representation
is found in the ab-initio studies of G/BN couplings, which
extract the moiré couplings from Fourier analysis and were
represented through complex numbers in a magnitude-phase
representation Cµ and φµ [16]. Here we show that the two
parametrizations can be mathematically related to each other
exactly in the following manner

V (~r) = υG(u0 f1(~r)+ ũ0 f2(~r)) = 2C0ℜe[eiφ0 f(~r)] (4)
m(~r) = υG(u3 f2(~r)+ ũ3 f1(~r)) = 2Czℜe[eiφz f(~r)] (5)
~A(~r) = υ [ẑ×~∇(u1 f2(~r)+ ũ1 f1(~r))+~∇(u2 f2(~r)+ ũ2 f1(~r))]

= 2Cxy

[
cos(ϕ)(ẑ×1)− sin(ϕ)

]
~∇ℜe[eiφxy f(~r)], (6)

where cos(ϕ) ' ε/ε̃ and sin(ϕ) ' θ/ε̃ can be expressed in
terms of ε̃ =

√
ε2 +θ 2 in the small angle approximation, and

where ϕ is the rotation angle of the moiré pattern discussed in
Appendix A. The real periodic functions f1 and f2 are defined
in the following way

( f1(~r), f2(~r)) = ∑
m
(1, i(−1)m−1) exp(i~Gm ·~r), (7)

and the complex valued function f = ( f1 + i f2)/2 is simi-
lar to the first nearest neighbor structure factor of graphene’s
tight binding model [42] and has been used in Ref. [16, 24]
to represent the triangular modulation of the moiré pattern
in real space. In the above equations the Hamiltonian pa-
rameters ui, ũi are inversely proportional to υG and decrease
when the twist angle is increased, while the parameters in
the magnitude-phase representation, (Cµ ,ϕµ), capture the lo-
cal stacking dependent interlayer coupling and are insensi-
tive to twist angle. We particularly note that for a complete
mapping of the ~Hxy = ~Axy term in a twisted G/BN as de-
fined in Ref. [16] we need to include all of the four parame-
ters (u1, ũ1,u2, ũ2) that define the gauge fields in the xy-plane.
However, the contributions from u2 and ũ2 can be absorbed
into the global phase and can be neglected in our subsequent
analysis of the moiré band [33]. This is equivalent to dropping
the sin(ϕ) term in ~A(~r) of Eq. (6). Their dependence on the
twist angle can be seen clearly from our analytical mapping
in Eqs. (6) and (10) where both terms are scaled according to
χθ = cos(ϕ) ≈ ε/ε̃ , which reflects the amount of rotation in
the moiré first harmonic wave vectors under twist, see Fig. 2.
The unification of both representations can be summed up by
the following equations relating {ui, ũi} and {Cµ ,φµ}:

υG(u0− iũ0) =C0eiφ0 , (8)

υG(ũ3− iu3) =Czeiφz , (9)

υG(ũ1− iu1) = cos(ϕ)Cxyeiφxy ' ε

ε̃
Cxyeiφxy . (10)

It becomes transparent now that Cµ quantifies the strength of
the moiré pattern pseudospins and the phase φµ determines the
ratio between the inversion symmetric ui and asymmetric ũi

parameters. The explicit equations relating them are presented
in Appendix A, together with the specific parameter values
that we have used to model the band structures.

It should be noted that there are three different but equiva-
lent parameter sets to describe the same bands which depend
on the choice of stacking configuration at the origin ~r = 0
[43]. Such a possibility can be attributed to the presence of
three centers on the AA, AB and BA stacking points around
which c3 symmetry is respected, see Appendix A for more
discussions. The different sets of moiré patterns are related
to each other through a rotation of ±2π/3 and is equivalent
to a translation that changes the reference frame origin to a
different local symmetry point H(~r)→ H(~r± 4π

3G2
~G1)(

u0 u1 u3
−ũ0 ũ1 ũ3

)
→ R̂± 2π

3

(
u0 u1 u3
−ũ0 ũ1 ũ3

)
, (11)

φµ → φµ ±
2π

3
(12)

while in the magnitude-phase representation the parameter ro-
tations are achieved by shifting the phases by ±2π/3. Seem-
ingly diffent solutions just represent changes in the reference
stacking point that permute the mapping between boron, ni-
trogen and empty sites under inversion. This equivalence
between parameter sets is illustrated further in Appendix A
where we represent each moiré pseudospin term in real space
for different stacking.

III. AB-INITIO MOIRÉ PATTERNS IN RIGID AND
RELAXED G/BN

Initial attempts to model the moiré patterns of graphene on
hexagonal boron nitride have used simplifying assumptions
based on experimental observations or physical intuition to re-
strict the large parameter space [33, 44–47]. In this work we
use as reference the model Hamiltonian parameters defined
through ab initio calculations that resolves this uncertainty
that incorporate information for all possible stacking config-
urations of the local crystal Hamiltonian going beyond the
two center approximation for the interatomic hopping [16].
In the presence of a small lattice mismatch ε or twist angle
θ the crystals are in general incommensurable but the local
Hamiltonian H(~r) ≡ H̃(~d(~r)) at a given point ~r can be cap-
tured with short period commensurate geometry calculations
containing few atoms. The electronic structure of incommen-
surable G/BN with rigid lattices leads to vanishingly small
gaps [16, 18, 29, 45, 48], in contrast to the ∼ 50 meV single
particle gaps when the lattice constants of G and BN are per-
fectly aligned [17]. As we have shown in the previous section,
the ab-initio model can be mapped naturally into the moiré
Hamiltonian through Eq. (3). The parameters of the moiré
Hamiltonian implied by these ab initio calculations are pre-
sented in Appendix A.

The global average of the mass term Hz(~r) in the moiré unit
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cell of area AM is given by

m0 =
1

AM

∫
AM

d~r H̃z(~d0(~r)), (13)

and the first harmonics contributions to the Hamiltonian H
µ,~G j

that use the first shell of ~G vectors can be obtained through the
corresponding Fourier transforms

H
µ,~G j

=
1

AM

∫
AM

d~r exp(−i~G j ·~r) H̃µ(~d0(~r)), (14)

where the index µ ∈ {0,x,y,z} label the sublattice pseu-
dospins, and the integrands are obtained from stacking depen-
dent ab-initio calculations. Despite of the sublattice asymme-
try introduced by the BN layer on the graphene sheet, the av-
erage mass term m0 of rigid graphene remains approximately
zero in the absence of strains [16] and only a small gap is ex-
pected to open due to higher order perturbation terms [24, 44].

