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We derive a density matrix (DM) theory for quantum cascade lasers (QCLs) that describes the
influence of scattering on coherences through a generalized scattering superoperator. The theory
enables quantitative modeling of QCLs, including localization and tunneling effects, using the well-
defined energy eigenstates rather than the ad hoc localized basis states required by most previous
DM models. Our microscopic approach to scattering also eliminates the need for phenomenological
transition or dephasing rates. We discuss the physical interpretation and numerical implementation
of the theory, presenting sets of both energy-resolved and thermally averaged equations which can be
used for detailed or compact device modeling. We illustrate the theory’s applications by simulating a
high performance resonant-phonon terahertz (THz) QCL design which cannot be easily or accurately
modeled using conventional DM methods. We show that the theory’s inclusion of coherences is
crucial for describing localization and tunneling effects consistent with experiment.

I. INTRODUCTION

Quantum cascade lasers (QCLs) are important co-
herent light sources in the mid-infrared (MIR) and
terahertz (THz) frequency regimes.1–4 Their versatility
comes through heterostructure engineering of intersub-
band optical transitions; lasing occurs via an intricate
balance of quantum tunneling, scattering (via disorder,
phonons, electron-electron interactions, etc.), and optical
coupling. A range of techniques has been developed to
better understand and predict device operation.5 Simple
rate equations can explain basic features but are insuf-
ficient for quantitatively describing sophisticated QCL
designs. At the other extreme, non-equilibrium Green’s
functions (NEGF) can provide detailed microscopic in-
sight, but lead to considerable computational and physi-
cal complexity.6–8 Frequently, a balance of rigor and sim-
plicity in modeling is sought using semiclassical or den-
sity matrix (DM) approaches, which may be solved an-
alytically or numerically depending on the level of de-
tail required. The advantages and limitations of these
techniques are closely linked to the chosen basis of wave
functions for the simulated device.

Semiclassical models use the eigenstates of the device
Hamiltonian (i.e., the subbands generated by the het-
erostructure band structure and applied bias) as their
basis with Fermi golden rule (FGR) scattering rates driv-
ing transitions between these states. They can be solved
numerically as a set of self-consistent rate equations or
via the Monte Carlo method, similar to the Boltzmann
equation.9,10 These models can be also viewed as a type
of Pauli master equation where only the diagonal ele-
ments (populations) of the density matrix are considered
and off-diagonal elements (coherences) are neglected.11,12

While this approach has been very successful in describ-
ing many semiconductor device phenomena, its neglect
of coherences can lead to problems in QCLs. For exam-

ple, it is known that tunneling through injection barriers
is not properly captured in semiclassical calculations,13,14

which predict strong subthreshold parasitic current chan-
nels and a peak injection current density independent of
barrier thickness (both of which are contradicted by ex-
periment).

To compensate for these deficiencies, coherences be-
tween states must be taken into account. This is usually
done phenomenologically in “localized basis” DM mod-
els by choosing a basis of wave functions localized on
either side of particular barriers which couple coherently
via tunneling matrix elements.13,18 This approach14–17 is
intuitively appealing and has clear physical significance
in simple systems where a single thick barrier is the bot-
tleneck for current. Therefore most self-described DM
QCL models in the literature follow this approach. How-
ever, the results of such calculations are sensitive to the
choice of basis, so they are not portable to different de-
signs. Furthermore, the determination of the appropriate
basis states and tunnel couplings is ad hoc and may be
indefinable for complex designs where many states (and
their effective couplings) must be disentangled. This is
particularly troublesome in many THz devices, where the
low energy scale necessitates many closely spaced states
in energy and position and resonant tunneling is critical
for depopulation transport within the module–it is not
always easy to decide in advance that particular barriers
are bottlenecks. It can also be important in MIR QCLs,
where coherent tunneling interactions mediate the mini-
band extraction process. Finally, the juxtaposition of
an artificially localized basis with FGR scattering rates
calculated from energy eigenstates is theoretically unsat-
isfactory. It is therefore highly desirable to devise a the-
ory which consistently accounts for quantum coherences
without any ambiguity regarding the choice of basis.

Ideally the energy eigenstates, which are easily com-
puted using band structure solvers, would be used to
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describe coherences. Since the Hamiltonian is diago-
nal, only scattering can then induce off-diagonal DM el-
ements. An early QCL simulation work explored this
idea; however, few details of the formalism were given
and the authors concluded that coherences were unim-
portant in steady state for the device they considered.19

As noted above, strong evidence is now known for coher-
ence effects in QCLs. More recently, a few works have
described QCL DM models in the time domain includ-
ing scattering-induced coherences.20–22 Ref. 20 used this
method to show the importance of coherences for tunnel-
ing transport and dynamical charge transfer, while Refs.
21 and 22 examined nonequilibrium populations and re-
laxation times of QCL subbands. However, an extensive
unified discussion of the theory, its inner workings, and
its applications has not yet appeared.

In this paper, we present such a description of a DM
theory derived from first principles which fully captures
coherence effects within the energy eigenstate basis. In
this theory, a generalized scattering superoperator ap-
pears which can not only redistribute populations but
also induce and dephase coherences, allowing for transfer
between arbitrary DM elements. From the implemen-
tation standpoint, this amounts to an extension of the
FGR to include effects of scattering on off-diagonal DM
elements. Relevant quantities like charge density, cur-
rent, gain, etc., can be then be computed using standard
methods. Because the model uses the energy eigenstates
of the QCL module and does not require any phenomeno-
logical parameters to describe dephasing, tunneling, or
other effects, it can be directly applied to different QCL
designs without modification. As an initial example of
its capabilities, we apply our theory to a five-level THz
QCL design not amenable to existing DM methods, find-
ing good agreement with experiment and insight into de-
vice operation. Aside from certain technical differences
in our derivation and equations which are addressed be-
low, this work differs from related previous studies20–22

by providing a complete framework and physical discus-
sion of steady-state and optical modeling of QCLs, and
we further point out that this approach resolves the basis
choice dilemma of conventional QCL DM modeling.

As this paper seeks to cover our approach from funda-
mental derivation to practical implementation, the vari-
ous aspects of the theory will be discussed as follows. Sec-
tion II explains the derivation of the DM equations, show-
ing how a generalized scattering superoperator emerges
from the Liouville-von Neumann equation for the micro-
scopic density matrix of a general system. Section III
discusses the physical interpretation of the superoper-
ator and its relationship with other scattering models.
In Section IV we provide equations for generalized scat-
tering via impurities and alloy disorder, interface rough-
ness, and polar optical phonons, discussing how these
mechanisms can be included in both microscopic (energy-
resolved) and coarse-grained (thermally averaged) form
for detailed and simplified DM models, respectively. The
incorporation of periodicity and optical field in the model

is treated in Section V. In Section VI we summarize how
the model can be used for device calculations (readers pri-
marily interested in implementing this model may wish
to start here) and then show numerical examples of its
use for a two-level superlattice as well as a complex five-
level THz QCL design. The device analysis in this paper
emphasizes the interpretation of the formalism; we will
discuss a wider range of QCL designs, as well as device-
oriented insights obtained from our methodology, in a
separate work.23

II. GENERALIZED SCATTERING THEORY

To overcome the limitations of conventional model-
ing approaches, we examine the evolution of the den-
sity matrix in detail to determine how coherences arise
microscopically within the energy eigenstate basis. Our
method of derivation follows that of Luttinger and
Kohn,11,12,24 generalizing their result to include off-
diagonal DM elements. For specificity, we consider the
case of a coupled electron-phonon system within the
Hilbert product space Hs = H⊗Hph of the electrons and
phonons. This allows us to obtain a generalized model of
the electronic DM in the presence of phonon scattering;
the case of elastic scattering can be derived in similar
if slightly simpler fashion, with results discussed later in
the section.
We adapt the Liouville-von Neumann equation for the

DM evolution of the complete system ρs to write

ρ̇s ≡
∂ρs
∂t

=
1

i~
[H ′ + V , ρs]−

η

~
ρs, (1)

where we have separated the isolated Hamiltonians for
the electrons and phonons H ′ = H + Hph from the
electron-phonon coupling V and then formally introduce
dissipation via an infinitesimal damping constant η in the
right-most term.25 Since QCLs typically operate at non-
degenerate electron densities, we neglect Pauli exclusion
effects and assume a single-particle electron Hamiltonian
H which includes the band structure and any applied
electric field (as well as the self-consistent Hartree po-
tential if space charge effects are considered). Typically
we work in the basis of eigenstates of H ′ which have en-
ergies E′ = E +

∑

~q

(n~q + 1/2)ǫ~q, where E is the electron

eigenenergy and n~q and ǫ~q are the occupation number and
energy for each phonon mode ~q (shorthand for the set of
quantum numbers denoting each mode including wave
vector, dispersion branch, and polarization). For conve-
nience, any diagonal components of V are also lumped
into E′. The evolution for an arbitrary element ρs,ab is
then given by

ρ̇s,ab =

(

E′
a − E′

b

i~
− η

~

)

ρs,ab +
∑

c

[Vacρs,cb − Vcbρs,ac]

i~

(2)
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If we assume that the density matrix varies slowly on the
time scale of H ′ and V , we can drop the time derivative
of ρs on the left-hand side (akin to the Markov approxi-
mation) and rearrange to get

ρs,ab =
−1

E′
a − E′

b − iη

[

∑

c

(Vacρs,cb − Vcbρs,ac)

]

. (3)

Anticipating integrals to come, we now make use of

lim
η→0

1

ω − iη
= P

(

1

ω

)

+ iπδ(ω) (4)

and drop the principal value contributions (describing
renormalization of the energy levels) to obtain

ρs,ab = −iπ

[

∑

c

(Vacρs,cb − Vcbρs,ac)

]

δ(E′
a − E′

b). (5)

By substituting Eq. 5 back into the right-hand side of
Eq. 2 and slightly rearranging the indices, we find to
second order in the scattering potential V that

ρ̇s,ab =
(E′

a − E′
b)

i~
ρs,ab

+
π

~

∑

c,d

[VacVdbρs,cd(δ(E
′
c − E′

b) + δ(E′
a − E′

d))

− VacVcdρs,dbδ(E
′
c − E′

b)− VdcVcbρs,adδ(E
′
a − E′

c)] .

