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Coherent manipulation of nuclear spins is a highly desirable tool for both quantum metrology
and quantum computation. However, most of the current techniques to control nuclear spins lack
of being fast impairing their robustness against decoherence. Here, based on Stimulated Raman
Adiabatic Passage, and its modification including shortcuts to adiabaticity, we present a fast protocol
for the coherent manipulation of nuclear spins. Our proposed Λ-scheme is implemented in the
microwave domain and its excited state relaxation can be optically controlled through an external
laser excitation. These features allow for the initialization of a nuclear spin starting from a thermal
state. Moreover we show how to implement Raman control for performing Ramsey spectroscopy to
measure the dynamical and geometric phases acquired by nuclear spins.

PACS numbers:

I. INTRODUCTION

Nuclear spins in solid-state systems are leading candi-
dates for long-lived quantum memories and high fidelity
quantum operations as they are isolated from the envi-
ronment due to their relatively small magnetic moment
compared to that of electrons. However, in order to en-
able such applications, this advantage possesses a chal-
lenge for accessing and coherently manipulating nuclear
spins. Multiple examples of coherent control of nuclear
spins have been presented by using hyperfine interactions
with an available electronic spin. Ensemble of nuclear
spins were accessed using phosphorus electronic spins in
silicon1, whereas individual nuclear spins have been ac-
cessed in diamond2,3, silicon4, through an optically acces-
sible ancillary electronic spin, and in single molecules us-
ing external electric field control5. Several nuclear spins
in diamond have been controlled using hyperfine6,7 and
nuclei dipole-dipole interactions8. Such control has en-
abled the production of GHZ states8 and the implemen-
tation of error correction in multi-qubit spin registers6,7.
Recently, new methods for controlling a nuclear spin
have been proposed by synchronously driving an elec-
tronic spin with the nuclear Larmor precession9. Here,
we present a method for preparing and controlling a nu-
clear spin in diamond using Stimulated Raman Adiabatic
Passage (STIRAP) in the microwave domain following a
recent experimental realisation of Coherent Population
Trapping (CPT)10.

STIRAP can coherently transfer population by adia-
batically changing a dark state11–13. The same process is
also possible through a bright state (b-STIRAP)14,15 and
both methods have been realized in doped solids14,16–18,
cold atoms19, and proposed in quantum dots20, to name a

few. It has been implemented for coherent manipulation
of states19 in logic operations21,22, quantumness witness
detection23 and entanglement generation24. In quantum
metrology, it has been proposed to improve the detection
of electric dipole moments using ThO molecules25, and
for mapping light states in to nuclear spins states in op-
tical cavities26. In diamond, it has been implemented in
the optical domain to control the Nitrogen-Vacancy (NV)
centre electronic spin27, and its geometrical phase28.

In what follows we propose to use stimulated Raman
adiabatic passage to control a nuclear spin in diamond
that is strongly coupled to the electronic spin associated
to an individual NV colour centre. In Section II we intro-
duce the system and Λ-configuration on which STIRAP
is implemented. In Section III we use STIRAP to rapidly
and coherently manipulate a nuclear spin and initialise it
from a thermally mixed state. Finally, we discuss how to
use Raman pulses in order to perform spectroscopy on a
nuclear spin and measure its geometrical phase.

II. THE MODEL

A. Nuclear spin based Λ-scheme

We consider a Carbon-13 nuclear spin in diamond cou-
pled via hyperfine interaction to a nearby NV colour cen-
tre which is composed of a vacancy and a Nitrogen substi-
tutional atom (isotope 14). The Hamiltonian describing
this nuclear spin and the NV electronic spin is given by
(~ = 1)10
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H0 = DS2
z + γeSzBz + γnIzBz + SzAzzIz

