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Nematic order has manifested itself in a variety of materials in the cuprate family. We propose
an effective field theory of a layered system with incommensurate, intertwined spin- and charge-
density wave (SDW and CDW) orders, each of which consists of two components related by C4

rotations. Using a variational method (which is exact in a large-N limit), we study the development
of nematicity from partially melting those density waves by either increasing temperature or adding
quenched disorder. As temperature decreases we first find a transition to a single nematic phase,
but depending on the range of parameters (e.g. doping concentration) the strongest fluctuations
associated with this phase reflect either proximate SDW or CDW order. We also discuss the changes
in parameters that can account for the differences in the SDW-CDW interplay between the 214 family
and the other hole-doped cuprates.

I. INTRODUCTION

One of the major developments of the last decade of
research into the properties of the high temperature su-
perconducting cuprates is the discovery that charge and
spin density wave (CDW and SDW) ordering phenomena
are ubiquitous.1–15 Moreover, it has been shown that they
strongly influence the electronic structure of these mate-
rials and have a significant (although possibly complex)
relationship with the superconducting order.4,16–24 This
complex “intertwining” of multiple density-wave and su-
perconducting orders25 has long been documented in one
family - the 214 family e.g. La2−xSrxCuO4 (LSCO) -
of hole-doped cuprates. There is also increasingly com-
pelling evidence that various forms of order that break
point-group symmetries but not translational symmetry
may occur in an even broader range of parameters (i.e.
temperature, doping, crystal structures, etc.).26–42 Of
these, Ising nematic order, i.e. the spontaneous break-
ing of either a C4 symmetry to C2 or the breaking of
a mirror symmetry which occurs as a result of a partial
melting of a unidirectional CDW or SDW phase, is the
most directly related to these same developments.3

These developments bring with them a host of associ-
ated new questions. Among other things, one would like
to understand the nature of the interplay between the
CDW and SDW orders. In YBa2Cu3O6+δ (YBCO), a
member of the 123 family of hole doped cuprates, they are
apparently mutually exclusive43–45; significant SDW cor-
relations are observed at relatively low doped hole con-
centrations, δ < δc ∼ 8%, while significant CDW corre-
lations are only observed at higher doping, δ > δc, where
there is a significant spin-gap and correspondingly little
in the way of long-distance spin correlations. In contrast,
in the 214 materials, SDW and CDW correlations seem to
grow cooperatively, their ordering vectors are apparently
locked to each other, and they exist as readily detectable
fluctuating order over a very broad range of doping.3,46

In addition, in YBCO,26–34 there is a strongly nematic
region of the phase diagram in a range of temperatures

in which neither SDW nor CDW order is well developed,
but it has been suggested that there may be two distinct
nematic phases - one associated with “vestigial” SDW
and the other with vestigial CDW order.32 Furthermore,
there is evidence of nematicity in 214 materials in the
fluctuating stripes regime.3,27 Given that one never sees
true long-range CDW or SDW order, it is also clearly im-
portant to understand the effect of quenched randomness
- “disorder” - on all these properties.

In the present paper we consider the properties of the
simplest Landau-Ginzburg-Wilson classical effective field
theory of thermal fluctuations of the SDW and CDW
order parameters in a layered (quasi 2D) system with
tetragonal symmetry (the effect of superconducting fluc-
tuations is not included in our model as the temperature
regime where strong fluctuations of SDW, CDW and ne-
maticity onset, is far above the superconductivity tran-
sition temperature4,5,26–34). We include effects of dis-
order as a Gaussian random field coupled to the CDW
order parameter. To obtain controlled solutions includ-
ing the effects of order parameter fluctuations, we solve
the problem using the Feynman (“self-consistent Gaus-
sian”) variational approach.47 An alternative way to view
this is to consider the generalized version of this model
in which both the CDW (which is an O(2) field) and the
SDW (which is an O(2) × O(3) field) are generalized to
O(N) fields, and the problem can then be solved exactly
in the N → ∞ limit. It has previously been shown by
us48 and others49 that such an approach captures much
of the physics of the actual physical problem.

Our principal results concerning the nature of the in-
terplay between CDW, SDW, and nematic order are sum-
marized in the calculated phase diagrams in the figures
below. Of particular note: 1) We find that there is a
single nematic phase, spanning two distinct regimes sepa-
rated by a crossover: in one, the nematicity can be viewed
as vestigial SDW order (with corresponding strong lo-
cal SDW correlations) whereas in the other it is associ-
ated with short-range CDW order.50 2) An interesting
feature is that for a plausible choice of parameters (i.e.
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v > v′ in Eq. (2.3)) the dominant unidirectional SDW
correlations are perpendicular to the dominant unidirec-
tional CDW correlations. This is strikingly reminiscent
of the case in YBCO, where the nematic axis is pinned by
the weak symmetry breaking field imposed by the crys-
talline orthorhombicity, and where it is found that the
preferred direction of the SDW ordering vector is perpen-
dicular to the chain direction,51 while based on high field
experiments52,53, the preferred CDW ordering vector is
parallel to the chains (for a discussion of directionality
of CDW, see Sec. VI A 4)). 3) There is a special cu-
bic term in the effective field theory that operates only
when the CDW and SDW are mutually commensurate.
Our primary focus is on the far from commensurate case,
where this term is negligible, but, as we will argue, it is
likely the key to understanding the differences between
the La-based 214 materials and YBCO.