(6)

The terms within the double summation can be inter-
preted as a generalized scattering superoperator which
couple the evolution of an arbitrary DM element ρs,ab to
all others. This is in contrast to the usual Fermi golden
rule rates which only couple diagonal elements (popula-
tions).
For inelastic scattering via phonons, the electron-

phonon interaction V =
∑

~q

V −~q b̂†~q + V ~q b̂~q, where ~q de-

notes the phonon mode wave vector (with associated en-
ergy ǫ~q), V

~q is the electron-phonon matrix element for

the given mode, and b̂~q and b̂†~q are the phonon creation
and annihilation operators, respectively. The products
of matrix elements in Eq. 6 have the form

VacVdb =
∑

~q,~q′

(

V −~q
ac V −~q′

db b̂†~q b̂
†
~q′ + V −~q

ac V ~q′

db b̂
†
~q b̂~q′

+V ~q
acV

−~q′

db b̂~q b̂
†
~q′ + V ~q

acV
~q′

db b̂~q b̂~q′
)

(7)

and likewise for other index orderings. Since we are in-
terested in the electrons, we can perform a partial trace
over the phonon degrees of freedom to obtain a master
equation for the electron density matrix. We now as-
sume that the electrons and phonons are weakly coupled
so ρs = ρ ⊗ ρph can be factorized into a tensor prod-
uct of electron and phonon density matrices and that the

phonon subsystem ρph is in equilibrium, so the popula-
tion of each mode n~q is given by the Bose-Einstein oc-
cupation factor at the lattice temperature. Only terms

like 〈b̂†~q b̂~q〉 = n~q and 〈b̂~q b̂†~q〉 = n~q+1 survive the ensemble
averaging, which correspond to phonon absorption and
emission, respectively. Eq. 6 therefore reduces to

ρ̇ab =
(Ea − Eb)

i~
ρab

+
π

~

∑

c,d,~q,±

(

n~q +
1

2
± 1

2

)

[

V ∓q
ac V ±q

db ρcd(δ(Ec − Eb ∓ ǫ~q)

+ δ(Ea − Ed ± ǫ~q))− V ∓q
ac V ±q

cd ρdbδ(Ec − Eb ± ǫ~q)

−V ∓q
dc V ±q

cb ρadδ(Ea − Ec ∓ ǫ~q)
]

.

(8)

An alternative notation useful for symbolic matrix ma-
nipulation of the superoperator is given in Appendix A.

Thus far we have defined the DM using general la-
bels a, b . . . for the electronic basis. In quantum well-
based QCLs, the basis states may depend on subband,
transverse momentum, and periodicity, which leads to a
complicated indexing of operator and superoperator ele-
ments. We will label subband indices (denoting the sub-
band envelope functions) with upper case Roman sub-

scripts and the in-plane (transverse) momentum ~k =
(kx, ky) with lower case Roman superscripts, while mod-
ule periods (introduced later in Section V) will be de-
noted with Greek subscripts µ. Since the device Hamil-

tonian H is usually diagonal in transverse momentum ~k,
we can rewrite the evolution of an arbitrary element of
the electron DM Eq. 8 as

ρ̇
~k
AB =

i

~
(E

~k
B − E

~k
A)ρ

~k
AB +

∑

C,D,~k′

Γ
~k,~k′

AB,CDρ
~k′

CD (9)

where the generalized scattering superoperator Γ describ-

ing scattering from the DM element [CD,~k′] to [AB,~k]
is given by

Γ
~k,~k′

AB,CD =
π

~

∑

~q,±

(

n~q +
1

2
± 1

2

)

[

V
~k,~k′

A,C V
~k′,~k
D,B×

(

δ(E
~k
A − E

~k′

D ± ǫ~q) + δ(E
~k
B − E

~k′

C ± ǫ~q)
)

− δ~k,~k′

∑

F,~k′′

(

δA,CV
~k,~k′′

D,F V
~k′′,~k
F,B δ(E

~k′′

F − E
~k
A ± ǫ~q)

+δB,DV
~k,~k′′

A,F V
~k′′,~k
F,C δ(E

~k′′

F − E
~k
B ± ǫ~q)

)]

(10)

for inelastic scattering. In this equation the Kronecker
delta function δi,j is 1 if i = j and zero otherwise. For
elastic scattering mechanisms V we can follow a similar
derivation for the electron DM to obtain the associated
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superoperator

Γ
~k,~k′

AB,CD =
π

~

[

V
~k,~k′

A,C V
~k′,~k
D,B

(

δ(E
~k
A − E

~k′

D ) + δ(E
~k
B − E

~k′

C )
)

− δ~k,~k′

∑

F,~k′′

(

δA,CV
~k,~k′′

D,F V
~k′′,~k
F,B δ(E

~k′′

F − E
~k
A)

+δB,DV
~k,~k′′

A,F V
~k′′,~k
F,C δ(E

~k′′

F − E
~k
B)
)]

.

(11)

In these equations we ignore coherences between different
~k vectors, i.e., we assume that ρ

~k1
~k2

AB and Γ
~k1

~k2,~k3
~k4

AB,CD are

zero when ~k1 6= ~k2 and/or ~k3 6= ~k4, which is justified
by the in-plane translational invariance of the quantum
wells in QCLs. This ignores the possibility of in-plane
localization due to strong disorder;26 however such effects
arise from multiple scattering and are beyond the scope
of the FGR or other low-order scattering treatments in
any case.

Eqs. 9-11 are the basic results of this paper and suggest
a different picture from the usual semiclassical or phe-
nomenological DM theories. In contrast to phenomeno-
logical methods, this model does not require ad hoc de-
termination of a localized basis, instead working with
the well-defined and easily calculated energy eigenstates
of the system. Furthermore, the generalized scattering
superoperator Eq. 10 not only provides for transitions
between different populations (as in the semiclassical the-
ory) and dephasing of coherences, but also couples arbi-
trary populations and coherences with each other. Note
that the sign of these terms may be positive or negative,
depending on the phases of the wave functions involved
in the scattering process; as we discuss below, this can
be connected with the physical localization of charge in
a particular spatial region.

The neglect of the time derivative in Eq. 3 is justifi-
able in the steady state DC limit, assuming it exists for
the system. Under transient conditions or with a time-
dependent excitation such as an optical field, the validity
of the assumption depends on the relative time/energy
scales of the band structure, excitations, and scattering
mechanisms. Non-Markovian effects may need to be con-
sidered when these scales become intertwined.27,28 How-
ever, the success of our model in describing a variety of
designs and device phenomena suggests that this remains
a good approximation for most practical QCLs.

III. FEATURES OF THE THEORY

A. Relationship with Simple DM Models

To obtain a clearer physical picture of the theory, we
can write the evolution for an arbitrary DM population

Γ:PP PC CC CP

FIG. 1: Categories of superoperator terms (denoted by
arrows) and the coupling they induce between elements

of the density matrix. For clarity the transverse

momentum ~k, ~k′ is suppressed in the illustration. See
text for discussion.

or coherence element

ρ̇
~k
A =

∑

C,~k′

Γ
~k,~k′

A,Cρ
~k′

C +
∑

C 6=D,~k′

Γ
~k,~k′

A,CDρ
~k′

CD (12)

ρ̇
~k
AB =

i

~
[E

~k
B − E

~k
A]ρ

~k
AB +

∑

C,~k′

Γ
~k,~k′

AB,Cρ
~k′

C (13)

+
∑

C 6=D,~k′

Γ
~k,~k′

AB,CDρ
~k′

CD

where for brevity we label populations (diagonal DM el-
ements) AA = A, etc. Note that the delta functions
within the Γ superoperator (Eqs. 10-11) specify the val-

ues of ~k′ which contribute within each summation. As
illustrated in Fig. 1, we see that the generalized scatter-
ing superoperator yields several distinct types of terms,
describing scattering from population to population (PP)

Γ
~k,~k′

A,C , coherence to population (CP) Γ
~k,~k′

A,CD, population

to coherence (PC) Γ
~k,~k′

AB,C , and coherence to coherence

(CC) Γ
~k,~k′

AB,CD. The PP terms describe transitions be-
tween the subband states and reduce to the FGR rate

Γ
~k,~k′

A,C =
2π

~
|V ~k,~k′

A,C |2δ(Ek
A − Ek′

C ) (14)

for elastic scattering (and similarly for inelastic pro-
cesses) when A 6= C. Likewise, CC self-couplings (i.e.,

Γ
~k,~k
AB,AB) are equivalent to coherence dephasing rates. In

the terminology of Bloch equations, PP rates and CC
self-couplings are equivalent to the T1 and T2 relaxation
times for populations and coherences.29 The other cate-
gories of terms (CP, PC, and general CC couplings such

as Γ
~k,~k′

AB,CD) do not usually appear in phenomenological
DM theories but are needed to describe how coherences
evolve through scattering. This distinguishes the present
theory from semiclassical models which only retain PP
terms and localized models where coherences are built
up through a specific choice of the coherent Hamiltonian
basis (e.g., off-diagonal tunnel couplings in H).
Because we define all scattering terms using a single

superoperator, the sign of each Γ
~k,~k′

AB,CD term depends
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on whether the process it describes is contributing to

the buildup or decay of the DM element [AB,~k] from

[CD,~k′]. It is clear that the FGR (Γ
~k,~k′

A,C) rates are always
positive since they describe transfer of population into
the final state. Similarly, the population inverse lifetimes

Γ
~k,~k
A,A and dephasing rates Γ

~k,~k
AB,AB always have negative

signs in our formulation because they describe decay or
transfer out of the DM element. However, we can see
from the scattering superoperator Eq. 10 that the signs
of all other terms (PC, CP, CC) can be either positive
or negative as they do not necessarily involve conjugate
products of the scattering potential V . Nonetheless the
scattering superoperator is always real for physical pro-
cesses, as will be clear when we derive Γ for specific scat-
tering mechanisms.

~ELO

A
B

C

HA’B’

B’

C’

A’

(a) (b)

(c)

Populations of A, B

AB Coherence

Total Density

FIG. 2: Wave functions of a three-level system with (a)
energy eigenstates and (b) ad hoc localized states. (c)
Contributions to electron density from populations and
coherence of anticrossed energy states A and B; positive
ρAB leads to charge buildup in the “upstream” well to
the left (as pictured), and vice versa. The transverse

momentum ~k dependence is suppressed for clarity.