+
Aani

2
Sz(I+e

−iϕ + I−e
iϕ), (1)

where D/2π ≈ 2.87 GHz is the zero-field splitting,
γe/2π ≈ 2.8 MHz/G and γn/2π ≈ 1.07 kHz/G are the
electronic spin and 13C nuclear spin gyromagnetic ra-
tio, respectively. The last two terms correspond to the
Hyperfine interaction after applying a secular approxi-
mation justified by the large value of D compared to the
hyperfine tensor components Ai,j , i.e., we have neglected

terms proportional to Sx and Sy. Aani = (A2
zx+A2

zy)
1/2

and I± = Ix ± iIy. In equation (1) we have assumed a
fixed 14N nuclear spin projection, e.g., mIN = +110. The
eigenenergies of H0 are10,29: E1,2 = ±γnBz/2;E3,4 =

D − γeBz ∓ 1
2

√

A2
ani + (Azz − γnBz)2, and the corre-

sponding eigenstates read

|ψ1〉 = |↑, 0〉 ,
|ψ2〉 = |↓, 0〉 , (2)

|ψ3〉 = cos(ϑ/2) |↑,−1〉+ sin(ϑ/2)eiϕ |↓,−1〉 ,
|ψ4〉 = − sin(ϑ/2)e−iϕ |↑,−1〉+ cos(ϑ/2) |↓,−1〉 .

where |↑〉 (|↓〉) is the Carbon-13 nuclear spin state mI =
+1/2 (mI = −1/2), |0〉 (|−1〉) is the electronic spin state
ms = 0 (ms = −1), and

tanϑ =
Aani

Azz − γnBz
, tanϕ = Azy/Azx. (3)

The magnetic field can be chosen so that the Λ-
scheme has a balanced transition probability ϑ ≈ π/210,
i.e., Azz = γnBz. We will focus on the submanifold
{ψ1, ψ2, ψ3} and neglect state ψ4 as we will only con-
sider resonant and red detuned excitations between the
ground states {ψ1, ψ2} and state ψ3. As a result, the
system can be described by a Λ-configuration (see Fig.
1) with Hamiltonian

H0 = E1 |ψ1〉 〈ψ1|+ E2 |ψ2〉 〈ψ2|+ E3 |ψ3〉 〈ψ3| . (4)

B. Stimulated Raman Adiabatic Passage

Stimulated Raman Adiabatic Passage (STIRAP)12,13

can successfully transfer the population from one state
(|ψ1〉) to another (|ψ2〉) by an intermediate state (|ψ3〉)
by driving the transitions ψ1 ↔ ψ3 and ψ2 ↔ ψ3 (see Fig.
1). The interaction Hamiltonian takes the form (~ = 1)

Hi =
1

2

(

Ωp(t)σ31e
−iωpt +ΩS(t)σ32e

−iωSt + h.c.
)

, (5)

FIG. 1: (Color online) Λ-configuration of the three level sys-
tem. The transitions indicated by the curved and dashed ar-
rows can be highly increased by means of an optical external
excitation.

where σik = |ψi〉 〈ψk|, Ωp(t) and ΩS(t) are Gaussian
time-dependent coupling strengths (see Fig. 4 inset) for
the pump and Stokes fields, respectively, given by

Ωp(t) = Ω13 cos
2(ϑ/2)e−

(t−td/2)2

2σ2 (6)

ΩS(t) = Ω23 sin
2(ϑ/2)e−

(t+td/2)2

2σ2 , (7)

with Rabi frequencies Ω13 = γeBp and Ω23 = γeBs, where
Bp,s is the amplitude of the driving field. The factor

cos2(ϑ/2) (sin2(ϑ/2)) gives the probability of the tran-
sition ψ1 ↔ ψ3 (ψ2 ↔ ψ3), which is inherent to our Λ-
configuration. We set Ω13 = Ω23 = Ω0, with Ω0/2π = 1
MHz. The time delay between the pulses is td and the
overlapping time is defined as ∆t ≈ 6σ − td, where 6σ
includes 99.74% of each Gaussian pulse. To achieve max-
imum fidelity the time delay is optimised to td =

√
2σ.