In the following we discuss effects of strains resulting from
partial commensuration in a G/BN heterojunction. For the
study about the effect of strains we follow closely work pre-
viously presented in Ref. [24]. When we allow the lattice
structure to relax in a G/BN heterojunction the lattices un-
dergo a partial commensuration expanding and compressing
regions with different local stacking depending on their en-
ergy landscape. It was shown that such strains become rel-
evant in the limit of long moiré lengths because the elastic
energy resisting deformation decreases proportionally to ε2,
or equivalently with the inverse square of the moiré length.
We use the Born-von Karman plate theory to capture the re-
laxation of the atoms and we use interlayer potential energies
that depend on the local displacement between graphene and
BN unit cells. This type of continuum approximation is justi-
fied for moiré lengths on the order of ∼10 nm that is between
one to two orders of magnitude larger than the interatomic
distance. The following Lamé parameters: λg = 3.25 eVÅ−2

and µg = 9.57 eVÅ−2 for graphene and λBN = 3.5 eVÅ−2 and
µBN = 7.8 eVÅ−2 for BN characterize the elastic properties of
the layers. In the analysis of strains presented here we focus
on the restricted relaxation scheme where only the graphene
sheet is allowed to deform while we keep the underlying rigid
BN substrate rigid. A more general analysis shows that the
hexagonal boron nitride sheet in contact with the graphene
layer relaxes by an approximately equal magnitude but in the
opposite sense when compared with the strains produced in
the graphene sheet.

We obtain the strain vector fields by taking the gradient on
a scalar function Φ(ε̃;~r) which respects the periodicity of the
moiré pattern that we define using the magnitude-phase rep-
resentation

Φ(~r) = 2ε̃
−2CR(ε̃)ℜe[eiφR(ε̃) f(~r)], (15)

where the coefficient CR quantifies the degree of relaxation,
and φR sets the direction of displacements around the symme-
try points. The magnitude of CR depends on the strength of
the van der Waals interaction and the elastic constants of the

𝜃 = 0° 𝜃 = 2° 

FIG. 2. (Color online) Top panel: Plot of the relaxation coefficient CR
which defines the strain magnitude as a function of twist angle θ and
a schematic representation of different symmetric stacking arrange-
ments. It is shown in Appendix A that CR ∝ ε̃−2. Bottom panel:
In-plane strain ~u~r and interlayer spacing h(~r) at two different twist
angles. In-plane strain causes a reconfiguration in the positions of
graphene unit cells which prefer the BA stacking (red), where one
carbon atom sits on top of boron atom, and one carbon is in the mid-
dle of BN’s hexagon. In this case the strain field points away from the
BA stacking point since aG < aBN . When G/BN layers are at zero
twist angle, in-plane relaxation is maximized and allows graphene
unit cells to move a distance of up to ∼ 0.85 Å. The out-of-plane
relaxation brings the interlayer distance around BA to a minimum,
while it is maximized around AA (black), consistent with BA (AA)
as the most (least) energeticall favorable configuration. Similar plots
are obtained for twisted G/BN (θ = 2◦) at the same energy scale. Un-
der this twist, the maximum displacement attainable by a carbon site
decreases to∼ 0.4 Å. The twist introduces an additional contribution
kR(ẑ×∇Φ(~r)) to the strain field which leads to a non-zero curl.

layer, and its magnitude decreases with growing twist angle.
At an angle of θ ∼ 2◦, the coefficient CR is reduced by a factor
of ∼ 6 compared to the strain for zero twist angle, see Fig. 2.
On the other hand, the phase φR exhibits little dependence on
ε̃ , and can be assumed to maintain a constant value for differ-
ent twist angles. Further details for the relationship between
CR and the adhesion potentials are presented in Appendix B.

The in-plane displacement vectors ~u(~r) for a general twist
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FIG. 3. (Color online) Moiré pattern Hamiltonian parameters for rigid and relaxed G/BN plotted against twist angle θ using the BA stacking
as the reference origin. For the relaxed cases we distinguish the α case that includes only stacking registry modification effects from the β

case that also includes the strain induced electronic structure change in graphene. The top figures represent the inversion symmetric terms ui,
while the bottom figures represent the inversion asymmetric terms ũi. The relaxation gives rise to non-zero average mass m0 that we plot in
the right bottom panel with a black solid line with an value of ∼ 3.5 meV near zero twist angle. The changes in the moiré pattern Hamiltonian
parameters as a function of twist due to full relaxation are greatest for site potential (u0, ũ0) and in-plane pseudomagnetic fields (u1, ũ1).

angle can be readily obtained from the scalar function in the
following manner

~u(~r) = uxx̂+uyŷ = [1+ kR(ẑ×1)]~∇Φ(~r) (16)

where the factor kR =
(
2+λg/µg

)
(θ/ε) grows with misalign-

ment. The first term ~∇Φ(~r) contributes to translation of the
local unit cell leading to local compressions and expansions,
while the latter term kR(ẑ×~∇Φ(~r)) is a non-zero curl term
that distorts the carbon unit cell without changing its local
area. Since ab-initio calculations on commensurate lattices
show that G/BN prefers the BA stacking, the displacement
vectors of graphene lattices should be pointing away from the
position of BA stacking to partiatlly compensate for the lattice
mismatch due to aG < aBN . The local displacement at certain
positions can be as large as ∼ 5% of the carbon-carbon dis-
tance, e. g. ∼ 0.07 Å when θ ∼ 0 while the magnitude of
the local displacement ~u(~r) decreases with twist, as we illus-
trate in Fig. 2. The cumulative dispacement within the moiré
cell will be smaller than one lattice constant per moiré cell
required for global commensuration.

To describe the out-of-plane stacking-dependent interlayer
distance of G/BN we assume that the spatial profile of the out-
of-plane relaxation is purely determined by ~d(~r), and which
follows the moiré periodicity, instead of explicitly solving
the out-of-plan height variations based on the interlayer cou-
pling potentials. Typically the height variations range between
3.28 Å and 3.49 Å, see Fig. 2, with an average interlayer dis-
tance of z0 = 3.4 Å within the local density approximation
(LDA) [16, 24]. Fig. 2 shows that the preference over BA
configuration in G/BN layers is also reflected in the smaller
interlayer separation around BA stacking points.