This paper is organized as follows: In Sec. II we de-
fine the model and discuss the meaning of the various
symmetry allowed terms. In Sec. III, we introduce the
variational approach, and in Sec. IV we apply it to ob-
tain the phase diagram of the stated model both with and
without disorder. In Sec. V, we discuss the effects of the
special cubic term,54 Eq. (2.10), which is important only
when the CDW and SDW are mutually commensurate,

i.e. when 2 ~K
.
= ~Q, where ~K and ~Q are, respectively,

the SDW and CDW ordering vectors, and “
.
=” means

equal modulo a reciprocal lattice vector. Finally, in Sec.
VI, we discuss the relevance of our results to interpreting
experiments in the cuprates and in Sec. VII we discuss

some broader issues of perspective.

II. THE MODEL

We consider a quasi-2D (layered) lattice with tetrago-
nal symmetry. The spin and charge densities at position
~r can be expressed as

S(~r) =
[
S ~K(~r)ei

~K·~r + S ~K′(~r)e
i ~K′·~r + c.c.

]
+ · · · , (2.1)

ρ(~r) = ρ0 +
[
ρ~Q(~r)ei

~Q·~r+ρ~Q′(~r)e
i ~Q′·~r+c.c.

]
+· · · , (2.2)

where S ~K and S ~K′ (ρ~Q and ρ~Q′) are slowly varying com-

plex vector (scalar) fields corresponding to incommensu-
rate SDW (CDW) order parameters, ρ0 is the uniform

background charge. Here ~K and ~K ′ ( ~Q and ~Q′) are
wavevectors (assumed incommensurate) within the xy
plane, have the same magnitude and are related by C4 ro-
tations. Note that S ~K(~r) = S∗− ~K(~r), S ~K′(~r) = S∗− ~K′(~r),

ρ~Q(~r) = ρ∗−~Q(~r), and ρ~Q′(~r) = ρ∗−~Q′(~r).

Keeping all terms to fourth order in the field ampli-
tudes and second order in spatial derivatives that are con-
sistent with translational symmetry and spin-rotational
symmetry, the classical Ginzburg-Landau-Wilson effec-
tive field theory for this problem is

H =

∫
d~r

{
HS +Hρ +H3d +HS−ρ +Hcom +Hdis

}
,

HS =
κs‖

2

[
|∂xS ~K |

2 + |∂yS ~K′ |2
]

+
κs⊥

2

[
|∂yS ~K |

2 + |∂xS ~K′ |2
]

+
αs
2

[
|S ~K |

2 + |S ~K′ |2
]

+
us
4

[
|S ~K |

2 + |S ~K′ |2
]2

+
γs
2
|S ~K |

2|S ~K′ |2 +
ũs
4

∣∣∣S ~K × S∗~K + S ~K′ × S∗~K′

∣∣∣2 +
γ̃s
2

[
S ~K × S∗~K

]
·
[
S ~K′ × S∗~K′

]
Hρ =

κρ‖

2

[
|∂xρ~Q|

2 + |∂yρ~Q′ |2
]

+
κρ⊥

2

[
|∂yρ~Q|

2 + |∂xρ~Q′ |2
]

+
αρ
2

[
|ρ~Q|

2 + |ρ~Q′ |2
]

+
uρ
4

[
|ρ~Q|

2 + |ρ~Q′ |2
]2

+
γρ
2
|ρ~Q|

2|ρ~Q′ |2

H3d = −Jsz
[
S ~K(n) · S∗~K(n+ 1) + S ~K′(n) · S∗~K′(n+ 1) + c.c.

]
− Jρz

[
ρ~Q(n)ρ∗~Q(n+ 1) + ρ~Q′(n)ρ∗~Q′(n+ 1) + c.c.

]
HS−ρ =

v

2

[
|ρ~Q|

2|S ~K |
2 + |ρ~Q′ |2|S ~K′ |2

]
+
v′

2

[
|ρ~Q|

2|S ~K′ |2 + |ρ~Q′ |2|S ~K |
2
]
, (2.3)

where
∫
d~r ≡

∑
n

∫
dxdy (n labels the z-direction lay-

ers), and we have adopted the short-hand notation S ~K ≡
S ~K(~r) = S ~K(x, y, n) and S ~K(n) ≡ S ~K(x, y, n) etc.. Hcom
and Hdis represent, respectively, a possible commensu-
rate locking term between the CDW and SDW, and the
effect of disorder, both of which we discuss below.55 A

finite H3d enables the existence of long-range SDW and
CDW orders in the clean limit, and of long-range nematic
order in the finite disorder case.50,56
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A. Choice of less crucial parameters

There is a large number of parameters in this equation.
The magnitudes of many of them are not qualitatively
important for the issues at hand (i.e. do not change the
topology of the phase diagram), and so we will henceforth
arbitrarily assume values chosen to simplify the ensuing
analysis. We will take κs‖ = κs⊥ = κρ‖ = κρ⊥ ≡ κ,
which is to say we will ignore anisotropy of the density
wave elastic constants and the difference in the compress-
ibilities of the CDW and SDW. By an appropriate choice
of the units of energy we can set κ = 2. The magni-
tude of us and uρ can be adjusted to be anything we
desire by appropriate rescaling of S ~K and ρ~Q, respec-