In the rotating frame the total Hamiltonian is

H̃ = δσ22 +∆1σ33 +
1

2
(Ωp(t)σ31 +ΩS(t)σ32 + h.c.), (8)

where ∆1 = E3−E1−ωp and ∆2 = E3−E2−ωS are the
one photon detunings. We set the two-photon detuning
δ = ∆1 − ∆2 to zero (∆1 = ∆2 = ∆) unless otherwise

specified. The eigenstates of H̃ are12,31

|b+〉 = sin θ sinφ |ψ1〉+ cosφ |ψ3〉+ cos θ sinφ |ψ2〉 ,
|d〉 = cos θ |ψ1〉 − sin θ |ψ2〉 , (9)

|b−〉 = sin θ cosφ |ψ1〉 − sinφ |ψ3〉+ cos θ cosφ |ψ2〉 ,

where

tan 2φ =

√

Ω2
p(t) + Ω2

S(t)

∆
, tan θ =

Ωp(t)

ΩS(t)
. (10)
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The corresponding eigenvalues are Eb± = ∆/2±{∆2+
Ω2

p(t) + Ω2
S(t)}1/2/2 and Ed = 0. Note that the bright

eigenstates {|b±〉} are represented by a linear combina-
tion of all bare states, while the dark eigenstate |d〉 has
only the contribution of the two lower states. A co-
herent population transfer between states |ψ1〉 and |ψ2〉
is possible by varying the Rabi frequencies that effec-
tively change the angle θ. This transfer takes place
without involving state |ψ3〉, provided the evolution is
adiabatic11,12,32, i.e., an evolution sufficiently slow in
order to keep the system in its dark state. Following
Ref11,12, the adiabatic condition can be stated requiring
that the mixing angle θ varies much slower than the en-
ergy difference between eigenstates,

θ̇ ≪ |Eb± − Ed| ≡ Ωeff . (11)

When the pulses have a smooth shape, an approximate
global criterion for adiabaticity can be found: Ωeff∆t >
1011,12.

III. RESULTS

A. Initializing a nuclear spin

We now consider the preparation or initialization of
a nearby Carbon-13 nuclear spin. In order to achieve
this goal we apply a pump pulse Ωp(t) under green laser
excitation to prepare the state |ψ2〉 from a thermal state
ρ(0) = 1/2 (|ψ1〉 〈ψ1|+ |ψ2〉 〈ψ2|). When the pump field
is switched on, the population rapidly moves from |ψ1〉
to the excited state |ψ3〉. At the same time, we induce
a strong decay at a rate of Γg = 5 MHz from |ψ3〉 to
|ψ1〉 and |ψ2〉 by applying a time-pulsed external green
laser10, see Fig. 1 for ΩS = 0. This optically induced
decay rate is a particular feature of our system since it
plays the role of the spontaneous emission, preparing the
system in a dark state. Nevertheless, one flaw of this
approach is that it optically induces both longitudinal
Γn,opt and transverse ΓD,opt relaxation of the nuclear spin
state which might vary for different 13C nuclear spins,
limiting the final fidelity. We assume these rates to be
of the order of Γn,opt = 150 kHz and ΓD,opt = 1 MHz33.
The evolution passes the population from |ψ1〉 to |ψ2〉 as
shown in Fig. 2.
We observed that the longitudinal relaxation consid-

erably harms the preparation. For this reason, the laser
is pulsed with an on-time of approximately 300 ns (see
Inset of Fig. 2). In this way the effect of the depolariza-
tion is minimized. We note that this process is similar
to the one presented in Ref10. After 8 µs it is possible
to prepare the nuclear spin state |mn =↓〉 (|ψ2〉) with a
fidelity of 88%. To prepare the other spin state |mn =↑〉
(|ψ1〉), the pump field must be replaced by the Stokes
field ΩS(t). Therefore, the nuclear spin can be polarized
on either |ψ1〉 or |ψ2〉 state. It is worthwhile noticing
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FIG. 2: (Color online) Successful preparation of the nuclear
spin |↓〉 starting from a thermal state, in the presence of the
green laser Γg = 5 MHz and ∆ = 0. Inset: pulse sequence
with the pump field (Ωp/2π = 0.5 MHz) and the green laser.