The local relaxation leads to significant changes to the ef-

fective G/BN couplings experienced by the Dirac electrons.
We capture this effect by modifying the local sliding vector ~d
between the graphene and BN sites

~d(~r) = ~d0(~r)+~u(~r)+h(~r)ẑ, (17)

where h(~r) = h̃(~d) is the local interlayer distance for each po-
sition. The effects of strains alter the Hamiltonian in such a
way that H̃(~d0)→ H̃(~d), which in turn modifies the spatial
averages of the different pseudospin terms in Eq. (13) and
(14) that capture the moiré pattern effects. We discuss in Ap-
pendix C the analytical expressions for m0, ui and ũi in the
limit of |~u| � a.

The changes in the moiré patterns captured by Eq. (14) re-
sult from the local modification in the effective couplings of
graphene to the BN substrate due to the reconfiguration of the
relative positions between graphene and BN sites. Addition-
ally, we have to bear in mind the modification of the elec-
tronic structure in graphene due to bond distortions that can
be related to variations in the local site energy ε ′p and inter-
site hopping parameter t [41, 49]. The pseudospin terms in
the Hamiltonian H0 and ~Hxy are consequently changed due to
these additional contributions by

δH0 = γ
′(uxx +uyy), γ

′ =
a
2

∂ε ′p
∂a

, (18)

δ ~Hxy = γ
[
(uxx−uyy)x̂−2uxyŷ

]
, γ =

3a
4

∂ t
∂a

. (19)

where γ ′ ≈ 4.0 eV quantifies the rate of change of the site
potential, and γ ≈−4.5 eV captures the gauge fields produced
by hopping asymmetry in the presence of bond distortions [43,
50, 51].
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FIG. 4. (Color online) Top panel: (a)-(c) Moiré band diagrams for θ = 0◦ G/BN obtained for different relaxation schemes using the parameters
listed in the Appendix. The k-path in the mBZ follows Γ→ K′→M→ Γ→ K→M→ Γ. In the rigid case, we expect to find a sDC on K′

at the valence band when graphene is hole doped. When relaxation is accounted for including only stacking registry change, the α scheme
described in the main text, we find an indirect sDC gap due to a change in the band shape near the M point. In the more complete β scheme
where the strain induced band structure change in graphene is accounted for the pseudospin fields arising due to stacking registry modification
is partially canceled and the direct gap at the sDC is restored. Bottom panel: (d)-(f) Moiré band diagram for rigid (red) and relaxed β (black)
G/BN calculated at various twist angles and the corresponding density of states (DOS). The interlayer coupling in G/BN gives rise to gapped
sDC around the K′-point in the moiré Brillouin zone. This finding is consistent with the experimental observation of a resistivity peak and
the reversal of the Hall resistivity sign at the hole side reported in Ref. [29]. The relaxation effects introduces strongest changes in the band
structure at small twist angles whereas they are closely similar to the rigid band structure when the twist angle is increased.

It is possible to gain further insight on how the strains mod-
ify the Hamiltonian assuming that they depend linearly on
the symmetrized strain tensor ui j ≡ 1

2

(
∂ui/∂x j +∂u j/∂xi

)
+

∂h/∂xi ∂h/∂x j, where the potential and pseudomagnetic field
terms respectively arise from the dependence of the local site
energy ε ′p and the hopping parameters t to the neighboring
carbon atoms. With an in-plane strain profile which respects
the lattice symmetry and the moiré periodicity, we are able to
map the strain-induced potential and gauge field into Eqs. (4-
6). The resulting changes in the first harmonics parameters
are given by

υG(δu0− iδ ũ0) =−γ
′CR(ε̃)g2eiφR , (20)

υG(δu1 + iδ ũ1) = γ CR(ε̃)g2F(ϕ)eiφR , (21)

where g = 4π/3a is the magnitude of the reciprocal lattice
vector of graphene, while F(ϕ) is a dimensionless function
that respects the three-fold rotational symmetry,

F(ϕ) = cos(3ϕ)+ kR sin(3ϕ). (22)

The presence of kR-dependent term only in Eq. (22) indicates
that the non-zero curl contributions modify the gauge field
terms but do not influence the electrostatic potential terms. As

a consequence the site potential δH0 contribution decreases
together with CR(ε̃) whereas the gauge field contribution δ ~Hxy
has a more complex behavior since F(ϕ) changes sign around
θc ≈ 1.3◦ as observed in the variation of the moiré parameters
u1 and ũ1 with respect to twist angle, see Fig. 3. This critical
angle is related with the elastic constants of graphene.

It is found that the intrinsic changes in the Hamiltonian due
to out-of-plane strains are negligible with respect to the in-
plane components, since the variation in the interlayer dis-
tance ∆h are orders of magnitude smaller than the moiré
length. We can thus neglect the out-of-plane effects in its con-
tribution to Eqs. (18) and (19).

Our analysis for δH0 and the calculations of γ ′ have un-
certainties related with the effect of electrostatic screenings
by the carriers [52], whereas the pseudomagnetic field effects
are unaffected by electrostatic effects. We found that in G/BN
structures with long moiré periods, the pseudomagnetic field
realistically reaches 40 T near the AA and BA stacking points.
These originate almost entirely from virtual strain fields pro-
duced by hopping of electrons to and fro from graphene to
B and N sites [16, 24] while the contributions due to real
strains have maximum values of ∼5 Te which amounts to
∼ 15% of the total pseudomagnetic field at selected points.
We note that the physics originating the virtual and real contri-
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butions to the pseudomagnetic fields are clearly distinct. The
larger contribution from virtual hopping processes manifests
directly the electronic coupling between the graphene and BN
sheets, whereas the smaller strain-induced field expressed in
Eq. (21) results from the mechanical adhesive properties be-
tween the layers that introduces a bond-length asymmetry be-
tween the neighboring carbon atoms of graphene. Our elas-
tic model suggests that the bond distortions between carbon
atoms reach maximum values on the order of . 0.1Å, which
translates into a relatively small strain-induced field propor-
tional to γCRg2/Cxy. The specific Hamiltonian parameter val-
ues for θ = 0◦ and how they are influenced by the lattice relax-
ation are discussed further in Appendix C. We present in Fig. 3
the behavior of the the Hamiltonian coefficients as a function
of twist angle where we label with α the Hamiltonian parame-
ters that incorporates only the modifications in the shape of the
moiré pattern due to change in the local stacking, while the β