tively; for historical reasons we take us = uρ ≡ u = 0.9.
The sign of γs and γρ is significant; positive γs,ρ favors
unidirectional (“stripe”) order while negative γs,ρ favors
bidirectional (“checkerboard”) order. We make the phys-
ically important assumption that unidirectional ordering
is favored for both the SDW and CDW components (for
more on this, see discussion in Sec.VI A 4)). However,
the precise values of these couplings is not crucial, so we
set γs = γρ ≡ γ and γ = 1. ũs and γ̃s are important only
in determining whether the favored spin-density wave or-
der is collinear (for ũs large and positive) or spiral (for
ũs large and negative). In fact, based on experimental
observations2 collinear SDW order is favored so we take
ũs = γ̃s = 0. We will always assume the interplane cou-
plings are weak, and so only important in avoiding special
features of the purely 2D limit; we further neglect the dif-
ferences in the SDW and CDW interplane couplings and
take Jsz = Jρz ≡ Jz, and will take Jz = 0.0001. Fi-
nally v represents the interaction between parallel com-
ponents of the CDW and SDW orders, and v′ the inter-
action between perpendicular components. We assume
these interactions are repulsive (positive) and that the
interaction between parallel components is stronger than
between perpendicular, v > v′; beyond that the specific
values of these parameters are not extremely important
so we take v = 1.5 and v′ = 0.8.

B. Mean-Field Transition Temperatures

The two remaining parameters in the effective field the-
ory, αs and αρ, tune the mean-field transitions of the
density waves. As is conventional, we assume them to be
linearly varying functions of temperature,

αs = αs0

[
T − Tsdw(δ)

]
, (2.4)

αρ = αρ0

[
T − Tcdw(δ)

]
, (2.5)

where Tsdw(δ) and Tcdw(δ) are mean-field transition tem-
peratures that are assumed to be functions of some con-
trol parameter δ (e.g., doped hole concentration). So
as to illustrate the behavior in the neighborhood of a

mean-field multicritical point (where Tsdw(δ) = Tcdw(δ)),
we adopt the algebraically simple functions (shown in
Fig. 1a)

Tsdw(δ) = Tsdw0(1− δ), (2.6)

Tcdw(δ) = Tcdw0 = const. (2.7)

Note that because the Boltzmann weight is the exponen-
tial of H/T , the thermodynamic properties of the system
have an explicit temperature dependence, as well as the
implicit dependences implied by the above.

C. Coupling to disorder

The most significant effect of disorder is to add a “ran-
dom field” that pins down the phase of the CDW order
parameters:

Hdis = hρ∗~Q + h′ρ∗~Q′ + c.c. (2.8)

where h(~r) is a Gaussian random variable which we take
to be short-range correlated:

h(~r) = 0, h∗(~r)h(~r′) = σ2δn,n′δ(x− x′)δ(y − y′),
h(~r)h(~r′) = h∗(~r)h′(~r′) = h(~r)h′(~r′) = 0 (2.9)

and similarly for h′ ↔ h. Time reversal symmetry pre-
cludes any similar term coupled to the SDW order pa-
rameter. Other forms of disorder coupling to the SDW
order are permitted, including random mass disorder and
random frustration (that can lead to a spin-glass phase),
but, when weak, these are generally less important than
random-field disorder. We will return to this issue in the
Sec. V below.

D. Relative commensurability

There is a special cubic term that couples the SDW
and CDW order parameters:

Hcom = λ
[
ρ~QS

∗
~K
· S∗~Ke

i(~Q−2 ~K)·~r (2.10)

+ρ~Q′S
∗
~K′ · S∗~K′e

i(~Q′−2 ~K′)·~r + c.c.
]
.

Manifestly, this term is rapidly oscillating and so can be

neglected unless either 2 ~K − ~Q
.
= ~0 (i.e. if the CDW

and SDW are locked to be relatively commensurate) or
in the presence of substantial disorder, where translation
symmetry is no longer important. We will consider the
significance of this term in Sec. V, but for the purpose of
the present analysis we assume that this term is negligi-
ble.
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FIG. 1: (a) Mean-field (ignoring spatial fluctuations) phase
diagram for the parameters defined in Sec. II A and Eqs. (2.4)
∼ (2.7) taken to be αs0 = αρ0 = 1.1, Tsdw0 = 1.3, Tcdw0 = 0.7.
Solid lines mark the second-order mean-field phase transi-
tions. Red (blue) dot-dashed line marks the SDW (CDW)
transition when there are no interaction terms between SDW
and CDW, i.e., v = v′ = 0. (b) Large-N phase diagram with
the same parameters as in (a), but including spatial fluctua-
tions, and obtained from the variational approach introduced
in Sec. III. The solid lines denote second order phase tran-
sitions and the four phase boundaries meet at a tetracritical
point. If we had taken parameters such that v > v′ >

√
usuρ,

the narrow range of SDW and CDW coexistence at low tem-
perature would have been replaced by a first order transition
terminating at a bicritical point. The transition line to the
(extremely narrow) vestigial nematic phase has been shifted
upward by ∆T = 0.05 for graphical clarity.

III. VARIATIONAL AND LARGE N
SOLUTIONS

To obtain an approximate solution for the phase di-
gram of this effective field theory including the effects of
fluctuations and, in particular, the possibility of partially
melted phases (phases with vestigial order) we invoke the
Feynman variational principal:47

F ′ ≡ Ftrial + 〈H −Htrial〉trial ≥ F (3.1)

where F (Ftrial) is the free energy corresponding to H
(Htrial), 〈. . . 〉trial denotes thermal average with Boltz-
mann weight e−βHtrial . Htrial is taken to be quadratic in
fields with coefficients that are treated as variational pa-
rameters. Saddle-point equations are obtained by min-
imizing F ′ with respect to the variational parameters.
Details of the calculation can be found in Appendix A.