that when larger Rabi frequencies can be reached, for in-
stance Ω0/2π > 3 MHz, a square laser (similar to Ωp)
rather than a pulsed laser, leads to similar fidelities but
in shorter times.
The evolution was estimated using the Master equation

dρ

dt
= −i[H̃, ρ] +L↑

k(ρ) +L↓
k(ρ) +LD

1 +LD
3 +Ldep

12 , (12)

where the Lindblad operators are given by

L↓
k =

∑

k=1,2

Γ3k

2
(1 + nth)(2σk3ρσ3k − σ33ρ− ρσ33),

L↑
k =

∑

k=1,2

(
Γ3k

2
(nth)(2σ3kρσk3 − σkkρ− ρσkk),

LD
l =

ΓlD

2
(2σllρσll − σllρ− ρσll),

Ldep
12 =

∑

i6=j

Γn,opt

2
(2σijρσji − σiiρ− ρσii),

and Γ31 (Γ32) is the decay rate from state |3〉 to state |ψ1〉
(|ψ2〉) due to the effect of thermal phonons and it is in-
trinsic to the system so we will consider it throughout this
paper. For practical considerations we set the upward
and downward transitions to be of the same order, con-
trary to what is assumed in the optical domain where the
upward transitions are usually neglected. These terms
account for the T1 relaxation process that thermalise the
electronic spin of the NV centre, although modelling this
process is more complex34. The relaxation time T1 is of
the order of few ms34. The decoherence mechanisms bel-
low are optically induced by the green laser and will be
only considered in particular cases. The fourth and fifth
terms in Eq.(12) correspond to pure dephasing (energy
conserving) process over the states |ψ1〉 and |ψ3〉. In our
system, the strength of the dephasing term Γ1D is given
by two components, the optically induced transverse re-
laxation ΓD,opt and the intrinsic decoherence time T ∗

2n
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of the Carbon-13, which is of the order of tens or hun-
dreds of ms2. On the other hand, Γ3D is related to the
decoherence time T ∗

2 of the electronic spin, which is of
the order of a few µs6,35,36. The last term corresponds
to a depolarization channel over the ground state, i.e.
{i, j} = 1, 210.
Other sources of decoherence coming from the pres-

ence of substitutional Nitrogen, known as P1 centres, are
sample dependent and the interaction between P1s and
NVs depends on the external magnetic field37. These
sources are not considered here but they might be im-
portant at values of the external magnetic field for which
both species are on resonance34.
We now analyse the robustness of the present ap-

proach. In Fig. 3(a) we consider the effect of differ-
ent Rabi frequencies Ω0 and the single photon detuning
∆. We note that by increasing Ω0 the fidelity increases.
However, by increasing the single photon detuning, the
preparation is completely destroyed and cannot be over-
come with the green laser. We also analyse the effect
of both longitudinal relaxation and laser-induced decay
rates in Fig. 3(b). The former (Γn,opt), rapidly hurts the
fidelity, reducing the applicability of our approach. For
Γn,opt = 0 and Γg = 5 MHz the fidelity reaches 99.4%.
The latter (Γg) has a plateau, such that for Γg ≥ 3 MHz
the fidelity is above 99% (at Γn,opt = 0).

FIG. 3: (Color online) Fidelity of the preparation. (a) As a
function of the single photon detuning ∆ and Rabi frequency
Ω0. Γg = 5 MHz, Γn,opt = 150 kHz and Γ1D = 1 MHz.
(b) As a function of longitudinal Γn,opt and laser-induced Γg

decay rates of the nuclear spin. Ω0/2π = 1 MHz, ∆ = 0 and
Γ1D = 1 MHz.