We can obtain more physical intuition for the differ-
ent scattering terms by noting that for the spatially ex-
tended energy eigenstates of QCLs, coherences can be
partially interpreted as spatial localization of electrons.
Scattering “reshapes” the occupied states by building up
coherences between them. Consider the two anticrossed
extended subbands A and B depicted in Fig. 2a for in-
stance. In phenomenological theories, this is described
using an artificial basis of states localized on either side
of the barrier A′ and B′, which couple to each other via a
tunneling matrix element HA′B′ , as pictured in Fig. 2b.
In the energy eigenstate basis that this theory uses, the
spatial charge distribution is obtained from the density
matrix as shown in Fig. 2c, so the magnitude and sign of

coherences between the subbands ρ
~k
AB describes charge

buildup on either side of the barrier.
From this perspective a PC transition, for instance

from a higher energy state C into the coherence of AB,
describes scattering into localized regions in either the
left or right well, which are distinguished by the sign of
the superoperator term. For the system pictured in Fig.

2a, we can see from Eq. 10 that Γ
~k,~k′

AB,C ∝∑
~k′

V
~k,~k′

A,C V
~k′,~k
C,B ,

which may be positive or negative depending on the ma-
trix elements. It is instructive to consider the example
of long wavelength phonon scattering where VAB is sim-
ply proportional to the wave function overlap; in this

case, Γ
~k,~k′

AB,C is positive for the polarity of the wave func-
tions in Fig. 2a, implying charge localization in the left
well behind the tunnel barrier. (If the phases of the
wave functions were chosen differently, so that for in-
stance the sign of state B is flipped, that will change

the sign of Γ
~k,~k′

AB,C and ρAB without any physical conse-
quences, since the contribution to the charge density will
remain in the upstream well.) Similarly, a CP transition
(say from AB to A or B) might drive delocalization, CC
terms describes scattering between localized regions, etc.
It is clear that the different categories of superoperator
couplings account for different spatial transfers of charge
density compared to the FGR/PP coupling between ex-
tended eigenstates.

B. Population Conservation and Sum Rules

It is well known that the FGR transition rates or PP
terms Eq. 14 satisfy the detailed balance “sum rule”
∑

A,~k,~k′

Γ
~k,~k′

A,C = 0, which is necessary to preserve the DM

trace and conserve particle number. Another useful sum
rule for the generalized superoperator applies to CP cou-
pling, which describes “transfer” of electrons from coher-
ences into populations. From Eq. 10, we see that for a

generic CP term, if we sum over all possible ~k′ and final
~k and A, we obtain

∑

A,~k,~k′

Γ
~k,~k′

A,CD =
π

~

∑

~k,~k′,~q,±

(

n~q +
1

2
± 1

2

)

[

∑

A

V
~k,~k′

A,C V
~k′,~k
D,A×

(

δ(Ek
A − Ek′

D ± ǫ~q) + δ(Ek
A − Ek′

C ± ǫ~q)
)

−
∑

F

(

V
~k,~k′

D,F V
~k′,~k
F,C δ(Ek′

F − Ek
C ± ǫ~q)

+V
~k,~k′

D,F V
~k′,~k
F,C δ(Ek′

F − Ek
D ± ǫ~q)

)]

.

.

(15)

Switching ~k and ~k′ in the summation over F , we find
that the sums over A and F cancel and therefore obtain
a simple sum rule for population-coherence couplings:

∑

A,~k,~k′

Γ
~k,~k′

A,CD = 0 (16)
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The same relation evidently applies for elastic scattering
by taking ǫ~q = 0 and setting

∑

~q,±

(n~q +
1
2 ± 1

2 ) = 1. This

implies that the net transfer of population through any
DM coherence CD must be zero, i.e., any portion of a

population ρ
~k′

A that “scatters” into a coherence must ulti-

mately be redistributed to some other population ρ
~k
B. As

with the FGR sum rule, this is necessary to preserve the
trace and conserve population29 and thus generalizes for
any system, not just the quantum well-based structures
we discuss in this paper. For device calculations, these
properties may be practically useful for checking the con-
sistency of calculations and inferring superoperator rates
for simple systems.

C. Schrodinger versus Interaction Pictures

Formally, the theory presented here is a type of Red-
field equation, being a Born-Markov master equation for
the density matrix.28,30 Such equations are in general not
of the Lindblad form31 and hence not guaranteed to be
completely positive, so that it is possible to obtain neg-
ative populations, for instance for strong scattering or
certain initial conditions.28,29 In practice, this treatment
seems applicable to conventional QCLs, as we have used
it for calculations in a wide variety of device designs
and have rarely observed negative values, which gener-
ally only occur for states whose populations are orders
of magnitude smaller than those of other states and thus
have no noticeable impact on device properties.
The derivation presented above does differ in one sig-

nificant way from similar formulations for semiconduc-
tor devices where the Liouville-von Neumann equation is
written in integrodifferential form and then solved under
the Born and Markov approximations in the interaction
picture (where the unperturbed Hamiltonian H ′ is ab-
sorbed into the time dependence of operators).21,29 The
final results are very similar, but the interaction approach
leads to a slightly different form of the scattering super-
operator

Γ
~k,~k′

AB,CD int =
π

~

∑

~q,±

(

n~q +
1

2
± 1

2

)

[

V
~k,~k′

A,C V
~k′,~k
D,B×

(

δ(Ek
A − Ek′

C ± ǫ~q) + δ(Ek
B − Ek′

D ± ǫ~q)
)

− δ~k,~k′

∑

F,~k′′

(

δA,CV
~k,~k′′

D,F V
~k′′,~k
F,B δ(Ek′′

F − Ek
D ± ǫ~q)

+δB,DV
~k,~k′′

A,F V
~k′′,~k
F,C δ(Ek′′

F − Ek
C ± ǫ~q)

)]

.

(17)

Comparing the interaction picture Eq. 17 with our result
10, we see that the only difference is a permutation in the
subband indices of the energy conserving delta functions
(set in our derivation by the denominator in Eq. 3).
This difference comes about because we are essentially

using the Schrodinger picture in our derivation where all
operators are time-independent. It can be verified that
both equations give the same result for PP and PC rates,
but differ for CP and CC couplings. It is interesting to
note that a similar ambiguity arises if one attempts to
reduce the NEGF equations to effective DM equations of
motion.32

CD
VDB−−−−−→ CB

VAC





y





y

VAC

AD
VDB−−−−−→ AB

FIG. 3: Coherence-coherence scattering pathway from
initial DM element (CD) to final DM element (AB) via

scattering matrix elements VAC and VDB and
intermediate coherences CB and AD. The

energy-conserving delta functions are associated with
the indices of the (red) intermediate coherences in the
Schrodinger picture and with the indices of the (blue)

scattering processes in the interaction picture.

We can interpret this difference by loosely picturing
each second-order superoperator element ΓAB,CD as a
transition into an intermediate coherence followed by
another scattering transition into the final element, as
shown in Fig. 3. (We examine a CC coupling as an ex-

ample and suppress the ~k dependence for clarity.) The
energy conserving delta function in the interaction pic-
ture gets associated with the initial and final states of
each “leg” of the scattering process (AC orDB), whereas
in the Schrodinger derivation it is set to the energy dif-
ference of the intermediate coherence between scattering
events (AD or CD). Physically the interaction picture
approach suggests that the scattering events described
by V are relatively “slow” compared to the timescale
of the Rabi oscillation between the scattering endpoints
~/(ED − EB) or ~/(EA − EC), whereas the Schrodinger
picture implies that scattering is slow compared to the
time scale of the intermediate coherence ~/(EA − ED)
or ~/(EC − EB). We note that the Schrodinger picture
approach has been previously studied in the literature
for transport in coupled quantum dot systems, where
it is sometimes referred to as the first-order von Neu-
mann approach.33 Such studies have also compared the
effects of using the interaction and Schrodinger pictures
and found any quantitative differences to be small.

IV. SUPEROPERATOR FORM FOR SPECIFIC

SCATTERING MECHANISMS

Having established the basic structure of the general-
ized superoperator, we can proceed to calculate rates for
physical scattering mechanisms. We take advantage of
the fact that most quantum well-based QCLs are trans-
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lationally invariant along the transverse directions and

have isotropic energy dispersions in ~k depending only on
the magnitude k and transverse energy Ek. If we make
the effective mass approximation (EMA), the energy of
each subband state Ek

A = EA+Ek where EA is the band

edge energy of the subband and Ek =
~
2k2

2m∗
with effec-

tive mass m∗. Note that the EMA is valid at low energies
and thus usually suitable for THz QCLs, but in MIR de-
vices the higher energy states mean that nonparabolic
corrections may be important, which can then be incor-
porated using an energy-dependent mass or a multiband
k·p model.34 Though we will use the EMA throughout
this paper, the general procedure presented below can be
modified to account for nonparabolicity if necessary.
Because of the in-plane translational invariance, we

also assume that the electronic distribution is isotropic
and varies only with the magnitude k (and thus Ek) of
the transverse momentum and not direction, i.e., we need
only solve for ρEk

AB for different values of Ek, rather than

for each ~k. The most common scattering mechanisms
for QCLs are either elastic (such as ionized impurities,
alloy disorder, and interface roughness) or exchange a
fixed quantum of energy (LO polar phonons assuming a
constant phonon dispersion, considering absorption and

emission separately). As a result, for any ~k, each term

in Γ
~k,~k′

will be nonzero only for the set of ~k′ at a single
value of Ek′ , as can be seen from the delta functions in
Eqs. 10-11.
These approximations allow for an enormous simplifi-

cation of the superoperator terms, which in many cases
can be partially or fully evaluated analytically as a func-
tion of subband and transverse energy. In Section IVA,
we outline results for these energy resolved superoperator
terms. Still more simplification is possible if we further
assume each subband is in local equilibrium; this ther-
mally averaged case is discussed below in Section IVB.