The same saddle point equations can be viewed as the
exact solution of a generalized version of the same prob-
lem in an appropriate large-N limit. Here, we replace
ρ~Q and S ~K by corresponding O(N) vectors, rescale the

quartic terms by a factor of 1/N , and solve the problem
in the N → ∞ limit. An advantage of this latter ap-
proach is that systematic corrections to the saddle-point
solution can, in principle, be computed in the context of
a 1/N expansion.

When considering the problem in the presence of dis-
order, we use the replica trick. Specifically, we introduce
M replicas of the fluctuating fields, and then integrate
out the quenched random variables, h and h′, as if they
were thermal variables. We solve the resulting replicated
effective field theory using the same variational method
as in the zero disorder case. Finally, we take the replica
limit, M → 0. Details can again be found in Appendix B.

IV. RESULTS

In this section we present three phase diagrams with
a fixed set of input parameters but different disorder
strengths: σ = 0, 0.1, and 0.5.

A. Zero disorder

TSDW and TCDW, the transition temperatures for SDW
and CDW respectively, are both suppressed when the ef-
fects of fluctuations are included, as shown in Fig. 1b.
For v > v′, if v′ <

√
usuρ a coexisting phase oc-

curs at low temperature with mutually perpendicular
unidirectional SDW and CDW. This phase vanishes if
v > v′ >

√
usuρ, when a first-order transition between

SDW and CDW emerges, and a single nematic phase
spanning both regimes.

For all values of δ, the first ordered phase encountered
on cooling from high temperatures is a nematic phase. In
this phase, both the CDW and the SDW orders vanish,
〈ρ~Q〉 = 0 and 〈S ~K′〉 = 0, but the fluctuations spectrum

spontaneously breaks the C4 rotational symmetry of the
model. In the variational treatment, the nematic order
parameters associated with vestigial SDW and CDW or-
ders are

NS = 〈|S ~K |
2 − |S ~K′ |2〉trial (4.1)

and

Nρ = 〈|ρ~Q|
2 − |ρ~Q′ |2〉trial, (4.2)



5

both of which are zero (by symmetry) at elevated tem-
peratures and develop non-zero values at the nematic
transition. Moreover, so long as other parameters are
held fixed and the temperature is kept below Tnematic as
δ is varied, NS and Nρ do not change in sign. In our
case with v > v′, NS and Nρ always have opposite signs,
NSNρ ≤ 0.

B. Effects of disorder

The CDW transition will be suppressed when cou-
pled to quenched random-field disorder.56 When disor-
der strength is weak, σ = 0.1, the topology of the phase
diagram is the similar to Fig. 1b except that there is no
CDW phase, as shown in Fig. 2. Neither the nematic nor
the SDW order is much affected by this small amount of
disorder. This behavior can be understood on the basis
of general theorems of statistical mechanics: The lower
critical dimension for the random field problem is Dc = 4
for a continuous symmetry (e.g. the translation symme-
try breaking associated with an incommensurate CDW)
but Dc = 2 for a discrete symmetry (e.g. the Ising ne-
matic symmetry). That the SDW order survives weak
disorder is due to its non-trivial transformation under
time reversal, which prevents the disorder potential from
coupling like a conjugate field.

For slightly larger disorder, σ = 0.5, the structure of
the phase diagram changes somewhat as shown in Fig. 3.
Now, for a range of doping near where the multicriti-
cal point occured in the absence of disorder, the nematic
transition has an altered character - it is first order due
to the close proximity to the SDW phase, with the two
tricritical points at δ ≈ 0.25 and δ ≈ 0.45. Within this
doping range, we have confirmed at four selected values
of δ, both the first-order nature of the nematic transition
and its separation from the second-order SDW transi-
tion. It is possible yet unlikely that a direct first-order
transition occurs from isotropic phase to SDW phase at
certain dopings within this regime.

We have not exhibited the behavior of the model at
still larger disorder. In a previous study50 (which did not
include an SDW order) we found that there was a sub-
stantially larger critical value of the disorder, σc ≈ 1.14
(rescaled to be consistent with the current input parame-
ters), beyond which the nematic phase no longer occurs,
even in the limit T → 0. The presence of SDW fluctua-
tions in the present model has a small quantitative effect
on the magnitude of the critical disorder, but it remains
the case that nematic order is quenched entirely for large
enough σ. We will not further discuss the effect of strong
disorder on the SDW order (induced by interactions v
and v′ between CDW and SDW), since in this context,
there is a more important effect of disorder on the SDW
that arises indirectly from the here-to-for neglected cou-
pling to the CDW order from Eq. (2.10).

Tnematic

TSDW

0.2 0.4 0.6 0.8 1.0
∆

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

FIG. 2: Large-N phase diagram with input parameters same
as in Fig. 1a, but with “weak” disorder, σ = 0.1. All transi-
tions are second-order. The nematic transition line is again
shifted upward by ∆T = 0.05 for graphical clarity. Consistent
with general theorems, the CDW phase has been eliminated,
but the nematic and SDW transition temperatures have only
been decreased to almost unnoticeable degree relative to the
zero disorder case in Fig. 1b.
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0.2 0.4 0.6 0.8 1.0
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0.5

0.6

0.7
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FIG. 3: Large-N phase diagram with the same parame-
ters as in Fig. 1a, but with “moderate” disorder, σ = 0.5.
Dashed and solid lines denote first- and second-order transi-
tions respectively, and the black dots are tricritical points (see
text). The nematic transition line is again shifted upward by
∆T = 0.05 for graphical clarity. Notice the observable sup-
pression of the nematic transition temperature compared to
Fig. 1b and Fig. 2.