In general, in Λ-schemes, the robustness in terms of
pure dephasing on the ground state Γ1D is detrimented.
However, this can be overcome in the presence of the
decay Γg induced by the green laser. We observed that
for a large transverse relaxation rate Γ1D = 1 MHz the
population in the radiative state |ψ3〉 grows, but the fi-
delity holds. It is not a surprise that the same con-
clusion can be extended to the original STIRAP pro-
cess, where one starts from an already polarized state
(|ψ1〉). As known, the STIRAP is fragile to ground state
decoherence (Γ1D 6= 0). For instance, the population
transfer decreases to 〈σ22〉 = 0.4 with a pure dephas-
ing noise of strength Γ1D = 1 MHz, same parameters
as in Fig. 4. Nevertheless, the presence of the green
laser enhances the population transfer, reaching 96% of
success for Γn,opt = 0 and 82% for Γn,opt = 150 kHz.

Similar schemes have been previously studied to pre-
vent the effect of pure dephasing on the ground state
for STIRAP38–40.

B. Fast manipulation of the nuclear spin via

STIRAP

A complete toolbox for controlling a 13C nuclear spin
requires the ability to prepare a coherent superposition
state, which commonly implies the use of a radio fre-
quency (RF) field8,41. Under a limited amplitude of the
RF field, such approaches require long times compared
to the time required to manipulate electronic spins. For
example, the time needed for preparing a nuclear su-
perposition at a given Rabi frequency scales as T n

π/2 =

(γe/γn)T
e
π/2 where T e

π/2 = π/(2Ω0). For T e
π/2 = 1/4 µs,

T n
π/2 gives 654 µs. On the contrary, in the lambda sys-

tem presented here the nuclear spin rotate between states
|ψ1〉 and |ψ2〉 following the faster electronic transitions
by taking advantage of the non-nuclear-spin-preserving
transitions (|ψ2〉 ↔ |ψ3〉 and |ψ1〉 ↔ |ψ3〉).
Consider, for example, on a Λ-scheme with initial pop-

ulation on state |ψ1〉, a STIRAP process for which the
Stokes pulse precedes the pump pulse (see inset of Fig.
4). Such pulse order is known as conterintuitive pulse
sequence14. At the initial time (t → −∞), θ = 0, while
at the end of the interaction (t→ +∞), θ = π/2. Fig. 4
shows how the population evolves from an initially pre-
pared state |ψ1〉 to state |ψ2〉. The transfer time is of the
order of 30 µs with a fidelity of 94% , which is limited
by the lack of adiabaticity and the decoherence in the
excited state Γ3D. This is considerably shorter than the
time required for an RF field which directly couples to
the nuclear spin for the same Rabi frequency, which is
about 1.3 ms. This time can be decreased by increasing
the RF power at expenses of heating the sample. The
fidelity can be improved by following a more adiabatic
evolution. For example, by increasing the width of the
pulses so that σ = 11 µs, the fidelity reaches 97% for a
transfer time of 65 µs.
Hence, the manipulation of a nuclear state can be per-

formed an order (or even two orders) of magnitude faster
than conventional methods. In the same way, a superpo-
sition state can be created by applying a fraction of the
STIRAP sequence42,43. For example, it takes 19 µs to
create the state 1/

√
2(|↑〉 − |↓〉) with fidelity 96%. Even

more, these times might be further improved by hasten-
ing the STIRAP process. For this purpose several proto-
cols exist44–47, where the main idea consists of bypassing
the adiabatic condition, counteracting the effect of the
loss of adiabaticity with an external control (auxiliary
field). Toward this goal, we focus on the work proposed
recently by Baksic et al.

44, termed MOD-SATD (modi-
fied superadiabatic transitionless driving). The aspects
of this approach have been detailed in Appendix B. We
observe that in the absence of dephasing noise, MOD-
SATD outperforms STIRAP allowing to reach higher
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FIG. 4: (Color online) Population transfer through Stimulat-
ing Raman Adiabatic Passage (STIRAP) of the nuclear spin
|mn =↑〉 (〈σ11〉) to |↓〉 (〈σ22〉) with 94% of success. σ = 5 µs,
Γ1D = 0, Γ3D = 1 MHz, Γ31 ≈ Γ32 ≈ 9× 10−5 MHz, ∆ = 0.
Inset: STIRAP pulse sequence, Stokes pulse (ΩS) precedes
the pump pulse (Ωp).