A. Energy-Resolved Scattering Theory

Due to the energy conservation considerations noted
above, we need only consider the scattering superopera-

tor summed over ~k′, i.e.,

ΓEk

AB,CD =
∑

~k′

Γ
~k,~k′

AB,CD, (18)

which is useful because the summation over ~k′ can be ex-
pressed in terms of integrals over the magnitude k′ and
angle θ, the latter of which can often be performed an-
alytically. We can rewrite the energy-resolved scattering
superoperator using Eq. 10 as

ΓEk

AB,CD =VEk

AC,DB(AD) + VEk

AC,DB(BC)

−
∑

F

(δBD VEk

AF,FC(FB) + δAC VEk

DF,FB(FA))

(19)

where for inelastic scattering (the phonon emission and
absorption cases are distinguished by the ± sign)

VEk

JK,LM (±XY ) =
π

~

∑

~q,~k′

(

n~q +
1

2
± 1

2

)

× V
~k,~k′

J,K V
~k′,~k
L,Mδ

(

∆±~q
XY + Ek − Ek′

)

(20)

and ∆±~q
XY = EX − EY ± ǫ~q denotes the difference of the

subband band edge energies. The extension to elastic
scattering is obvious by removing the summation over ~q
and setting ǫ~q = 0. Evaluating V for arbitrary arguments
therefore suffices to describe the superoperator. For com-
mon single particle scattering mechanisms the multiple

integrations implied by the ~k′ and ~q dependence of V can
be simplified, as discussed below.
Notice the appearance of the energy-conserving delta

functions within V , which specify the values of ~k′ involved
in the scattering. When applying the superoperator to
the density matrix, each V term in ΓEk

AB,CD selects the

value of ρ
Ek′

CD it couples to. Therefore, the DM evolution
equation can be conveniently written as

ρ̇Ek

AB =
i

~
[Ek

B − Ek
A]ρ

Ek

AB +
∑

C,D

ΓEk

AB,CDρ
E
CD (21)

where the superoperator term on the right hand side rep-
resents

ΓEk

AB,CDρECD =
∑

±

(

VEk

AC,DB(±AD)ρ
Ek+∆±~q

AD

CD

+ VEk

AC,DB(±BC)ρ
Ek+∆±~q

BC

CD

−
∑

F

(δBD VEk

AF,FC(±FB)ρ
Ek+∆±~q

FB

CD

+ δAC VEk

DF,FB(±FA)ρ
Ek+∆±~q

FA

CD )

)

(22)

in the case of inelastic scattering. Notice that the trans-
verse energy term of each DM element is selected by the
delta function argument of Eq. 20. When implement-
ing these equations in numerical form over a finite set

of ~k′ (and hence Ek′), the delta function may need to
be discretized, which can be done in a variety of ways;
the method we used for the numerical calculations in this
paper is discussed elsewhere.35

1. Ionized Impurities

Doping profiles in QCLs generally vary along the
growth direction z with some dopant concentration N(z)
(in units of cm−3). Assuming that the impurity distri-
bution along the in-plane directions x, y is uncorrelated,
disorder averaging11 of the scattering matrix elements



8

leads to

∑

~k′

V
~k,~k′

J,K V
~k′,~k
L,M =

π

~A
∑

~k′

∫

dzN(z)V
~k,~k′

J,K(z)V
~k′,~k
L,M(z)

(23)

where A is the in-plane area and V
~k,~k′

J,K(z) is the 2-D

Fourier transform of the scattering potential. (Here-
after, during evaluation of this and other such quantities
we will use cylindrical coordinates to transform

∑

~k′

→

A
4π2

∫

k′dk′dθ.) While the true impurity potential may

be quite complex due to the inhomogeneous electronic
screening, a screened Coulomb potential with inverse De-
bye screening length η is assumed for simplicity36. We

can express V in terms of the subband envelope func-
tions χA(z), but it turns out to be more efficient to use
the Fourier transform of the product of subband states

ΦAB(qz) =

∫

eiqzzχ∗
A(z)χB(z)dz. (24)

In this way we can write the scattering potential

V
~k,~k′

A,B(z) =
e2

2πǫs

∫

dqz
ΦAB(qz)e

−iqzz

η2 + q2z + |~k − ~k′|2
(25)

where ǫs is the static dielectric constant of the device
material. Substituting into Eq. 23, using |~k − ~k′|2 =
k2 + k′2 − 2kk′ cos θ, and integrating over θ, we obtain

VEk

JK,LM (XY ) =
e4~

32π2m∗ǫ2s

∫

dEk′

∫

N(z)dz

∫

dqz1

∫

dqz2ΦJK(qz1)ΦLM (−qz2)e
i(qz2−qz1)z

×G(Ek, Ek′ , Eqz1, Eqz2)δ(∆XY + Ek − Ek′),

(26)

where

G(Ek, Ek′ , Eqz1, Eqz2) =
1

Eqz1 − Eqz2

(

1
√

(Eη + Ek + Ek′ + Eqz2)2 − 4EkEk′

− 1
√

(Eη + Ek + Ek′ + Eqz1)2 − 4EkEk′

)

(27)

and we define Eη =
~
2η2

2m∗
and Eqz1,qz2 =

~
2q2z1,z2
2m∗

. When

qz1 = qz2 = qz , G reduces to

G(Ek, E
′
k, Eqz) =

Eη + Ek + Ek′ + Eqz

[(Eη + Ek + Ek′ + Eqz)2 − 4EkEk′ ]
3/2

.

(28)
The double integral over qz1 and qz2 appears because of
the spatial inhomogeneity of the doping profile. In the
case that N(z) = Nd is constant, we can see that the
phase factor in Eq. 26 vanishes unless qz1 = qz2, remov-
ing the z and qz2 integrals; however, this approximation
may be quite inaccurate in QCLs where doping is gener-
ally highly localized to reduce dephasing, in which case
the full expression Eq. 26 should be evaluated. In this
equation and similar ones below, we retain the integral
over Ek′ to emphasize its role and for clarity in numerical
implementations when discretizing energy. When han-
dled analytically, the delta function removes this integral
and substitutes Ek +∆XY for Ek′ everywhere.

2. Alloy Disorder

A basic model for a single alloy scatterer is V (~r) =
Ξa3δ(~r), where Ξ is the strength of the potential and a
is the lattice spacing. The effective concentration of the
alloy is n = 1

a3x(1− x) where x is the alloy fraction. Be-

cause of the assumed locality of the potential, the matrix
element is independent of momentum and the scattering
rate is simply

VEk

JK,LM (XY ) =
Ξ2a3x(1− x)m∗

2~3

∫

dEk′δ(∆XY + Ek − Ek′)

×
z2
∫

z1

dzχ∗
J(z)χK(z)χ∗

L(z)χM (z)

(29)

where [z1, z2] define the spatial limits of the alloy material
region in the growth direction z.

3. Interface Roughness

The usual phenomenological model for interface rough-
ness assumes that the scattering is proportional to a cor-
relation function f(q), typically taken to be Gaussian or
exponential, dependent on the momentum transfer q be-
tween the initial and final states. We adapt this model
and assume that scattering at an interface located at zi
with band offset ∆Ei is given by

V
~k,~k′

J,K V
~k′,~k
L,M =

f(|~k − ~k′|)∆E2
i

A χ∗
J(zi)χK(zi)χ

∗
L(zi)χM (zi).

(30)
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Let us assume a Gaussian correlation function f(q) =

πΩ2Λ2 exp

(

−Λ2q2

4

)

, where Λ is the correlation length

and Ω is the average interface displacement. Then defin-
ing GJKLM = ∆E2

i χ
∗
J(zi)χK(zi)χ

∗
L(zi)χM (zi), we find

VEk

JK,LM =
πm∗Ω2Λ2

2~3

∫

dEk′ exp

(

−m∗Λ2

2~2
(Ek + Ek′ )

)

× I0

(

m∗Λ2
√
EkEk′

~2

)

GJKLMδ(∆XY + Ek − Ek′ )

(31)

where I0(z) is the modified Bessel function of the first
kind. Scattering between different interfaces is usually
assumed to be uncorrelated, so the total rate is obtained
by summing the contributions of each interface.

4. Polar Optical Phonons

Most QCLs at present are made using III-V semicon-
ductors in which the dominant inelastic scattering mech-
anism is the Fröhlich interaction from longitudinal op-
tical (LO) phonons. This is a long range Coulomb in-
teraction which may be screened by free electrons in the
semiconductor. We again assume Debye screening with
screening vector η to obtain the scattering rate for emis-
sion/absorption

V kk′

JK V k′k
LM = α2

∑

~q

q2

(q2 + η2)2
ΦJK(±qz)ΦLM (∓qz)

(32)

where α2 =
ELOe

2(ǫ−1
∞ − ǫ−1

s )

4πA with LO phonon energy

ELO and high frequency material permittivity ǫ∞. Con-
verting the summation over ~q = (qx, qy, qz) into an inte-
gral over qz, noting that momentum conservation leads

to |~k− ~k′|2 = q2x+ q2y, and integrating over the scattering
angle, we find that

VEk

JK,LM (±XY ) =

(

nLO +
1

2
± 1

2

)

ELOe
2(ǫ−1

∞ − ǫ−1
0 )

16π~
∫

dEk′

∫

dqz

(

β(β + Eη)− 4EkEk′

((β + Eη)2 − 4EkEk′ )3/2

×ΦJK(±qz)ΦLM (∓qz)δ(∆
±
XY + Ek − Ek′ )

)

(33)

for β = Ek + Ek′ +
~
2q2z

2m∗
, Eη =

~
2η2

2m∗
, and nLO equal to

the equilibrium Bose-Einstein phonon occupation.