V. COMMENSURATE LOCKING OF THE SDW
AND THE CDW

The formal structure needed to treat the cubic term
coupling the SDW and CDW fields, Eq. (2.10), is be-
yond the scope of the straightforward variational ap-

proach taken in this paper. Moreover, so long as 2 ~K− ~Q
is far from ~0, or v > v′ � λ (disfavoring mutually par-
allel SDW and CDW), its effects are negligible for most
purposes. We therefore defer the analysis of its effects
to a future study. However, there are two effects of this
term which are necessary for the following discussion.
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For mutually commensurate CDW and SDW order,
this term has a determinative effect on the nature of the
phase diagram, as can be seen already from a straightfor-
ward mean field theory, as in Ref. 54. If the preferred or-

dering vectors are close to commensurate, |2 ~K− ~Q| � 1,
then the interactions between the two orders is similar to
the physics of the much studied commensurate to incom-
mensurate (or Pokrovsky-Talapov) transition.57,58 Typi-
cally what one expects in this case is a low temperature
commensurately locked phase, with slightly shifted or-

dering vectors, ~K and ~Q with 2~K .
= ~Q, but that above

this temperature, the SDW and CDW ordering vectors
relax to their preferred, not quite commensurate values.

In the absence of disorder, if |2 ~K − ~Q| is sufficiently
large, then this term is entirely negligible. However, in
the presence of disorder, the rapid phase oscillations of
this term when integrated over space will not entirely
eliminate its effectiveness. To see this, imagine that to
some degree ρ~Q is pinned by disorder, so there is an ef-

fective random field, beff:

beff(~r) = λ ρ~Q(~r) ei(
~Q−2 ~K)·~r (5.1)

that is conjugate to S ~K · S ~K . Although a weak random
field of this sort would not, generically, prevent the ex-
istence of a state that breaks spin-rotational symmetry
(such as a spin-glass or a spin-nematic phase), because
it couples to the phase of the SDW order, it is sufficient
to preclude an ordered SDW phase in spatial dimension
D ≤ 4.56 Presumably, this is responsible for the fact that
the observed SDW phases in the cuprates always have a
finite correlation length. In comparing the present theo-
retical results (based on the effective field theory that ne-
glects the effect of this coupling) with experiment, we will
generally interpret experimentally observed phases with
long magnetic correlation lengths as the corresponding
ordered SDW states of the theory.

VI. IMPLICATIONS FOR THE CUPRATES

We turn now to a discussion of the relevance of
the present results to interpreting experiments in the
cuprates. Here, we will focus primarily on YBCO and
LSCO which we use as emblematic examples of the 123
and 214 families of hole doped cuprates. We have not
engaged in any fine-tuning of parameters - the behaviors
we have documented are qualitatively robust as long as
certain inequalities are satisfied.

A. YBCO

Firstly, we summarize a set of observed properties of
the much studied hole-doped cuprate YBCO which ap-
pear similar to the behaviors of the effective field theory
we have presented above:

1) Although YBCO is orthorhombic, there is a clear
δ dependent temperature below which various measures
of crystalline anisotropy show a sudden nearly singular
enhancement.26–32 We identify this as the nematic tran-
sition, Tnematic, rounded (and possibly pushed to slightly
higher T ) by the presence of a weak symmetry breaking
field.

2) For δ between roughly 8% and 15%, there is clearly
detectable short-range correlated CDW order below an
onset temperature that is comparable to Tnematic.32 We
identify this as the high doping regime of our phase dia-
gram, where the nematic order is a vestige of the CDW.

3) By contrast, for δ between roughly 5% and
8%, CDW correlations have not been clearly identi-
fied, but strong SDW correlations - leading to quasi-
static (“stripe-glass”) order at low T - are clearly
detectable.30,51 Now, the onset of SDW correlations ap-
pears to correlate with Tnematic, an observation that led
to the suggestion that there are two thermodynamically
distinct nematic phases.32 An important consequence of
our results is the implication that this is a crossover be-
tween an SDW and a CDW dominated nematic.

4) While the observed CDW correlations in the absence
of a magnetic field are generally bidirectional, at high
magnetic fields, where the CDW ordering tendency is
enhanced (due to the suppression of superconductivity),
the field induced CDW order is strongly unidirectional.
This suggests that the intrinsic ordering tendency is uni-
directional (consistent with our assumption that γρ > 0),
and that the bidirectional character seen at low fields is
due to the effects of disorder.50,59 Note that the high field

CDW order has its ordering vector, ~Q ≈ 2π(0, 0.3), ori-
ented along the orthorhombic axis defined by the chain-
direction in the crystal structure.53

5) In the 8% to 15% doping range, the SDW corre-
lations are extremely short-ranged, and there is a sub-
stantial spin-gap.8,60 The introduction of a small con-
centration of Zn impurities apparently pins the SDW
fluctuations to some extent, and causes a corresponding
suppression of the CDW order.43 This confirms the fact
that the SDW and CDW orders compete (v and v′ > 0).
Moreover, the induced SDW correlations exhibit a pre-

ferred ~K that is far from commensurate with ~Q, thus
self-consistently justifying the neglect of the cubic cou-
pling in Eq. (2.10).

6) In contrast, in the doping range 5% and 8%, the
unidirectional character of the SDW below Tnematic is
observable30 even without the application of high fields.