population transfer in shorter times (not shown here).
When the adiabatic condition fulfills the MOD-SATD
loses robustness. However, in the presence of dephas-
ing noises in the excited (Γ3D) and ground (Γ1D) states,
a trade off between these two approaches shows up, sepa-
rating their range of effectiveness. In Fig. 5 we calculate
the population that reaches the target state (〈σ22〉) as a
function of the pulse width σ, which controls the effective
duration of the protocol. Notice that in the presence of
Γ3D = 1 MHz and for not too short dynamics (σ > 1 µs)
STIRAP prevails as a good protocol, because the MOD-
SATD deliberately occupies the excited state, suffering of
strong decoherence. For a short dynamics (σ < 1 µs) the
performance interchanges and STIRAP deteriorates con-
siderably. Nevertheless when the dephasing noise is only
present in the ground state (Γ1D = 1 MHz), MOD-SATD
leads the population transfer.

C. Ramsey spectroscopy and geometric phase

In this section we show how to implement Ramsey
spectroscopy for metrology purposes and for measuring
the geometric phase acquired by a nuclear spin nearby to
a NV centre. To gain further insight on the dynamics of
the ground state, we adiabatically eliminate the excited
state |ψ3〉 and arrive to the following effective Hamilto-
nian

H =

(

−|Ωp|2
4∆

+
|ΩS |2
4∆

− δ

)

σz
2

−R
{

Ω∗
pΩS

4∆

}

σx

− I
{

Ω∗
pΩS

4∆

}

σy, (13)

where σz = σ11 − σ22, σx = σ12 + σ21 and σy =
−iσ12 + iσ21. Note that the shape of the pulses ΩS and
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FIG. 5: (Color online) MOD-SATD protocol speed up STI-
RAP, outperforming the latter in the case where only de-
phasing losses in the ground state are present, Γ1D = 1 MHz
and Γ3D = 0. When losses appear only in the excited state,
Γ1D = 0 and Γ3D = 1 MHz, the protocol fails in being su-
perior to STIRAP. For STIRAP we set td =

√
2σ, while for

MOD-SATD td has been optimized for each σ.

Ωp, and their relative phase can be arranged to arbitrar-
ily move the nuclear state on the Bloch sphere. Without
loss of generality, we consider that one of the Rabi fre-
quencies has a time-dependent phase Ωp = |Ωp|eiϕR(t)

with |Ωp| = Ω13 cos(ϑ/2)
2. The σz component can be

controlled by replacing the Gaussian profiles of the mi-
crowave pulses by two overlapped rectangular pulses of
different amplitude, e.g. ΩS > Ωp. Thus, by taking
ϕR = 0 (ϕR = π/2), the spin rotates only around x
(y). Let us consider first a (π/2)x pulse over the initial
state |ψ1〉, as depicted in Fig. 6(a). This pulse prepares

the state 1/
√
2(|ψ1〉+ i |ψ2〉) in approximately 3 µs with

a fidelity over 98%. This superposition freely evolves
for a time τ , subject to pure dephasing losses given by
Γ1D, until we apply another (π/2)x pulse in order to map
the phase differences acquired during the free evolution
to population differences. We notice that the precession
during the free evolution comes from the two photon de-
tuning, which has been set to δ/2π = 0.05/2π MHz for
illustration purposes. The resulting signal is plotted in
Fig. 6(b), as a function of the precession time τ . The
slow decay is a consequence of the decoherence of the
nuclear spin at a rate of Γ1D. These results are par-
ticularly useful for sensing low frequency components of
external magnetic fields due to the low decoherence rate
of nuclear spins.
Finally, we explore the different phases acquired by

the nuclear spin. The effective Hamiltonian (13) can

be rewritten as, HR = ~Ω · ~σ, where ~σ = {σx, σy, σz}
and ~Ω = {−ΩR cos(ϕR),−ΩR sin(ϕR),Ωz}, with ΩR =
|Ωp||ΩS |/4∆ and Ωz = (|ΩS |2−|Ωp|2−4∆δ)/8∆. Notice
that this Hamiltonian is suitable for measuring Berry’s
phase48, provided that the phase ϕR(t) is adiabatically