B. Thermally Averaged Scattering Model

The equations above allow computation of the scat-
tering rates and hence the density matrix resolved in

transverse energy, which can give significant insight into
the internal details of the device. No assumptions about
the electron distribution as a function of Ek are made,
and indeed we will see later that in practical devices
such distributions may be highly nonequilibrium. How-
ever, we can still obtain new insights (and reduction of
computational effort) if we assume that each DM ele-

ment obeys a Boltzmann distribution so that ρEk

AB =
ρABFAB exp(−Ek/kBTAB), where FAB is a scaling fac-
tor and TAB is the effective electron temperature of the
corresponding population or coherence AB.
Let us normalize the distribution so that

∑

~k

ρEk

AB =

ρAB, in which case

FAB =
2π~2

m∗AkBTAB
. (34)

If we return to Eq. 12 and sum over ~k, we obtain the
evolution of the thermal averaged DM

ρ̇AB =
i

~
[HB −HA]ρAB +

∑

CD

Γ̄AB,CDρCD. (35)

We therefore define the thermal averaged superoperator

Γ̄AB,CD = V̄CD
AC,DB(AD) + V̄CD

AC,DB(BC)

−
∑

F

(δBD V̄CD
AF,FC(FB) + δAC V̄CD

DF,FB(FA))

(36)

where

V̄CD
JK,LM (XY ) =

π

~
FCD

∑

~k,~k′,~q,±

(

n~q +
1

2
± 1

2

)

V
~k,~k′

J,K V
~k′,~k
L,M

× e−Ek′/kBTCDδ
(

∆±~q
XY + Ek − Ek′

)

(37)

for inelastic scattering and the analogue for elastic pro-
cesses immediately follows. The thermal averaged ele-
ments can therefore be found from the energy-resolved
rates by integrating the Boltzmann distribution over Ek

and Ek′ . We summarize the expressions for Eq. 37 for
impurities, alloy disorder, interface roughness, and LO
phonons in Appendix B. In contrast to the energy re-
solved model (Eq. 21), there is no energy dependence
of ρCD which needs to be considered when considering
scattering in Eq. 35, since all momentum/energy sum-
mations are completely done within Γ̄.
While the thermal averaged model is convenient and

compact, the assumption of a thermalized distribution
for each subband and coherence may not be true in gen-
eral. It is interesting that experimental analysis of pho-
toluminescence data suggests thermalized hot electron
distributions do exist in some QCLs.37 Nonetheless, the
choice of electron temperature for each DM element is
basically phenomenological. We note that we have not
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yet considered inelastic electron-electron (e-e) scattering
in our calculations;38,39 while this mechanism can be in-
cluded in principle, it significantly complicates compu-
tation in practice and is often neglected in DM mod-
els. Prior studies suggest that e-e scattering contributes
to intrasubband thermalization, while it plays a more
subtle role in coherence dephasing due to the preserva-
tion of subband coherence during scattering.38 In general,
whatever its exact quantitative magnitude, e-e scattering
should contribute towards thermalization, localization,
and dephasing, and thus it should tend to smooth out
the I-V characteristics. Comparison of the thermal aver-
aged and energy resolved models can also give indications
of how results differ if this is the case.

V. PERIODICITY, OPTICAL FIELD, AND

VELOCITY

Thus far we have discussed the effects of scattering
in terms of an arbitrary set of subband eigenstates. In
practice, QCLs are constructed from repeated modules
of quantum wells, so that the eigenstates of one module
will be replicated periodically across other modules with
appropriate shifts in energy due to the applied potential.
Suppose each module is of length L with an externally
applied potential drop U across it. We can expect the

density matrix to have the block matrix form

ρ =

















. . .
...

...

ρ−1,−1 ρ−1,0 ρ−1,1

· · · ρ0,−1 ρ0,0 ρ0,1 · · ·
ρ1,−1 ρ1,0 ρ1,1

...
...

. . .

















(38)

where the subscripts denote the module index with the
understanding that the indices for subband, k, etc., are
contained within the block matrices ρµ,ν . Because of
periodicity, the two-script notation for the DM can be
reduced to a single index, e.g., ρµ,ν = ρν−µ, so that Eq.
38 becomes

ρ =

















. . .
...

...
ρ0 ρ1 ρ2

· · · ρ−1 ρ0 ρ1 · · ·
ρ−2 ρ−1 ρ0

...
...

. . .

















. (39)

ρ0 describes the DM of an individual module (i.e., in-
tramodule populations and coherences), while ρµ de-
scribes intermodule coherences between states of a mod-
ule and those of its µth neighbor. Equations for the su-
peroperator elements can be generalized by extending the

subband index A to include module number
A
µ. By track-

ing the indices and using the periodic and nonperiodic
properties of ρ and V (discussed in more detail in Ap-
pendix C), we can write

ρ̇Ek

AB
µ

=
∑

C,D

ΓEk

AB,CD
µ,ν

ρECD
ν

(40)

using the same convention for the superoperator energy
dependence as in Eq. 21. By tracking the scattering
elements across modules, we can generalize Eq. 19 to

ΓEk

AB,CD
µ,ν

=
∑

σ

[

VEk

A,C;D,B
ν,σ;ν+σ,µ+ν

(AD − σU) + VEk

A,C;D,B
σ,µ;µ+ν,σ+µ

(BC + σU)

−
∑

F

(δBD VEk

A,F ;F,C
σ+ν,µ+ν;µ+ν,µ+σ

(FB − σU) + δAC VEk

D,F ;F,B
ν,σ;σ,µ

(FA+ σU)

]

,

(41)

where

VEk

J,K;L,M
α,β;γ,δ

(±XY − σU) =
π

~

∑

~k′,~q

(

n~q +
1

2
± 1

2

)

V
~k,~k′

J,K
α,β

V
~k′,~k
L,M
γ,δ

δ
(

∆±~q
XY + Ek − Ek′ − σU

)

. (42)

All equations for the subband averaged quantities Γ̄ and
V̄ generalize in the same way with a corresponding addi-
tion in indices. This method allows for arbitrarily long-

range coupling between modules, though in general ν,
µ, and σ can usually be evaluated over at most a single
neighbor ±1. Note that while the ν and µ indices denote



11

the starting and ending intermodule coherence, the sum-
mation σ tracks scattering between modules. In particu-
lar, even if intermodule coherences are small, scattering
to σ = ±1 is important because it describes intermod-
ule transfer of intramodule quantities, e.g., how charge
in a certain module scatters into an neighboring mod-
ule. This is necessary for current flow within a periodic
system, as otherwise the charge evolves in a closed loop
within a module.
At this stage we have developed a general scattering

superoperator which accounts for coherent effects and in-
corporates periodicity. An optical field can be included
straightforwardly and nonperturbatively by further gen-
eralizing the DM and coherent Hamiltonian as functions
of frequency ω34

ρ = ρ(0) + ρ(+ω)eiωt + ρ(−ω)e−iωt (43)

H = H(0) +H(+ω)eiωt +H(−ω)e−iωt (44)

where H(0) is the steady state band structure Hamilto-
nian and H(±ω) = qFz is the optical dipole Hamilto-
nian with electric field F at frequency ω. We can define
a general coherent superoperator Lρ = 1

i~ [H, ρ] so that
the DM evolves in time as

(L+ Γ)ρ = ρ̇. (45)

The scattering superoperator acts independently on each

frequency component of ρ. Writing out the frequency de-
pendent behavior explicitly we obtain in vectorized form





L(0) + Γ L(−ω) 0
L(+ω) L(0) + Γ L(−ω)

0 L(+ω) L(0) + Γ









ρ(−ω)
ρ(0)
ρ(+ω)



 =





−iωρ(−ω)
0

+iωρ(+ω)





(46)
Here we write ρ as a vectorized list of the unknowns in the
three representative submatrices and the superoperators
L and Γ in corresponding matrix form. The equation is
straightforwardly generalized for multiple frequencies.34

Once the scattering superoperator has been computed,
the calculation of the steady state (and optical response,
if so desired) of the DM follows the usual steps.
DC current can be computed from the steady state

DM by taking the expectation value of the velocity op-
erator. The coherent velocity operator is defined as

vcoh =
i

~
[H, z] where z is the position operator. How-

ever, there may also be incoherent contributions to the
current through the scattering superoperator, which can
be inferred from the DM time evolution as discussed in
Appendix C. The end result is the definition of an inco-
herent velocity operator with matrix elements

vEk

AB
µ

=
∑

ν

T Ek

AB;CD
µ,ν

zCD
ν

(47)

where

T Ek

AB,CD
µ,ν

=
∑

σ

[

VEk

C,A;B,D
σ,ν;µ+ν,ν+σ

(AD − σU)

(

1 +
δν0δCD(σ − ν)L

zCC
0

)

+ VEk

C,A;B,D
µ,σ;σ+µ,µ+ν

(BC + σU)

(

1 +
δν0δCD(µ− σ)L

zCC
0

)

−
∑

F

(δBD VEk

C,F ;F,A
µ+σ,µ+ν;µ+ν,σ+ν

(FB − σU)

(

1 +
δν0δCD(µ− ν)L

zCC
0

)

+ δAC VEk

B,F ;F,D
µ,σ;σ,ν

(FA+ σU)

]

.

(48)

Close examination shows a simple connection between
like terms of Γ and T : they share the same factors of

V , only with swapped indices
AB
µ ↔ CD

ν . Therefore, they
can be computed simultaneously. In the examples dis-
cussed below, the incoherent current contributions are
generally small compared to the coherent current, al-
though in some kinds of devices these contributions may
be important.40 (An example of the latter is the case
of a superlattice biased such that neighboring states are
separated by the LO phonon energy; hopping transport
then occurs via phonon scattering down the “ladder” of
localized eigenstates which manifests as incoherent cur-
rent in our formalism.) Finally, optical properties like
gain can be similarly computed from the expectation val-
ues of the velocity operator; fortunately only the DC co-
herent velocity (operating on the frequency dependent
ρ(±ω)) is necessary, because the ac velocity operator

v(ω) = i[H(ω), z]/~ vanishes for H ∝ z. The DC in-
coherent velocity does not couple to the optical field and
hence does not directly contribute to optical response.

VI. EXAMPLES AND APPLICATION OF

FORMALISM

A. Model Implementation for Devices

Although the approach discussed in this paper diverges
in some conceptual ways from conventional DM QCL
models, the implementation differs mainly in determi-
nation of the scattering superoperator elements, each of
which can be evaluated with comparable effort as a FGR
rate. For convenience, we summarize the computational
steps here.
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1. Calculate the QCL band structure from the device
Hamiltonian H (including bias drop per module U)
and select the set of N subband eigenstates com-
prising a module. Choose number of modules for
which to consider intermodule coherences Nc (µ, ν)
and intermodule transfer (σ).

2. If energy-resolved information is required, choose
a set of NE transverse energies to calculate for
the density matrix (which has a total number of
elements Nρ = (2Nc + 1)N2NE). If the ther-
mally averaged equations are used, only the elec-
tron temperatures need to be specified for the
Nρ = (2Nc + 1)N2 DM elements.

3. Compute the scattering superoperator Γ between
each DM element for the mechanisms of interest
using Eq. 41 for energy-resolved calculations or
Eq. 36 for thermal averages, generalized for peri-
odicity. The incoherent current superoperator T
can be constructed simultaneously using Eq. 48.