It is notable that the preferred ordering vector, ~K =
π(1− ε, 1) where ε is the incommensurability, is not only
mutually incommensurate with any observed CDW or-
dering vector, the incommensurability is in fact orthogo-
nal to that of the CDW. This latter observation is consis-
tent with the natural hierarchy of couplings, v > v′ > 0.
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B. The differences between YBCO and LSCO

The major differences between the observed density
wave phenomena in YBCO and LSCO can be attributed
to the relevance of the cubic coupling between the CDW
and SDW shown in Eq. (2.10). For given degree of mu-
tual incommensurability, commensurate locking occurs
only if the coupling constant λ exceeds a critical value λc,

itself an increasing function of |2 ~K − ~Q|. Either because

the preferred ordering vectors, ~K and ~Q, are closer to be-
ing mutually commensurate in LSCO than in YBCO or
because the magnitude of λ is somewhat larger, the ob-
served ordering vectors (distinguished from the preferred
ordering vectors) in LSCO always satisfy the commen-

surability relation 2~K − ~Q .
= ~0. Because the term lock-

ing the CDW and SDW is cubic, when it is operational
it supersedes the biquadratic couplings between the two
orders that appear to dominate the physics in YBCO.

There are two dramatic differences that result from
this. Firstly, it accounts for the fact that the interaction
between the CDW and SDW orders in LSCO appears to
be cooperative, while the two orders clearly compete in
YBCO. Secondly, it implies that the observed ordering

vectors ~Q and ~K generically differ somewhat from the in-

dividually preferred ordering vectors, ~Q and ~K. However,
by studying the fluctuating CDW and SDW order at el-
evated temperatures where they are no longer locked to
one another, one can infer more accurately the preferred
ordering vectors of each density wave separately.

The validity of this perspective has been spectacu-
larly supported by recent RIXS experiments of Dean and
collaborators61 on 1/8 doped LBCO (a stripe ordered
member of the 214 family). As is well known for this
material,3,46,62 below the static spin-ordering transition
temperatures, TSDW = 42K, the charge ordering vector is
~Q = 2π(±q, 0) with q = 0.24 and the spin ordering vector
~K = 2π(1/2 ± k, 0) satisfies the mutual commensurabil-

ity condition 2~K .
= ~Q, i.e. k = 0.12.63 Above TSDW,

no static spin order remains, but both fluctuating CDW
and SDW correlations are still clearly distinguishable, al-
beit with correlation lengths and intensities that decrease
with increasing T . Most significant for present purposes
is that the observed ordering vectors are temperature de-
pendent in this regime: The charge and spin ordering

vectors cease to be mutually commensurate, 2~K �
.
= ~Q.

Specifically, k decreases rapidly above TCDW to a “high”
temperature value k ≈ 0.1, while q increases smoothly to
a value q ≈ 0.272.

In 1/8 doped YBCO, q ≈ 0.32 and k ≈ 0.1 when
this same material is lightly Zn doped (to pin the
SDW fluctuations).43 As Dean and collaborators have
noted,61 the greater similarity across families of hole-
doped cuprates in the ordering tendencies at elevated
temperatures strongly supports the notion that these ten-
dencies are a robust, intrinsic feature of the electronic
structure of the copper-oxide planes. Conversely, it is
clear from our analysis that the relatively more dramatic

family specific differences in the way these orders man-
ifest at low temperatures can all be attributed to rela-
tively small differences in the strength of a single term in
the effective field theory.

VII. ADDITIONAL REMARKS

We end with a few remarks about the broader context
and implications of our results:

1) The strong asymmetry between the CDW and SDW
portions of our calculated phase diagrams (Figs. 2 and
3) derives from the different way they couple to disor-
der. Because the SDW is odd under time-reversal, no
random-field-type coupling is allowed, and this would be
true even were we to include the effects of spin-orbit cou-
pling. However, the SDW order is, of course, not imper-
vious to disorder. There is random-Tc (random-mass)
disorder of the form δαs(~r)|S ~K |

2/2, which in the present
context is generated implicitly via the biquadratic cou-
pling to the CDW order, v and v′. However, if weak, such
terms typically do not affect the structure of the phase
diagram significantly,64,65 and indeed, since the Harris
criterion66 is satisfied, do not even affect the critical ex-
ponents (although they can lead to new multifractal cor-
relations associated with rare events). As discussed in
Sec. V, there is also a higher order random field cou-
pling, beff(~r)S∗~K ·S

∗
~K

+ c.c., that is allowed by symmetry;

this term is sensitive to the phase of the SDW order,
and so even when weak, it eliminates long-range SDW
order in D ≤ 4. We will discuss this in more detail in a
forthcoming paper.

2) That there is a single nematic phase follows from
symmetry. Were we to integrate out the primary fields
to derive an effective field theory in terms of nematic
fields, NS and Nρ from Eqs. (4.1) and (4.2), we would
find that there is a symmetry allowed bilinear coupling,
αS−ρ NSNρ. Consequently, when one form of nematic or-
der occurs, the other necessarily occurs as well. However,
other forms of the phase diagram are allowed: Given that
the microscopic character of the spin-driven nematic and
the charge-driven nematic are so different, it would not
be implausible that under some circumstances they could
be separated by a first order transition, terminating in a
critical or a bicritical point (although we have not found
this in the range of parameters explored).