varied such that ~Ω completes a closed path. For ϕR

varied from 0 to 2π, the acquired geometric phase is
±2π(1 − cos(θR))/2, where the sign ± refers to the op-
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FIG. 6: (Color online) (a) Pulse sequence used for Ramsey
spectroscopy, ΩS/2π = 1.76 MHz and Ωp/2π = 1.61 MHz.
(b) Example of Ramsey interferometry using the nuclear spin
of the Carbon-13. Analytical result (solid) and simulation
(dots) agrees. Γg = 0, Γ1D = 1 kHz, ∆/2π = 16 MHz and
δ/2π = 0.05/2π MHz. The solid curve is a fit to the numer-

ical data using a function a0(1 − e−(Γ1D/2) τ cos(δτ )). The
constant a0 ≈ 0.46 differs from the ideal value 1/2 because
of the losses during the preparation of the superposition and
further application of the pulses to recover the initial state.
(c) Pulse sequence for measuring the Berry’s phase. (d) Vari-
ation of the Berry’s phase as a function of the ramp speed
for varying the relative phase between the Stoke and pump
pulses. As the ramp speed increases, the calculated value for
the phase deviates from the expected value (horizontal line)
due to the loss of adiabaticity.

posite phases acquires by the eigenstates and cos(θR) =

Ωz/
√

Ω2
R +Ω2

z. Therefore, γB = 2π(1 − cos(θR)) is the
relative geometric phase that equals the solid angle en-

closed by the cone that traces ~Ω(t) around the z axis.
One can use different approaches to directly observe

this phase, for instance, STIRAP pulse sequence28,49 and
spin-echo pulse sequence50. The latter leads directly to
the relative geometric phase by canceling the dynamical
phase, while the former takes advantages of the evolu-
tion of the dark state with corresponding zero energy.
However, we will obtain the Berry phase through the
Ramsey scheme mentioned above. First, we prepare a
superposition as illustrated in Fig. 6(c). Then, we start
varying the phase ϕR(t) adiabatically. This adiabaticity

requires that ϕ̇R sin(θR)/(2|~Ω|) ≪ 150, for which we set
ϕR = ±αt, with α = 0.006 and the sign ± refers to the
direction of the path C±. A closed path is obtained for
an evolution time T = 2π/α. We leaved the amplitude
of the Stoke pulse invariant during the whole process,
ΩS/2π = 1.76 MHz, while the pump pulse is reduced to
Ωp/2π = 0.16 MHz during the adiabatic evolution.
By traversing the path in one direction (C+), the eigen-

states of the Hamiltonian acquire a total (dynamical plus
geometric) relative phase φ+ = δd(t) + γB, while in the
opposite direction (C−) the phase is φ− = δd(t) − γB,
where δd(t) stands for the dynamical phase. Note that
δd(t) is independent of the direction of the path. Hence,
repeating the process for each path, allows us to ob-

tain the geometric (Berry) phase as γB = (φ+ − φ−)/2,
where φ = arctan[(cos(χ) 〈σx〉 − sin(χ) 〈σz〉)/ 〈σy〉] and
χ = arctan[ΩR/Ωz]. The expectation value of 〈σy〉 can
be found by applying the final π/2 rotation around the x
axis (see Fig. 6(c)) and measuring the population in the
excited state, Pe = 1/2(1 + 〈σy〉). A similar procedure
reveals 〈σx〉. Finally, 〈σz〉 can be directly obtained as
Pe = 1/2(1− 〈σz〉) without applying any final rotation.
Fig. 6(d) shows the calculated Berry phase and the adi-
abatic expected value as a function of the ramp speed α.
It can be seen how the calculated Berry phase deviates
from the expected value as the ramp speed is increased
due to the loss of adiabaticity.