solutions include also the modifications of graphene’s Hamil-
tonian itself due to bond distortions resulting from the relax-
ation strains. When compared with the rigid lattice, we find
that relaxations tend to enhance (u0, ũ1 and ũ3), and reduce
(ũ0, u1 and u3) in the limit of small twist angles. The relax-
ation also allows the generation of a finite average mass term
m0 leading to a band gap on the order of ∆p ≈ 2|m0| ∼ 7 meV
within a graphene relaxation only scheme. The somewhat
larger gaps than previous values in Ref. [24] can be attributed
to the simpler form of the strains assumed to calculate the
elastic energy functional in the present calculations. Further
enhancement of the band gap results when electron-electron
interaction effects are included, making it possible to obtain
magnitudes for the band gaps that are comparable to exper-
iments [22, 24]. The additional effects of bond distortions
in the Hamiltonian parameters included in the β -relaxation
case through the first harmonic terms in Eqs. (18) and (19)
do not affect the average mass term. The effects of β re-
laxations in Fig. 3 tend to partially restore the parameters of
the rigid Hamiltonian and this explains in part why the rigid
model [16, 24] already gives a relatively accurate descrip-
tion of experimentally observed moiré band features [53, 54].
The modifications of the Hamiltonian parameters show most
clearly near the mBZ edges and they introduce subtle changes
in the behavior of the sDC features. The strain-induced gauge
field terms change sign around θ ∼ 1.3◦ with a crossover in
the values of u1 and ũ1 in the relaxed α and β cases. As a re-
sult, for moderately large twist angles the complete relaxation
effects indicates an overall weakening of the pseudomagnetic
fields. We present additional discussions on the relationship
between strain and pseudomagnetic fields in Appendix B.

IV. BAND GAPS AT THE PRIMARY AND SECONDARY
DIRAC POINTS

The presence of band gaps in G/BN has been a subject of
interest thanks to the prospect of tailoring a high mobility 2D
semiconductor based on graphene. Although the LDA pre-

dicts the formation of a band gap of ∼ 50 meV in lattice
matched G/BN [17], the lattice constant mismatch between
the graphene and hexagonal boron nitride should suppress the
band gap near charge neutrality [45] because the spatial av-
erage of the local mass term distributed sinusoidally in real
space cancels out to a value close to zero [16]. The experi-
mental observation of a band gap at the primary Dirac point
came as a surprise [21, 22] and soon it was speculated that
the band gap near charge neutrality at the primary Dirac point
originates from Coulomb interaction effects [26, 27]. An-
other plausible scenario for the formation of the gap is the
generation of an average mass term resulting from the moiré
strains [24] observed experimentally through atomic force mi-
croscopy [19, 55]. These strains originate from stacking reg-
istry dependent total energy differences on the order of a few
tens of meV [16, 48] that lead to sizeable in-plane strains in
the limit of long moiré patterns thanks to the quick decrease of
the elastic energy with the increase of the moiré length [24].
The average of the band gap at the primary Dirac cone as a
function of strain obtained neglecting higher order contribu-
tions in G reads

∆p ≈ ∆0 +C̃R(θ)cos(φR−φz) (23)

with C̃R(θ) = 12CR(θ)Cz
(
ε +θ 2(2+λg/µg)/ε

)
g2, where g

is the magnitude of the reciprocal lattice vector of graphene.
The constant ∆0 ∼ 4meV accounts for the small gap that al-
ready develops with only out-of-plane relaxation, and Cz, φz
are the moiré parameters for the mass field obtained when
height variation is allowed. This result shows that the band
gap at the primary Dirac point depends almost linearly to the
coefficient CR(θ) used to quantify the magnitude of the in-
plane deformation. Further details of this derivation are pre-
sented in Appendix C.

We now turn our attention to the features of the moiré band
near the secondary Dirac points observed in G/BN heterojunc-
tions [29, 46, 56]. The band structure and the associated den-
sity of states (DOS) profile resulting from our model Hamil-
tonian in Fig. 4 confirm the presence of such features near
the mBZ corner at energies of ∼ ±h̄υG/

√
3. It was noted

that the strong asymmetry between electron and holes com-
monly observed in experiments with prominent hole features
are intrinsic to the band structure model and originate due to
opposite chiral winding of the bands combined with the moiré
pseudospin terms leading to destructive or constructive con-
tributions of the secondary Dirac cone features [18]. A proper
modeling of the Hamiltonian parameters for the moiré pat-
terns is necessary to capture the correct band features near
the mBZ corners including the sDC shapes and number. The
modifications in the Hamiltonian in the presence of lattice
relaxation lead to mild modifications of the sDC features as
shown in Fig. 4. Depending on how we account for the relax-
ation effects in the α and β cases, the gap at the secondary
Dirac point is an indirect one in the former due to the increase
in energy of the valence bands near the M point in the mBZ,
whereas in the latter case a Dirac cone shape similar to the
rigid band structure is restored. This suggests that the mod-



8

FIG. 5. (Color online) The magnitudes of the band gaps for the pri-
mary Dirac cone ∆p (left panel) and secondary Dirac cone ∆s (right
panel) for the valence band K′ valley in the mBZ plotted against twist
angle and in-plane strain ηCR(θ), where η is a dimensionless mul-
tiplicative factor used to locally increase or reduce the relaxation.
When η = 0, only out-of-plane relaxation is present in the system
and our model of relaxation corresponds to the white dashed line
along the horizontal axis for η = 1. As a general feature we find that
the primary gap increases for larger strains with its value doubling
when the strain is three times larger. However, the sDC gap decreases
with increasing strains and a well defined sDC feature is only found
within a certain window in twist angle. The shaded region on the
right panel represents the parameter space where the direct sDC gap
is obscured by the the higher-energy band which dips below the sDC
energy at the M point when the twist angle is increased.