3) Needless to say, the present discussion is based on
rather general considerations, and is readily generalized
to other circumstances. For instance, in the Fe-based su-
perconductors, there is a clearly observed Ising-nematic
phase. However, there is some uncertainty about whether
this should be identified as being a form of vestigial
SDW order67,68 or associated with orbital ordering.69,70

This discussion involves important microscopic consider-
ations, but as the present analysis shows, it is likely that
there is no sharp demarkation between the two behav-
iors. Rather, we would expect as parameters are changed,
there would occur a smooth crossover between an SDW
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dominated, to an orbital ordering dominated nematic
phase without any intervening phase transitions.
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Appendix A: Zero disorder

1. Saddle-point equations

We present the details of the variational approach and saddle-point equations. The trial Hamiltonian Htrial is taken
to be

Htrial ≡
∫
d~r

{
κs‖

2

[
|∂xS ~K |

2 + |∂yS ~K′ |2
]

+
κs⊥

2

[
|∂yS ~K |

2 + |∂xS ~K′ |2
]

+
α̃s
2
|S ~K |

2 +
α̃′s
2
|S ~K′ |2

+
κρ‖

2

[
|∂xρ~Q|

2 + |∂yρ~Q′ |2
]

+
κρ⊥

2

[
|∂yρ~Q|

2 + |∂xρ~Q′ |2
]

+
α̃ρ
2
|ρ~Q|

2 +
α̃′ρ
2
|ρ~Q′ |2

−Jsz
[
S ~K(n) · S∗~K(n+ 1) + S ~K′(n) · S∗~K′(n+ 1) + c.c.

]
− Jρz

[
ρ~Q(n)ρ∗~Q(n+ 1) + ρ~Q′(n)ρ∗~Q′(n+ 1) + c.c.

]}
(A.1)

with variational parameters α̃s, α̃
′
s, α̃ρ, α̃

′
ρ. Minimization of F ′ (Eq. (3.1)) yields the saddle point equations:

α̃s = αs +
us
N

(
1 +

2

N

)
〈|S ~K |

2〉+
(us + γs)

N
〈|S ~K′ |2〉+

v

N
〈|ρ~Q|

2〉+
v′

N
〈|ρ~Q′ |2〉 (A.2)

α̃′s = αs +
us
N

(
1 +

2

N

)
〈|S ~K′ |2〉+

(us + γs)

N
〈|S ~K |

2〉+
v

N
〈|ρ~Q′ |2〉+

v′

N
〈|ρ~Q|

2〉, (A.3)

α̃ρ = αρ +
uρ
N

(
1 +

2

N

)
〈|ρ~Q|

2〉+
(uρ + γρ)

N
〈|ρ~Q′ |2〉+

v

N
〈|S ~K |

2〉+
v′

N
〈|S ~K′ |2〉, (A.4)

α̃′ρ = αρ +
uρ
N

(
1 +

2

N

)
〈|ρ~Q′ |2〉+

(uρ + γρ)

N
〈|ρ~Q|

2〉+
v

N
〈|S ~K′ |2〉+

v′

N
〈|S ~K |

2〉, (A.5)

Here (and throughout the Appendices) we adopt the short-hand notation 〈. . . 〉 ≡ 〈. . . 〉trial. For clarity we have
restored the factor of 1/N before taking the limit of N →∞, and

〈|S ~K |
2〉 =

1

2

∫
d~k

(2π)3

NT
κs‖
2 k2

x + κs⊥
2 k2

y − 2Jsz cos kz + α̃s
2

, (A.6)

〈|S ~K′ |2〉 =
1

2

∫
d~k

(2π)3

NT
κs‖
2 k2

y + κs⊥
2 k2

x − 2Jsz cos kz +
α̃′
s

2

, (A.7)

〈|ρ~Q|
2〉 =

1

2

∫
d~k

(2π)3

NT
κρ‖
2 k2

x +
κρ⊥

2 k2
y − 2Jρz cos kz +

α̃ρ
2

, (A.8)
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〈|ρ~Q′ |2〉 =
1

2

∫
d~k

(2π)3

NT
κρ‖
2 k2

y +
κρ⊥

2 k2
x − 2Jρz cos kz +

α̃′
ρ

2

, (A.9)

where T = 1/β is the temperature. The four variational parameters are solved self-consistently from Eqs. (A.2)
to (A.5).

2. First-order transition and free energy comparison

Saddle-point solutions are not guaranteed to be the minima of the free energy F ′; it is possible that there exist
multiple solutions, one of which is the true solution with lowest free energy. For instance, in the case of a first-
order transition between isotropic and nematic phases (shown in Fig. 3), there are always two solutions (nematic and
isotropic) of the saddle-point equations on both sides of the transition. Tnematic (dashed line in Fig. 3) is where the
two free energies become equal. Below we demonstrate how to evaluate the free energy in general.

According to Eq. (3.1) we will evaluate Ftrial and 〈H−Htrial〉trial separately. Using the choice of Htrial in Eq. (A.1),
we have

Ftrial = − 1

β
ln

{∫
DSDS′DρDρ′ e−βHtrial

}

= − 1

β
ln

{∫
DSDS′DρDρ′ exp

[
− βV

∫
d~k

(2π)3

(
κs‖

2

[
k2
x|S ~K(~k)|2 + k2

y|S ~K′(~k)|2
]

+
κs⊥

2

[
k2
y|S ~K(~k)|2 + k2

x|S ~K′(~k)|2
]

+
κρ‖

2

[
k2
x|ρ~Q(~k)|2 + k2

y|ρ~Q′(~k)|2
]

+
κρ⊥

2

[
k2
y|ρ~Q(~k)|2 + k2

x|ρ~Q′(~k)|2
]