4. If optical properties are to be studied, include the
optical field Hamiltonian in the time evolution and
incorporate frequency-dependent elements of the
DM as in Eq. 46. Impose the condition that the
sum of steady-state populations Tr(ρ(0)) = 1 (this
can replace any one of the equations for a steady-
state population). Invert the system of equations
to obtain the solution of ρ, from which charge and
current densities, optical response, etc., can be ex-
tracted.

Of course, it is also possible to study the time-
dependent DM behavior once the superoperator is com-
puted by solving the time evolution equation for ρ̇ di-
rectly. Space charge effects can also be incorporated
at the mean field (Hartree) level by solving the Pois-
son equation using the DM electron density and sub-
stituting the resulting potential into H , iterating until
a self-consistent solution is obtained. Similarly, a self-
consistent calculation of optical field in an operating laser
device can be obtained by iterating the optical intensity
for an assumed threshold gain.

B. Example: Localization and Tunneling in

Superlattices

As a simple test of our model, and in order to demon-
strate that it captures important coherence effects, we
first consider a superlattice biased such that the ground
state of each well is at resonance with the first excited
state of the next. If we take into account only these
two levels, this is a system of two subbands per period.
(There are in fact other states in the superlattice, but
they can be neglected for the sake of this demonstra-
tion.) We examine how this simple periodic two level
system behaves as the barrier thickness between the wells
is increased. The bandstructures we consider are shown

in Fig. 4. The well length is held constant at 24.8 nm
to give a separation of approximately 20 meV between
the ground and first excited states in each well, while
the barrier width is tuned from 0.6 to 11.6 nm. Even
though the anticrossing condition becomes highly sensi-
tive to field with thicker barrier, we can still always find
a bias where the wavefunctions look approximately the
same. The module energy drops are all close to 20 meV,
but are adjusted slightly to account for the small Stark
shifts that would otherwise move the states out of reso-
nance.
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associated with neighboring modules. Bottom: current
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profile Nd = 1016 cm−3 is assumed and lattice
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In Fig. 4, we compare the current from our general-
ized scattering DM formalism with that obtained using
the semiclassical approach (where only PP/FGR terms
are used and all coherences are set to zero). We ob-
serve a striking disparity: whereas the full model pre-
dicts a strong decrease in the current with increasing
barrier thickness, the semiclassical model predicts almost
no change at all. The failure of the semiclassical model
in this situation is well known and often cited as an ex-
ample of why localized basis DM models are needed.14

The cause of the failure is clear by inspection of the
wave functions: because the energies and wave functions
hardly change with the barrier, FGR rates using these
basis states change very little as the barrier thickness is
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increased. Physically, this is because FGR transitions
predict that charge scattering in from the previous mod-
ule is instantaneously “placed” in an anticrossed eigen-
state with equal density on either side of the barrier, with
no delay due to tunneling. On the other hand, the gen-
eralized approach calculation allows scattering to induce
coherence between the two anticrossed states, which al-
lows for electron buildup behind the barrier, similar to
the discussion of scattering terms in Section IIIA and
the illustration in Fig. 2. The coherent Hamiltonian
H then relaxes this coherence because of the state en-
ergy difference, amounting to tunneling. As the tun-
nel barrier thickens and this energy difference reduces,
the strength of the tunneling weakens and current drops.
This is equivalent to the behavior observed in the “inco-
herent tunneling” regime by Sirtori et al.13 Localization
can also be quantified directly by taking the expectation
value of the electron position within a single module using
Tr(ρ0z0), as shown by the green curve and the right-side
axis in Fig. 4. We see that the electron localizes increas-
ingly to the negative (upstream) side of the barrier as
the width is increased, indicating a significant buildup of
charge with decreased tunneling.

C. Application to Resonant Phonon THz QCL
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FIG. 5: Band structure for diagonal resonant phonon
THz QCL in GaAs/Al0.15Ga0.85As for module bias of

48 mV. The device layer thicknesses are
3.7/17.2/5.1/10.3/1.7/10.7/3.7/8.8 in nm. Solid lines
indicate the eigenstates for a given module with labels
indicated at right; dotted lines indicate the eigenstates

for neighboring modules. States are labeled in
ascending order of energy for convenience when

describing different biases.

1. Device Simulation and Model Comparisons

We turn our attention to a realistic QCL structure, a
five-level diagonal resonant phonon design at ∼ 3.4 THz

which previously produced a record 1.01 W in pulsed
mode at 10 K.41 The eigenstates of the module near the
design bias are illustrated in Fig. 5. The design uses a
single injector well followed by a diagonal radiative tran-
sition (injector and upper states 4 and 5 in the figure).
Extraction occurs through the strongly coupled three-
state miniband (states 1-3), after which LO phonon emis-
sion occurs into the injector state of the next module.
Localization and tunneling effects in this device make
the semiclassical theory highly suspect, as we will see.
At the same time, the complicated nature of the states
makes it very difficult to choose a localized basis and
construct a phenomenological DM theory for this device.
(This does not necessarily mean that no such suitable set
of states can be found, but that the choice is not obvi-
ous and, equally importantly, may not be robust against
slight changes in the basis or in the design.) This de-
sign is therefore a good example of a practically relevant
system not amenable to the usual modeling methods.

We therefore apply our theory to this design, using
both the energy-resolved and thermal averaged methods.
Conventional values for the interface roughness (Ω = 2Å
and Λ = 10 nm) are used and a lattice temperature of 100
K is assumed. Since the scattering superoperator is cal-
culated using known mechanisms, there are no other ar-
bitrary fitting parameters such as dephasing times in the
energy-resolved model. For the thermal averaged model,
we assume that all DM elements share the same electron
temperature Te=100 K.

20 30 40 50
Bias per module (mV)

0

200

400

600

800

1000

J 
(A

/c
m

2 )

Energy-resolved
Semiclassical
Thermal averaged
Experimental

FIG. 6: Current density versus module bias for
experimental resonant phonon (dotted line) compared

with semiclassical, energy-resolved, and thermal
averaged DM models. The lattice temperature is
assumed to be 100 K in all calculations, and the
electron temperature is also 100 K in the thermal

averaged model.

In Fig. 6 we compare the J −V curves obtained using
our calculation with the semiclassical prediction as well
as experimental data measured in our lab from a device
with this design. The module bias for the experimental
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curve is obtained by subtracting a 0.8 V Schottky bias
drop from the experimentally applied voltage and divid-
ing the resulting value by the number of periods (263); no
additional series resistances or other parasitics are con-
sidered. The experimental design lases above 48 mV,
which accounts for the increased current due to stimu-
lated emission above threshold. The calculated currents
shown are computed assuming zero optical excitation,
so we focus on the subthreshold behavior here. Given
the neglect of self-consistent electrostatics and explicit
electron-electron scattering in the model, as well as the
litany of experimental uncertainties in material quality,
parasitic resistances, etc., the primary purpose of this
comparison is to show that the model is physically con-
sistent rather than to quantitatively fit experiment. In
this regard, it is notable that the semiclassical theory
inaccurately predicts strong negative differential resis-
tance at several resonant peaks below threshold, peaks
which are not observed in experiment. Importantly, we
observe that these peaks are suppressed by localization
effects once coherences are taken into account, as seen
by their absence in the energy-resolved and thermal av-
eraged calculations. The magnitude of the computed
currents from the generalized scattering approach is also
closer to experiment, keeping in mind the caveats about
quantitative fits mentioned above. More detailed com-
parisons and discussion of experimental devices will be
given elsewhere.23
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2. Interpretation of Coherences

The effect of the coherences in the device can be seen
directly by examining the calculated space charge densi-
ties in Fig. 7. We observe that the semiclassical calcula-

TABLE I: Computed thermal averaged density matrix
(magnitudes) for the resonant phonon structure at 48
mV assuming electron temperature of 100 K for all DM
elements. The normalization is chosen so that Tr(ρ)=1.

State 1 2 3 4 5

1 0.0921 0.0085 0.00138 0.00089 0.0005
2 0.0085 0.0602 0.008 0.0018 0.0006
3 0.00138 0.008 0.0233 0.0053 0.001
4 0.00089 0.0018 0.0053 0.486 0.107
5 0.0005 0.0006 0.001 0.107 0.338

TABLE II: Selected intramodule superoperator
elements at 48 mV module bias assuming thermal

averaged electron temperature of 100 K.

Γ̄4,4 −2× 1012 s−1 Γ̄45,45 -4.3× 1012 s−1

Γ̄5,5 −2.4× 1012 s−1 Γ̄45,5 1.01× 1012 s−1

Γ̄4,5 2.26 × 1012 s−1 Γ̄45,4 -9.3× 1011 s−1

Γ̄5,45 1.43 × 1012 s−1 Γ̄45,54 2.77× 1012 s−1

Γ̄4,3 1.22 × 1012 s−1 Γ̄45,3 -6.9× 1011 s−1

Γ̄23,2 9.9× 1011 s−1 Γ̄23,23 -3.6× 1012 s−1

tion gives a higher charge density in the upper state well
downstream from the injector, whereas both the energy-
resolved and thermal averaged calculations lead to charge
localization behind the barrier, as expected on physical
grounds. This arises from the coherence between states
4 and 5, which can be seen from the thermally averaged
density matrix in Table I. Here the populations of states
4 and 5 are unsurprisingly the largest, showing the pop-
ulation inversion characteristic of lasers. However, the
magnitude of the coherence between these states ρ45 is
also significant, giving rise to the strong localization of
charge behind the relatively thick injection barrier. This
is by far the largest coherence, though ρ23 is also a size-
able fraction of the related state populations, showing
the coupling between the extraction minibands.

To identify the origin of these coherences in our cal-
culations, we list some of the most important thermally
averaged superoperator terms in Table II. The dephas-
ing times Γ̄45,45 and Γ̄23,23 are largest in magnitude,
though interestingly we can also observe large “adjoint
CC” terms like Γ̄45,54; since the DM is Hermitian, these
terms counteract dephasing to some degree. The buildup
of ρ45 and ρ23 is largely driven by PC rates like Γ̄45,5 and
Γ̄23,2; importantly, we see that these terms are of the
same order of magnitude as FGR-type PP transitions
such as Γ̄4,5. Note also the sign difference of Γ̄45,5 and
Γ̄45,4, reflecting how each interaction acts to localize the
density on either side of the injection barrier. (Recall
from the discussion in Section III that the signs of such
terms and their “direction of localization” must be inter-
preted considering the particular phases of the module
wave functions.)