ifications in the electronic structure of graphene due to bond
length changes as shown in the β solutions can influence de-
tails in the optical transitions within the secondary Dirac cones
in the terahertz range [18]. In the following we discuss how
the strain and twist can influence the primary and sDC gaps.
In Fig. 5 we represent the magnitude of the gaps as a func-
tion of a strain parameter η and twist angle θ . While both
gaps shrink with growing twist angle, they show opposite be-
haviors under the influence of an in-plane strain because the
physical origin of the gaps are different. In the case of the
primary gap we find that ∆p which is essentially proportional
to the global mass m0 grows monotonically with the magni-
tude of in-plane strain. On the other hand, the sDC feature at
the mBZ edges is determined by the interplay between all of
the first harmonics pseudospin components and the increase
of in-plane strain results in reduction of its magnitude. Fur-
ther insight about the behavior of the gaps at the sDC can be
achieved by analysing the bands based on perturbation the-
ory where a triply degenerate band crossing splits under the
influence of moiré Hamiltonian parameters [18, 33, 43]. The
energy splitting at the mBZ K-point can be neatly expressed
in the following analytical form:

Eζ κ,m ≈
υGζ −ℜe

[
exp
(
i 2πm

3

)
∆ζ κ

]
√

3
, (24)

where the term

∆ζ κ =
√

3υG
(
(u0− iκ ũ0)− i2ζ (ũ1− iκu1)+ i

√
3(ũ3− iκu3)

)
=
√

3C0eiκφ0 +
2
√

3ζ κε

ε̃
Cxyei(κφxy−π/2)+3Czei(κφz+π/2),

(25)

can be viewed as a sum of three complex numbers that define
the three pseudospin components of the moiré pattern. The
m ∈ {0,1,2} indices represent the bands on the secondary
valley K (κ = 1) or K′ (κ = −1) of the mBZ, while ζ = 1
(ζ = −1) labels the conduction (valence) band. The way
that the band triplet of Eq. (24) splits in the seondary val-
leys is schematically represented in Fig. 6. The bands can
be described as singlet-doublet structure when only inversion-
symmetric Hamiltonians with ũi = 0 is used [33], while in
the limit where inversion-asymmetric terms are dominant
the triplets are separated by approximately equal gaps [57].
Defining the sDC gap ∆s,ζ κ as the energy difference at the
Dirac point of the mBZ between bands that are nearer to the
primary Dirac cone they can be written as

∆s,ζ κ =
∣∣∆ζ κ sinφζ κ

∣∣ (26)

where the phase factor φζ κ = arg[−ζ ∆3
ζ κ
]/3 is defined in such

a way that φζ κ ∈ (−π/3, π/3]. The above equation for the
gap ∆s,ζ κ is a generally valid expression independent of the
choice on coordinate reference for the moiré patterns. The
triplets exhibit a periodicity in phase of 2π/3 and the form of
∆ζ κ is consistent with the possibility of having three different
sets of parameters with equivalent electronic structures where
the only difference is the choice of the reference origin for
the moiré patterns as we discussed earlier in Eqs. (11,12). In
the case we choose the Hamiltonian parameter set that already
satisfies −π/3 < arg[−ζ ∆ζ κ ] ≤ π/3, the secondary gap can
be expressed as the imaginary part of ∆s,ζ κ involving only
inversion asymmetric Hamiltonian terms ũi

∆s,ζ κ = ℑm[∆ζ κ ] =
√

3υG|κ ũ0 +2ζ ũ1−
√

3ũ3|. (27)

We note that the expression for the sDC gap in Refs. [43, 57]
did not impose the restriction in the phase of ∆ζ κ required for
a correct description of the results and whose parameter sets
can have phases rotated by ±2π/3 depending on the choirce
in the reference point.

V. SUMMARY

We have presented a moiré band Hamiltonian for G/BN
within a framework that uses the symmetry of the moiré pat-
terns and relies on input from ab-initio theories, unifying no-
tation used in the literature for the moiré pattern models in
the first harmonics approximation. Our G/BN model accounts
for the average mass term that develops in the presence of
commensuration strains when the lattice is allowed to relax.
We have calculated the lattice relaxation by using a contin-
uum elastic model of graphene for several misalignment an-
gles based on simplifying assumptions where the strain fields
are represented within a first harmonics expansion. Taking
advantage of the formal simplicity where the strains can be
expressed in terms of two parameters, effectively reducing to
a magnitude, which is variable, and a constant phase term we
have obtained numerically and analytically the twist angle de-
pendence of the moiré pattern Hamiltonian parameters. The
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FIG. 6. (Color online) Schematic representations (a)-(c) of the band triplets at the secondary valleys in the mBZ used to analyze the magnitude
of the sDC gaps of G/BN. We show three representative cases in the Hamiltonia parameter space for the behavior of the bands at K′. The
three arrow heads separated by a phase of 2π/3 represent the energy levels that can be found projecting them on the y-axis following Eq. (24).
The length of the arrows given by the magnitude of ∆ζ κ given in Eq. (25) quantifies the interplay between the moiré patterns that split the
bands at the sDC valleys with respect to the energy coordinate origin located at ζ υG/

√
3. In the insets, we plot ∆ζ κ and the phase φζ κ which

determines the size of the sDC gap, see Eq. (26). (a) In a system with only inversion symmetric couplings ui, the band triplets separate into a
singlet-doublet structure, with an energy difference of

√
3|∆ζ κ |/2. A gap at the sDC appears if the energy level crossing of the doublet located

closer to the charge neutrality is lifted. (b) In the presence inversion asymmetric couplings ũi we expect to find an energy band splitting of
∆̃ = |∆ζ κ |/2 that leads to a gapped sDC. (c) A general situation involves both nonzero ui and ũi terms. This diagram represents the situation of
G/BN valence sDC (ζ =−1), which is found on K′ (κ =−1). The analytical expression for the sDC gap given in Eq. (26) is most conveniently
represented when the phase φζ κ lies within −π/3 < arg[−ζ ∆ζ κ ]≤ π/3, see Eq. (27).

presence of strains influences the moiré pattern Hamiltonian
parameters first by modifying the real-space distribution of lo-
cal stacking profiles which in turn change the interlayer cou-
pling maps, and then through intrinsic modifications in the
electronic structure of graphene arising due to the bond dis-
tortions. These two contributions partially cancel each other
resulting in a Hamltonian where the final electronic structure
is not too different from the rigid model except for the pres-
ence of a band gap at the primary Dirac point. The virtual
strain terms in the Hamiltonian due to second order hopping
processes of the electrons that are already present for rigid lat-
tices is found to dominate over the relatively small corrections
in the Hamiltonian introduced by bond length distortions due
to the moiré strains.