IV. CONCLUSIONS

Based on the theory of Stimulated Raman Adiabatic
Passage (STIRAP), we proposed a feasible scheme to
speed up the manipulation of a nearby Carbon-13 by ex-
ploiting the anisotropy of the hyperfine interaction, which
enables us to implement a Λ-configuration in the mi-
crowave domain that allows nuclear spin to follow the
faster electronic transitions. We found that the time
needed for preparing a superposition or make a spin-
flip can be considerably smaller than the time used in
conventional methods involving RF fields. This can be
used to realize fast quantum gates before decoherence
detriments the operation. Therefore enhancing its ro-
bustness. Moreover, we showed that the modification of
STIRAP known as MOD-SATD increases the fidelity for
short pulses in the presence of losses. Our analysis gives
insight on when these protocols will improve the perfor-
mance of population transfer depending on the type of
losses. We also discuss a protocol for preparing a nuclear
spin state from an initially thermal state, which is possi-
ble thanks to an external optical control of the relaxation
rate of the excited state of our Λ-scheme. This can be
used in future protocols for initializing nuclear spins and
therefore achieving total control of them. As an example,
we show how to perform Ramsey spectroscopy for either
metrology purposes or to measure the different, dynam-
ical and geometric, phases acquired by the nuclear spin
nearby an NV centre in diamond.
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Appendix A: Dependence of the Λ-Configuration

with Bz

One of the most striking feature of this Λ-system, is
that the whole configuration depends on the magnetic
field Bz. To see this, one can notice that the transition
frequencies T31 = E3−E1 and T32 are functions of Bz

29.
Then, the difference in energy of these two transition is
T31 − T32 = γnBz. For instance, for a low magnetic field
(Bz ≈ 20 G), this difference can be neglected, leading to
T31 = T32. The transition frequencies are not the only el-
ements depending on Bz. The probabilities of these two
transitions are also Bz-dependent. The relative probabil-
ity between forbidden (not nuclear spin conserving transi-
tion T32) and allowed transitions is given by tan2(ϑ/2)29,
with ϑ defined in Eq.(3). When |Azz − γnBz| and Aani

have the same order of magnitude, all the transitions can
be observed. If Azz = γnBz, i.e., when ϑ = π/2, the
amplitudes of the transitions T31 and T32 are identical.
This case happens at Bz ≈ 950 G. We took Aani = 0.51
MHz and Azz = 1.02 MHz, from the experiments29. The
last case is |Azz − γnBz| ≫ Aani, where only nuclear
spin conserving transitions can be observed. In order to
consider this effect, the Rabi frequency Ωp (ΩS) as well
as the decay rate Γ31(Γ32) will be weighted by cos(ϑ/2)2

(sin(ϑ/2)2).

Appendix B: MOD-SATD protocol

The MOD-SATD protocol is a generalization of the
counterdiabatic approach, that eliminates the flaw of con-

necting the initial and target state by introducing modi-
fications only to the original Stokes and pump fields44,45.
These corrections in the fields naturally appear when
transforming the original adiabatic basis to a dressed
state basis, that reproduces the STIRAP outcome but
without the constraint of an adiabatic evolution. Fol-
lowing Ref.44, we parametrize the pump and Stokes field
as

Ωp = − cos2(ϑ/2)Ω(t) sin θ, ΩS = sin2(ϑ/2)Ω(t) cos θ,
(B1)

and corrects the angles and amplitude such that

θ → θ(t)− arctan[
gx(t)

Ω(t) + gz(t)
], (B2)

Ω(t) →
√

(Ω(t) + gz(t))2 + g2x(t), (B3)

where for our Gaussian pulses we set gx(t) = µ̇, gz(t) =

−Ω− θ̇/ tan(µ) and

θ(t) = arctan[exp(2tdt/σ
2)], (B4)

Ω(t) = Ω0 exp(−
t2 + t2d/4

σ2
)
√

2 cosh(tdt/σ2), (B5)

µ(t) = − arctan[
θ̇

g(t)/σ +Ω(t)
]. (B6)

g(t) = A/ cosh(ζt) with A = 1/40 and ζ = 9/10σ was
selected according to Ref.44.
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