In our discussion of the desired operating point (48
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FIG. 8: Probability densities of energy eigenstates (solid lines) and density matrix eigenstates (dashed lines) at (a)
26 mV, (b) 36.7 mV, and (c) 48 mV module bias. Since the density matrix eigenstates do not have definite energies,

they are plotted on the y-axis with respect to their energy expectation values.

TABLE III: Populations ρ, coherent velocities vc, and
incoherent velocities vic corresponding to the

eigenstates of the thermal averaged density matrix at
26, 36.7, and 48 mV module bias (states correspond to

those in Fig. 8). Populations are normalized to 1;
velocities are in units of 104 cm/s.

1 2 3 4 5

ρ(26) 0.267 0.103 0.575 0.043 0.013
vc(26) -4.9 20 18 81 -110
vic(26) 0.37 4.8 -0.46 0.89 15
ρ(36) 0.162 0.084 0.63 0.017 0.11
vc(36) 51 56 24 -139 9.0
vic(36) 1.3 5.5 -0.58 20 1.8
ρ(48) 0.094 0.06 0.022 0.54 0.28
vc(48) 269 -5 -289 61 -36
vic(48) 5.0 7.9 2.0 -0.7 1.8

mV) for this device, the coherence between the injector
and upper level is most important, as expected. How-
ever, in general different coherences may become impor-
tant (and indeed the underlying states themselves may
change) as a function of bias and device design. One way
to gauge these effects is to compute the DM eigenstates.
The corresponding eigenvalues are simply the occupation
probabilities (populations) of these states. Because there
are no off-diagonal elements of ρ in this basis, the current
“carried” by each state is given simply by the product of
its population and the corresponding diagonal element
of the velocity operator in this basis. In Fig. 8, we
compare the energy eigenstates and DM eigenstates at
three different biases (26 mV, 36.7 mV, and 48 mV), each
corresponding to a different anticrossing in the structure
(which gives rise to the resonant spikes in the semiclas-
sical current). We use the thermally averaged density
matrix for simplicity to avoid any possible complications
from the Ek dependence of the energy-resolved DM.

As the bias increases, successive anticrossings occur
between the injector well and adjacent wells, as seen in

the progression from Figs. 8a-c. In the semiclassical ap-
proach, scattering “instantaneously” transfers charge be-
tween these wells, leading to the sudden spikes in current
around these bias points in Fig. 6. However, the local-
izing effects of PC and CC transitions in our generalized
scattering approach are evident in how the delocalized
stationary states split into separate states strongly local-
ized in one well.

It is also of interest to examine the relative populations
and associated velocities of the DM eigenstates, which are
listed in Table III. In each case, as expected, the most
highly occupied state is the one localized in the injec-
tor well (state 3 at 26 and 36.7 mV and state 4 at 48
mV). The associated coherent “velocity” of this state,
which can be physically interpreted as its tunneling rate,
increases with bias because 1) the tunneling probability
rises with field and 2) the effective tunneling distance
reduces as the separation to its anticrossed pair state
reduces. Note that the effective velocities of the other
states differ in magnitude and can even become negative,
where the latter indicates that the net tunneling out of
the state occurs against the direction of the field (gen-
erally because there are no states downstream which are
near tunneling resonance). An example of this is the neg-
ative velocity of DM eigenstate 5 at 48 mV (pink dashed
line in Fig. 8c), which reflects the possibility of tunneling
from the upper state back into the injector state. This
can be understood clearly by considering Rabi oscilla-
tions in a two-level system, as discussed in Appendix D.
While some DM eigenstates will inevitably have negative
coherent velocities, as discussed in the appendix, the cur-
rent carried by these states can be minimized by reducing
their population.

The higher velocities of the lower states are impor-
tant in allowing efficient extraction of charge, though the
small populations of these states means that their con-
tribution to the total current is smaller than that of the
injector state. In Table III we also list the corresponding
incoherent velocities of the DM eigenstates; in general
we can see that these are much smaller than the coher-



16

ent velocities, reflecting the minor contribution scatter-
ing makes directly to the current. An exception occurs
for state 2 at 48 mV module bias (an extractor state)
where the positive incoherent velocity actually exceeds
the coherent velocity, probably due to phonon depopu-
lation of the extractor occurring faster than backwards
resonant tunneling. In general, scattering plays a critical
role in transport in our theory, but usually indirectly by
inducing coherences and hence coherent current. We note
again that this interpretation of the device DM emerges
naturally without the need to separately define localized
states or tunnel couplings for each bias; indeed the DM
eigenstates better reflect the “true” localization of elec-
trons induced by the kinetics of the system.
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3. In-Plane Energy Distributions and Optical Response

Naturally, the quantitative values of the density ma-
trix and the superoperator elements are strong functions

of bias, temperature, etc., so that the most important
rates and coherences may change at different operating
points and depend on whether the distributions are ther-
malized. For example, in Fig. 9a we plot the subband
populations as function of in-plane energy calculated us-
ing the energy-resolved model. While the previously dis-
cussed caveats about the absence of e-e scattering hold,
we observe that the injector and upper states 4 and
5 have strongly nonthermal distributions, in agreement
with prior observations.21 However, we also observe that
the upper states are much “hotter” than the lower extrac-
tion states; in particular, the distribution for state 1 can
be fitted quite well with a Boltzmann distribution with
electron temperature of 20 K, much lower than the lattice
temperature of 100 K. This occurs because electrons in
subband 1 with transverse energies greater than about 10
meV can emit an optical phonon and scatter into states
4 or 5 in the next module; however, cold electrons at the
bottom of the band cannot scatter out except via phonon
absorption, a weak process at low lattice temperature. As
a result, charge builds up at the bottom of subband 1;
in fact, about 20% of electrons are found in that band in
the energy-resolved calculation compared to about 9% in
the thermally averaged DM in Table I. This accounts for
a significant difference in the predictions of the energy-
resolved and thermal averaged calculations for the shape
of the charge density in the lower/extractor wells in Fig.
7; the increased buildup of charge in the fourth well in
the energy-resolved case is due to the higher population
of state 1, which is centered in that well as seen in Fig.
5.
Finally, as an illustration of optical response, in Fig.

9b we plot the small signal gain as a function of frequency
and bias predicted by the model. As expected we observe
absorption at low and high frequencies with gain peaked
around 3-3.5 THz, increasing with bias. We note that
our calculations are not limited to small signal quanti-
ties; studies of the effect of strong field intensity and
detailed discussion of the optical response of the device
will be given elsewhere. The results presented here show
that our approach can give detailed and quantitatively
meaningful descriptions of devices which cannot be de-
scribed well using conventional rate equations or density
matrix models. Because it does not require divination
of ad hoc localized basis states for each device, this ap-
proach can be directly applied to different categories of
design. Additional calculations and analysis for the res-
onant phonon device shown here, as well as applications
of the model to a variety of other THz QCL designs, will
be discussed in a separate study.23

VII. CONCLUSION

We have derived a generalized density matrix approach
suitable for studying the steady-state and optical proper-
ties of QCLs. The model eliminates the need for choosing
suitable localized wave functions for a particular device
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by using the well-defined energy eigenstates, while ac-
counting for coherences through a generalized scattering
superoperator. Both energy-resolved and thermally av-
eraged versions of the theory are presented. We demon-
strate that this model explains and reproduces the spa-
tial localization and tunneling behavior important for
describing QCLs without the need for adopting an ar-
bitrary tight-binding basis. We study a resonant phonon
THz QCL device using our approach, showing in par-
ticular how the additional scattering pathways suppress
subthreshold current peaks in closer agreement with ex-
periment. By examining the form of the density matrix,
its eigenstates, and the associated velocities, we gain a
stronger intuitive understanding of device operation.
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Appendix A: Matrix Notation for Superoperator

The master equation for the density matrix Eq. 8
may be symbolically expressed in a compact notation
using a matrix definition of the delta function [δE]ab =
δ(Ea−Eb) and the Hadamard operation ◦ which performs
element-wise multiplication, i.e., each element of the
Hadamard product of two matrices [A ◦ B]ab = AabBab.
The final DM equation is summarized as

ρ̇ =
i

~
[ρ,H ] +

π

~

∑

m

[δE ◦ [Vm, ρ], Vm]

+
π

~

∑

q±

(

nq +
1

2
± 1

2

)

[δ(E ± Eq) ◦ (Vqρ)

− δ(E ∓ Eq) ◦ (ρVq), Vq ]

(A1)

where Vm is an elastic scattering mechanism and Vq is
an inelastic scattering mechanism with mode q. This
expression is valid for a general electronic system. The
notation also makes clear that the derived superoperator
is not Lindbladian.31

It is also interesting to contrast this with the inter-
action representation result (discussed in more detail in
Section III C), which in our notation is given by

ρ̇ =
i

~
[ρ,H ] +

π

~

∑

m

[[δE ◦ Vm, ρ], Vm]

+
π

~

∑

q±

(

nq +
1

2
± 1

2

)

[(δ(E ± Eq) ◦ Vq)ρ

− ρ(δ(E ∓ Eq) ◦ Vq), Vq].

(A2)

Appendix B: Thermal Averaged Scattering

In this appendix we summarize the thermally averaged
scattering superoperator terms for coupling between arbi-
trary DM elements, i.e., the form of Eq. 37 for the single
particle scattering mechanisms considered in Section IV.
In the integrations over energy for a given term V̄JK,LM ,
a cutoff is necessary depending on whether the band edge
of JK is below or above that of KM . In the following
equations, λ describes the correction due to this cutoff
such that λ = 0 if ∆XY > 0 and λ = −∆XY if ∆XY < 0.

a. Ionized Impurities

We can summarize the scattering rate for impurity
scattering as

V̄CD
JK,LM (XY ) =

FCDAe4

128π3~ǫ2
exp

(

− ∆XY

kBTCD

)
∫

dzN(z)

×
∫

dqz1

∫

dqz2ΦJK(qz1)ΦLM (−qz2)e
i(qz2−qz1)zG(qz1, qz2)

(B1)

where

G(qz1, qz2) =

√
πkBTCD

Eqz1 − Eqz2







exp
(

Γ2

kBTCD

)

erfc
(√

Γ2+λ
kBTCD

)

√

Eη + Eqz2

−
exp

(

Γ1

kBTCD

)

erfc
(√

Γ1+λ
kBTCD

)

√

Eη + Eqz1






(B2)

which for the special case qz1 = qz2 = q reduces to

G(q, q) =
exp(Γ/kBTCD)

2(Eη + Eq)3/2
×

[

√

πkBTCD

(

1 +
2Γ− Eη − Eq −∆XY

kBTCD

)

erfc

(

√

Γ + λ

kBTCD

)

+
Eη + Eq +∆XY − 2Γ√

Γ + λ
exp

(

− Γ + λ

kBTCD

)

]

(B3)

and we define for phonon wave vector qn

Γn =
(Eκ +∆XY + Eqn)

2

4(Eκ + Eqn)
.

b. Alloy Scattering

For alloy scattering we again assume a local scattering
potential with matrix element Ξ and lattice spacing a
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within spatial region of alloyed material [z1,z2] with alloy
fraction x. The averaged rate is then

V̄CD
JK,LM (XY ) = Call

z2
∫

z1

dzχ∗
J(z)χK(z)χ∗

L(z)χM (z)

(B4)
where

Call = x(1−x)
Ξ2a3m∗2AFCDkBTCD

4π~5
exp

(

−λ+∆XY

kBTCD

)

.