The evolution of the band gaps at the primary and sec-
ondary Dirac points were studied analytically and as numer-
ically based on the strain models we have developed. Our
analysis shows that an overall increase of the commensura-
tion strains, and thus the average mass term, opens up further
the primary gap whereas the magnitude of the secondary gap
is reduced when strains are larger. Both gaps are found to
progressively decrease with the increase of twist angle due
to the impact the shortening of the moiré pattern period has
on the electronic structure. The primary gap reduces due to
the quick decrease of the strain magnitudes, whereas the re-
shaping of the bands near the mBZ corners that reduce the
secondary gap is more strongly influenced by the decreases of
the virtual strain terms rather than by the modifications in the
Hamiltonian introduced by commensuration strains.
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APPENDIX A: Analytical mapping of the ab-initio parameters
in rigid G/BN

The ab-initio results for the moiré pattern in Ref. [16]
were calculated using input from short period commensurate
structures with the minimum size of unit cell within self-
consistent LDA using an equal lattice constant 2.439 Å for
both graphene and hBN. The projection of the pseudospin
Hamiltonian components H̃µ(~d) calculated for various dis-
placement vectors ~d are used as input to obtain the first har-
monics approximation for the Fourier components of three
pairs of parameters {Cµ ,φµ} which correspond to each pseu-
dospin term. These can be related with the ui, ũi parameters
[33] through the relations in Eqs. (8-10) whose explicit corre-
spondence is presented in Table I. Here we show the analytical
mapping between the two parametrization systems. We found
that only u1υG and ũ1υG are changed with twist according
to χθ , see Fig. 2, which can be analytically expressed in the
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TABLE I. Two-way mapping between the parametrizations in Ref.
[16] and [33] are explicitly presented here. These are equivalent to
the more compact expressions in Eq. (8)-(10). In the left columns,
we are expressing ui and ũi in terms of the corresponding Cµ and
φµ , and vice versa in the right columns. The approximate expression
for small twist angles involving ε̃ can be made exact by restoring
ε/ε̃ ' χθ ≡ cos(ϕ), where ϕ is the rotation angle of the moiré pattern
used in Eq. (28). The angle φxy defined in this work is related to φAB
in Ref. [16] through φxy = π/6−φAB for consistency of HAB term in
Eq. (38) of Ref. [16] with the Hxy term defined in Eq. (6).

u0υG C0 cos(φ0) C0 υG
√

u2
0 + ũ2

0

ũ0υG −C0 sin(φ0) φ0 arg[u0− iũ0]

u3υG −Cz sin(φz) Cz υG
√

u2
3 + ũ2

3

ũ3υG Cz cos(φz) φz arg[ũ3− iu3]

u1υG −ε̃−1εCxy sin(φxy) Cxy |ε−1ε̃|υG
√

u2
1 + ũ2

1

ũ1υG ε̃−1εCxy cos(φxy) φxy arg[ε(ũ1− iu1)]

following way for general twist angle

cos(ϕ)≡ χθ =
1+ ε− cos(θ)

(1+ ε)2−2(1+ ε)cos(θ)+1
≈ ε

ε̃
. (28)

Three equivalent parameter sets for the same solution that can
be obtained using the transformations in Eq. (11-12) are pre-
sented in Table II, and the corresponding plots of the moiré
patterns in real space Hµ(~r) are presented in Fig. 7. The
Hamiltonian parameters for rigid graphene presented in Ta-
ble II are equivalent to those in Eq. (40) of Ref. [16] where the
pseudospin magnitudes have been defined as positive num-
bers and their phases have been changed accordingly. In ad-
dition, we have also redefined φxy such that it relates to φAB
in Ref. [16] through φxy = π/6− φAB which allows to repre-
sent the HAB term in Eq. (38) of Ref. [16] in the compact form
given in Eq. (6) in the main text of this work.

APPENDIX B: Graphene in-plane relaxation model and
strain-induced pseudomagnetic field

In our analysis on the relaxed structure, we assume the sim-
plest case in which only graphene layer relaxes under the in-
fluence of a rigid BN substrate. It was shown that the BN
sheet in contact with graphene acquires strains that are almost
equal in magnitude [24] and are important to correctly account
for the modified Hamiltonian coupling parameters. This addi-
tional effect can be included as a later correction and here we
exclude it from the self-consistent calculation to give prefer-
ence to the formal simplicity. The graphene layer is modeled
using the Born-von Karman plate theory, in which the elastic
properties of graphene are represented by the Lamé parame-
ters λg and µg [58, 59]. We also approximate the relaxation

TABLE II. Ab-initio moiré parameters in a perfectly aligned rigid
G/BN (z0 = 3.35 Å) presented in Refs. [16, 24]. Each column repre-
sents different sets of parametrizations related to each other through
2π/3 rotation as defined in Eqs. (11-12) which results in different lo-
cal stacking at the moiré pattern center. The moiré Hamiltonian pa-
rameters Cµ , uiυG and ũiυG are presented in meV units. We found
that inversion symmetry is maximized (minimized) when BA (AA)
stacking is chosen as the coordinate center.

Rigid G/BN AA AB BA

C0 10.13 10.13 10.13

φ0 −93.47◦ 26.53◦ 146.53◦

Cz 9.01 9.01 9.01

φz −171.57◦ −51.57◦ 68.43◦

Cxy 11.34 11.34 11.34

φxy 10.40◦ 130.40◦ −109.60◦

u0υG −0.613 9.06 −8.45

ũ0υG 10.11 −4.53 −5.58

u1υG 2.05 8.64 −10.68

ũ1υG −11.15 7.36 3.80

u3υG 1.32 7.06 −8.38

ũ3υG −8.91 5.60 3.31

by decoupling the in-plane components from the out-of-plane
components, so that graphene in-plane relaxation allows the
system to minimize its energy with respect to the rigid struc-
ture as given by the following functional

E[~u,ui j] =
∫

AM

d~r [Ue(ui j(~r))+Up(~u(~r))], (29)

and the elastic energy density Ue can be fully expressed in
terms of the symmetric tensor in-plane components within lin-
ear approximation ui j =

1
2 [∂iu j+∂ jui], where the potential en-

ergy density Up is purely a function of the displacement vector
~u(~r),

Ue(ui j(~r)) =
λg

2
[
∑

i
uii(~r)

]2
+µg ∑

i j
ui j(~r)2, (30)

Up(~u(~r)) =
1

Ag
[U0 +U1 f̃1(~d0 +~u(~r))+U2 f̃2(~d0 +~u(~r))],

(31)
where Ag = 3

√
3a2

0/2 is graphene’s unit cell area. The f̃1(~d)
and f̃2(~d) functions are similar to the first harmonics functions
f1(~r) and f2(~r) but now expressed in terms of the displace-
ment vector ~d(~r) = ~d0(~r)+~u(~r)

( f̃1(~d), f̃2(~d)) = ∑
n
(1, i(−1)n−1)exp(i~gn · ~d), (32)
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AA AB BA 

FIG. 7. (Color online) The spatial plots of the pseudospin compo-
nents are obtained in rigid G/BN using the ab-initio parameters [16].
We also illustrate here the possibility of using three different stacking
points as our coordinate reference: AA (black), AB (blue), BA (red).
The three-fold symmetry of the system is respected around these spe-
cial points, so that a translation from one symmetry point to another
is equivalent to a 2π/3-rotation of the moiré pattern parameters, see
Eq. (11), that doesn’t change the moiré band. The figures also indi-
cate that different degrees of inversion symmetry depending on the
chosen coordinate reference. We found that in G/BN, inversion sym-
metric couplings are maximized (minimized) around BA(AA), see
Table II.

where ~gn are the first shell reciprocal lattice vectors of
graphene, similar to Eq. (2). In the absence of strain, f̃1(~d0)

and f̃2(~d0) are equivalent to f1(~r) and f2(~r) respectively, see
Eq. (7). It should also be noted that in Eq. (31), we have offset
the average energy to zero, and the values for U1 and U2 can
be easily deduced from ab-initio calculations of the potential
energy on AA, AB and BA stacking points [24] through the
following relations:

U0 =
1
3
(UAA +UAB +UBA), (33)

U1 =
1

18
(2UBA−UAB−UAA), (34)

U2 =
1

6
√

3
(UAA−UAB). (35)

Optimising the functional in Eq. (29) with respect to ~u and
its derivative ∂iu j requires solving

∂Up

∂u j
= ∂i

{
∂Ue

∂ (∂iu j)

}
. (36)

The potential energy profile U(~u(~r)) as expressed in Eq. (31),
describing the interlayer coupling at zero twist is illustrated in
Fig. 8(a). Treating the problem within the first harmonics, the
term on each side of the equation can be expressed as follows:

ĵ
∂Up

∂u j
≈ ε +θ(ẑ×1)

ε̃2Ag
[U1~∇ f1(~r)+U2~∇ f2(~r)], (37)

~e j~∇i
∂Ue

∂ui j
= 2µg[~∇

2~u− (ẑ×~∇)uA
xy]+λg~∇(~∇ ·~u), (38)

in which we denote the asymmetric part of the strain tensor as
uA

xy =
1
2 [∂xuy− ∂yux]. We solve Eq. (36) using the following

ansatz which respects the moiré periodicity of the system

~u(~r) = [~∇+ kR(ẑ×~∇)]Φ(~r), (39)

where the scalar function Φ(~r) defined in Eq. (15) can also be
written in terms of C1 and C2 parameters that satisfy

Φ(~r) =C1 f1(~r)+C2 f2(~r) (40)

whose magnitude-phase expression is given by

CR(ε̃) = ε̃
2
√

C2
1 +C2

2 , φR = arg [C1− iC2] . (41)

The solutions that relate the strain parameters and interlayer
potentials are

C1 + iC2 =−
ρε

ε̃4

[
U1 + iU2

λg +2µg

]
, kR =

θ

ε

[
2+

λg

µg

]
(42)

where ρ = (Agg2)−1 ≈ 2.19× 10−2 is a term that depends
on the lattice constant of graphene. The analytic solutions
illustrate the way the twist angle influences the magnitudes
C1,C2 ∝ ε̃−4 and the shape distortions encoded in the factor
kR. Within our estimates, C1 and C2 are always related by
a constant phase φR ≈ −171◦, in keeping with the value of
φR = −51◦ in Ref. [24], where we added a −2π/3 phase for
AA→BA stacking origin representation change.

We should keep in mind that even in the absence of any
relaxation the pseudomagnetic fields are already present in
G/BN due to the influence of the substrate on the hopping
asymmetry[16, 24], leading to finite values in u1 and ũ1, see
Fig. 3. This is expected to give rise to a constant pseudomag-
netic field profile despite the changing moiré periodicity, see
the dashed lines in Fig. 8(c) where a pseudomagnetic field of
35 T is found on the AA stacking point. The pseudomagnetic
fields can be obtained by calculating the curl on the vector
potential and results in

B(~r) =−G2

e
[u1 f2(~r)+ ũ1 f1(~r)] (43)

=−2ε

ε̃

G
eυ

Cxyℜe
[
eiφxy f (~r)

]
. (44)

where the relaxation strains for different twist angles can in-
troduce changes in the value of the parameters u1 and ũ1 or
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(a) (b) (c) 

FIG. 8. (Color online) (a) Potential energy density profile Up(~r) which results from graphene interaction with the BN substrate, calculated at
z0 = 3.4Å. The panel (b) represents the pseudomagnetic field profile in a relaxed G/BN at θ = 0◦ and (c) as a function of twist angle at special
stacking points in rigid (dotted) and relaxed G/BN (solid). An increase in the pseudomagnetic field is expected at small twist angle, with fields
of magnitude 40 T are attainable in the vicinity of AA and BA stacking points. The relatively long magnetic lengths compared with the moiré
period preclude the formation of well defined Landau levels originated by pseudomagnetic fields but may lead to snake states for appropriate
spatial distributions of positive and negative fields.

CR and φR upon relaxation. The pseudomagnetic field profile
at zero twist in a relaxed structure is plotted in Fig. 8, together
with its behavior under twist on some special stacking points.
For small twist angles, relaxation enhances the pseudomag-
netic fields resulting in u1 values that are significantly larger
than ũ1 with local maxima at AA and AB stacking points
where magnitudes of up to 40 Teslas are expected. This en-
chancement due to relaxation is present for a very small win-
dow in twist angle before it decreases and even counters the
underlying pseudomagnetic field in the rigid structure when
the twist goes beyond the critical angle θc of 1.3◦.