(B5)

c. Interface Roughness

As before, we take a Gaussian correlation function for
the roughness profile and integrate to find

V̄CD
JK,LM (XY ) =

m∗2Ω2Λ2GJKLMFCDA
4~5

×
∫ ∞

λ

exp

(

−(Ek +∆XY )

[

1

kBTCD
+

Λ2m∗

2~2

])

× I0

(

m∗Λ2

~2

√

Ek(∆XY + Ek)

)

dEk

(B6)

Here GJKLM = ∆2
iχ

∗
J(zi)χK(zi)χ

∗
L(zi)χM (zi) at the ith

interface with band offset ∆i. Assuming the roughness
profile across interfaces are uncorrelated, the total scat-
tering rate is given by the sum of the rates for each in-
terface.

d. Polar Optical Phonons

Assuming screened longitudinal optical phonon scat-
tering, we find

V̄CD
JK,LM (XY ) =

∑

±

(

nLO +
1

2
± 1

2

)

AFCDELOe
2m∗

128π2~3

(

ǫ
−1

∞ − ǫ
−1

DC

)

exp

(−∆±

XY

kBTCD

)
∫

dqzΦJK(±qz)ΦLM (∓qz)G±(qz)

G±(qz) =

exp

(

Γ±

kBTCD

)

(Eqz + Eκ)3/2

[

(Eqz +∆±

XY )(Eqz +∆±

XY + Eκ)− 2Γ±(2Eqz + Eκ)√
Γ± + λ±

exp

(

−Γ± + λ±

kBTCD

)

+

(

{2Eqz + Eκ}
{√

πkBTCD + 2Γ±

√

π

kBTCD

}

− {Eqz +∆±

XY }{Eqz +∆±

XY +Eκ}
√

π

kBTCD

)

erfc

(

√

Γ± + λ±

kBTCD

)]

(B7)

where

Γ± =
(Eqz + Eκ +∆±

XY )
2

4(Eqz + Eκ)
(B8)

and λ± = 0 if ∆±
XY > 0 and λ± = −∆±

XY otherwise.

Appendix C: Periodicity for Scattering and Velocity

For periodic structures, the DM ρ, scattering poten-
tials V , and other operators can be written in the block
matrix form of Eq. 38. The formalism shown here can
reach arbitrarily far from the diagonal, but will be trun-
cuated based on the energy selectivity and coherences
spanning not more than one module (to be shown later).
Periodic boundary conditions will be invoked to reduce
the two-script notation to a single script (ρσ,ν = ρν−σ) as
in Eq. 39, but this cannot be done for V : since correla-
tion is intended to be dropped between positions along z

in the scattering potential, the elements in V are treated
as functions of z which are inner producted (not scalars),
and therefore knowledge of the specific modules involved
in V V products must be retained. A concrete example
is that V might represent scattering from a single rough
interface: V0,1 and V1,0 will be different from each other
because the states involved are in different locations rel-
ative to the particular interface.

Using a general notation for the DM basis states, we
find

ρ̇ab
0µ

= ρ̇ab
µ
=
∑

σν

∑

cd

Γ ab;cd
0,µ;σ,ν

ρcd
σν

=
∑

σν

∑

cd

Γ ab;cd
0,µ;σ,ν

ρ cd
ν−σ

=
∑

ν

∑

cd

[

∑

σ

Γ ab;cd
0,µ;σ,σ+ν

]

ρcd
ν

∴Γab;cd
µ;ν

=

[

∑

σ

Γ ab;cd
0,µ;σ,σ+ν

]

.

(C1)
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Writing out this form explicitly for subbands and in-plane
energy and taking advantage of the fact that

V ab
µ,ν

V cd
σ,η

= V ab
µ+γ,ν+γ

V cd
σ+γ,η+γ

(C2)

for any γ leads to Eq. 41.

The incoherent velocity operator35 can be inferred
from

vab =
∑

cd

Γ∗
cd,abzcd. (C3)

Taking advantage of the periodic submatrix form of v,
we can write

vab
0µ

= vab
µ
=
∑

σν

∑

cd

Γ cd;ab
σ,ν;0,µ

zcd
σν

=
∑

σν

∑

cd

Γ cd;ab
σ,ν;0,µ

(z cd
ν−σ

+ δrsδcdσL)

=
∑

ν

∑

cd

[

∑

σ

Γ cd;ab
σ,σ+ν;0,µ

(

1 +
δrsδcdσL

zcc
0

)]

zcd
ν
.

(C4)

As before, we can rewrite the term in brackets as a su-
peroperator. Using labels for the subband and transverse
momentum, we arrive at the incoherent scattering super-
operator in Eq. 48.

Appendix D: Density Matrix Eigenstates and their

Velocities

We wish to show that an arbitrary two-level system,
when rotated from the energy eigenstate to the DM eigen-
state basis, will have equal and opposite coherent veloci-
ties and differing incoherent velocities for the DM eigen-
states. For a two-level system in the energy eigenstate

representation, the density matrix in general will be

ρ =

[

ρA ρAB

ρ∗AB ρB

]

. (D1)

Its eigenvalues are ρ1,2 =
ρA + ρB ±∆

2
where ∆ =

√

(ρA − ρB)2 + 4|ρAB|2 and the indices 1, 2 correspond
to the plus and minus sign respectively, with ρ1 being
more populous. The eigenstates are

|φ1〉 =
(

cos θ1
sin θ1

)

, |φ2〉 =
(

sin∗ θ1
− cos θ1

)

(D2)

where

cos θ1 =
ρA − ρB +∆

√

4|ρAB|2 + [ρA − ρB +∆]2

sin θ1 =
ρ∗AB

√

4|ρAB|2 + [ρA − ρB +∆]2

(D3)

Since the current is given by Tr(ρv), for a diagonalized ρ
we are only interested in the diagonals of v. Upon trans-
forming a general velocity operator v from the energy
eigenstate to DM eigenstate basis, we find

v1 = vA cos2 θ1 + vB | sin θ1|2 + 2 cos θ1ℜ(vAB sin θ1)

v2 = vA| sin θ1|2 + vB cos2 θ1 − 2 cos θ1ℜ(vAB sin θ1).

Since the coherent velocity operator in the energy ba-
sis only has a nonzero off-diagonal component (vcoh,A =
vcoh,B = 0 and vcoh,AB = v∗coh,BA = (EA − EB)zAB/i~),
we see that for a two-level system in the DM basis
v1 = −v2. The incoherent velocity operator generally
has nonzero diagonal elements in the energy basis and
therefore does not have equal and opposite values in the
DM basis. In the case of coherent Rabi oscillations of a
pure state, ρ1 = 1 and ρ2 = 0, so that the instantaneous
current is given by v1. Otherwise, dephasing leads to
0 < ρ1,2 < 1 and the net current is given by ρ1v1 + ρ2v2.
Once additional states are introduced, v1 6= −v2 in gen-
eral since coherences with other states become important.
However, for any N -level system, while the coherent ve-
locities of the various DM eigenstate will differ, their sum
will always remain zero since Tr(vcoh) = 0 is invariant
under basis transformations.
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R. W. Kelsall, Phys. Rev. B 85, 235427 (2012).
18 R. F. Kazarinov and R. A. Suris, Soviet Physics Semicon-

ductors 5, 707 (1971).
19 R. C. Iotti and F. Rossi,

Phys. Rev. Lett. 87, 146603 (2001).
20 C. Weber, A. Wacker, and A. Knorr,

Phys. Rev. B 79, 165322 (2009).
21 O. Jonasson, F. Karimi, and I. Knezevic,

J Comput Electron 15, 1192 (2016).
22 O. Jonasson, S. Mei, F. Karimi, J. Kirch, D. Botez,

L. Mawst, and I. Knezevic, Photonics 3, 38 (2016).
23 B. A. Burnett, A. Pan, C. O. Chui, and B. S. Williams,

to be submitted.
24 W. Jones and N. H. March, Theoretical Solid State Physics

Vol. 2: Non-equilibrium and Disorder (Wiley-Interscience,
Bristol, 1973).

25 See11. Strictly speaking this term should be η(ρs − ρs,eq)
where ρs,eq is the equilibrium density matrix, but the latter
term can be neglected since we will take the limit that
η → 0.

26 C. Ndebeka-Bandou, F. Carosella, R. Ferreira, and
G. Bastard, Appl. Phys. Lett. 102, 191105 (2013).

27 H.-P. Breuer and F. Petruccione, The Theory of Open

Quantum Systems (Oxford University Press, New York,
2002).

28 U. Weiss, Quantum Dissipative Systems , 3rd ed., edited by
I. E. Dzyaloshinskii, S. O. Lundqvist, and Y. Lu, Series in
Modern Condensed Matter Physics, Vol. 13 (World Scien-
tific Publishing Co. Pte. Ltd., 2008).

29 R. C. Iotti, E. Ciancio, and F. Rossi,
Phys. Rev. B 72, 125347 (2005).

30 A. G. Redfield, IBM J. Res. & Dev. 1, 19 (1957).
31 G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
32 A. Wacker, phys. stat. sol. (c) 5, 215 (2008).
33 B. Goldozian, F. A. Damtie, G. Kiršanskas, and
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