APPENDIX C: Modifications in the moiré pattern Hamiltonian
parameters and the primary gap in the presence of strains

As we have shown in the main text, the linearity in the dis-
placement field with respect to position in rigid G/BN lead
to a practically zero spatial average for each pseudospin term
H̃µ(~d0(~r)), thus resulting in a zero global mass, see Eq. (13).
Accordingly, the band features in such a system can be fully
described by the first harmonics contributions to the Hamil-
tonian. This is in line with the experimental observation of a
nearly vanishing gap on the primary valley of G/BN despite
the sublattice asymmetry of BN [29]. However, structural re-
laxation modifies the displacement field ~u(~r), resulting in a
global mass term m0 in order to describe the band features
properly. The changes in the interaction between the carbon
atoms with the underlying BN substrates due to the additional
displacement ~u(~r) lead to modifications in the first harmon-
ics functions f̃1(~d) and f̃2(~d). The calculation of the effective
moiré couplings under relaxation requires numerical compu-
tations of the Fourier components of H

µ,~G j
, see Eq. (14) but

we can obtain the following analytical approximation in the

small strain limit where |~u| � a

f̃1(~d) = ∑
n

exp[i~gn · (~d0 +~u)]

≈∑
n
(1+ i~gn ·~u)exp[i~gn ·~r]

= 6ε
′C1g2 +(1+ ε

′C1g2) f1(~r)− ε
′C2g2 f2(~r),

(45)

f̃2(~d) =−i∑
n
(−1)n exp[i~gn · (~d0 +~u)]

≈−i∑
n
(−1)n(1+ i~gn ·~u)exp[i~gn ·~r]

= 6ε
′C2g2− ε

′C2g2 f1(~r)+(1− ε
′C1g2) f2(~r),

(46)

where ε ′ = ε + kRθ , and kR was defined in Eq. (42). This ap-
proximation allows to decompose the contributions into two
different relaxation modes quantified by the coefficients C1
and C2. The finite average results from the non-zero cancella-
tion of the spatial average of f̃1(~d) ( f̃2(~d)) due to the presence
of a constant 6ε ′C1g2 (6ε ′C2g2). Considering the transfor-
mations in Eq. (45) and (46) on Hz(~r), the mass m0 given in
Eq. (23) can also be expressed as

m0 ≈
∆0

2
+6ε

′
υGg2(u3C2 + ũ3C1), (47)

which is expected to grow proportionally to the interlayer cou-
pling strength and the strain magnitude in graphene. The con-
stant ∆0 is the finite average gap that opens when the system
is allowed to relax on the z axis only. Experimental observa-
tion of the primary gap can thus be understood in the light of
Eq. (47), which makes the contributions of out-of-plane and
in-plane deformation to the resulting gap more transparent.

Taking into account the additional terms introduced by the
potential energy and the gauge field, see Eqs. (20) and (21),
the effective Hamiltonian parameters u′i and ũ′i can be ex-
pressed in terms of the parameters ui and ũi in a system with
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TABLE III. Hamiltonian parameters based on the ab-initio calculations for rigid and relaxed graphene in Ref. [16, 24], and the parameters
obtained within the simplified relaxation scheme used in the present work. In a relaxed G/BN, there are two distinct effects which lead to the
modifications in the moiré Hamiltonian parameters: (1) Change in the G/BN couplings due to local stacking modifications due to strains, (2)
Strain-induced modification of electronic structure and pseudomagnetic fields in graphene. We denote with the label α the case in which only
(1) is included, while β refers to the case where both effects are present. All parameters are presented in meV except for the phases provided in
degrees, and we label with “XY” the results obtained when only in-plane relaxation is allowed while we keep a constant interlayer separation
distance at z0 = 3.4 Å. We have taken the BA stacking point as our coordinate reference that provides the parameter sets where the inversion
asymmetric terms are smallest.

m0 u0υG u1υG u3υG ũ0υG ũ1υG ũ3υG C0 φ0 Cxy φxy Cz φz

Rigid, Ref. [16]
z0 = 3.35Å 0 −8.46 −10.69 −8.38 −5.58 3.81 3.32 10.13 146.53◦ 11.34 −109.60◦ 9.01 68.43◦

Rigid, Ref. [24]
z0 = 3.40Å 0 −7.24 −9.15 −7.23 −4.85 3.26 2.79 8.71 146.18◦ 9.71 −109.60◦ 7.75 68.90◦

Relaxed, Ref. [18] 3.74 −8.41 −6.68 −4.70 −3.40 3.05 3.13 9.07 157.99◦ 7.34 −114.53◦ 5.64 56.34◦

Relaxed α 3.62 −9.48 −7.49 −5.94 −4.33 3.85 3.41 10.42 155.45◦ 8.43 −117.20◦ 6.85 60.14◦

Relaxed β 3.62 −4.93 −12.57 −5.94 −5.01 3.09 3.41 7.03 134.54◦ 12.94 −103.81◦ 6.85 60.14◦

Relaxed-XY α 1.55 −7.73 −8.50 −6.72 −4.60 3.36 2.89 9.00 149.24◦ 9.14 −111.57◦ 7.32 66.73◦

Relaxed-XY β 1.55 −3.22 −13.59 −6.72 −5.28 2.60 2.89 6.18 121.38◦ 13.84 −100.83◦ 7.32 66.73◦

mere corrugation using the following expansion:

υG
(

u′0 ũ′1 ũ′3
ũ′0 u′1 u′3

)
≈ υG

[
1+ ε

′g2
(

C1 −C2
−C2 −C1

)](
u0 ũ1 ũ3
ũ0 u1 u3

)
+G2

(
−γ ′C1 −γC2F(ϕ) 0
−γ ′C2 γC1F(ϕ) 0

)
.

(48)

The changes in the average mass and the Hamiltonian param-
eter modifications have signatures in observable features of
the bands such as the primary gap ∆p and the sDC gap ∆s.
The explicit parameter values for the moiré Hamiltonians cor-
responding to rigid and relaxed configurations for zero twists
angle obtained within different approximations are listed in
Table III.
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