−2Jsz cos kz

[
|S ~K(~k)|2 + |S ~K′(~k)|2

]
− 2Jρz cos kz

[
|ρ~Q(~k)|2 + |ρ~Q′(~k)|2

]
+
α̃s
2
|S ~K(~k)|2 +

α̃′s
2
|S ~K′(~k)|2 +

α̃ρ
2
|ρ~Q(~k)|2 +

α̃′ρ
2
|ρ~Q′(~k)|2

)]}

=
V N

2β

∫
d~k

(2π)3

{
ln
[κs‖

2
k2
x +

κs⊥
2
k2
y − 2Jsz cos kz +

α̃s
2

]
+ ln

[κs‖
2
k2
y +

κs⊥
2
k2
x − 2Jsz cos kz +

α̃′s
2

]
+ ln

[κρ‖
2
k2
x +

κρ⊥
2
k2
y − 2Jρz cos kz +

α̃ρ
2

]
+ ln

[κρ‖
2
k2
y +

κρ⊥
2
k2
x − 2Jρz cos kz +

α̃′ρ
2

]}
(A.10)

where in the last step we have dropped terms that are independent of the four variational parameters α̃s, α̃
′
s, α̃ρ, α̃

′
ρ.

Here S ~K, ~K′(~k) and ρ~Q, ~Q′(~k) are the Fourier components of S ~K, ~K′(~r) and ρ~Q, ~Q′(~r) respectively, DSDS′DρDρ′ are

functional integrals of S ~K ,S ~K′ , ρ~Q, ρ~Q′ , the integrations of kx and ky run from 0 to some cutoff which is taken to be
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2π, and V is the total volume of the system. Next,

〈H −Htrial〉trial

=

∫
DSDS′DρDρ′ e−βHtrial

{∫
d~r

[
αs − α̃s

2
|S ~K |

2 +
αs − α̃′s

2
|S ~K′ |2 +

αρ − α̃ρ
2

|ρ~Q|
2 +

αρ − α̃′ρ
2

|ρ~Q′ |2

+
us
4

[
|S ~K |

2 + |S ~K′ |2
]2

+
γs
2
|S ~K |

2|S ~K′ |2 +
uρ
4

[
|ρ~Q|

2 + |ρ~Q′ |2
]2

+
γρ
2
|ρQ|2|ρ~Q′ |2

+
v

2

[
|S ~K |

2|ρ~Q|
2 + |S ~K′ |2|ρ~Q′ |2

]
+
v′

2

[
|S ~K |

2|ρ~Q′ |2 + |S ~K′ |2|ρ~Q|
2
]]}

=

∫
d~r

{[
αs − α̃s

2
+

us
4N

(
1 +

2

N

)
〈|S ~K |

2〉+
us + γs

4N
〈|S ~K′ |2〉+

v

4N
〈|ρ~Q|

2〉+
v′

4N
〈|ρ~Q′ |2〉

]
〈|S ~K |

2〉

+

[
αs − α̃′s

2
+

us
4N

(
1 +

2

N

)
〈|S ~K′ |2〉+

us + γs
4N

〈|S ~K |
2〉+

v

4N
〈|ρ~Q′ |2〉+

v′

4N
〈|ρ~Q|

2〉

]
〈|S ~K′ |2〉

+

[
αρ − α̃ρ

2
+

uρ
4N

(
1 +

2

N

)
〈|ρ~Q|

2〉+
uρ + γρ

4N
〈|ρ~Q′ |2〉+

v

4N
〈|S ~K |

2〉+
v′

4N
〈|S ~K′ |2〉

]
〈|ρ~Q|

2〉

+

[
αρ − α̃′ρ

2
+

uρ
4N

(
1 +

2

N

)
〈|ρ~Q′ |2〉+

uρ + γρ
4N

〈|ρ~Q|
2〉+

v

4N
〈|S ~K′ |2〉+

v′

4N
〈|S ~K |

2〉

]
〈|ρ~Q′ |2〉

}
(A.11)

where in the last step we have added the appropriate factors of 1/N . We can further simplify the above expression
based on the saddle-point equations (A.2) ∼ (A.5) and arrive at

〈H −Htrial〉trial =

∫
d~r

{
αs − α̃s

4
〈|S ~K |

2〉+
αs − α̃′s

4
〈|S ~K′ |2〉+

αρ − α̃ρ
4

〈|ρ~Q|
2〉+

αρ − α̃′ρ
4

〈|ρ~Q′ |2〉

}
(A.12)

where 〈|S ~K |
2〉 etc. are evaluated via (A.6) ∼ (A.9). (A.10) and (A.12) together allow us to evaluate the free energy

F ′ associated with saddle-point solutions α̃s, α̃
′
s, α̃ρ, α̃

′
ρ.

Appendix B: Finite disorder

Here we present the derivation of saddle-point equations and associated free energy expression in the presence of
finite disorder. Applying replica trick to the original Hamiltonian Eq.(2.3) and integrating out h and h′, we obtain
the replicated Hamiltonian:

H̃ =
M∑
a=1

∫
d~r

{
κs‖

2

[
|∂xS ~K,a|

2 + |∂yS ~K′,a|
2
]

+
κs⊥

2

[
|∂yS ~K,a|

2 + |∂xS ~K′,a|
2
]

+
αs
2

[
|S ~K,a|

2 + |S ~K′,a|
2
]

+
κρ‖

2

[
|∂xρ~Q,a|

2 + |∂yρ~Q′,a|
2
]

+
κρ⊥

2

[
|∂yρ~Q,a|

2 + |∂xρ~Q′,a|
2
]

+
αρ
2

[
|ρ~Q,a|

2 + |ρ~Q′,a|
2
]

−Jsz
[
S ~K,a(n) · S∗~K,a(n+ 1) + S ~K′,a(n) · S∗~K′,a

(n+ 1) + c.c.
]

−Jρz
[
ρ~Q,a(n)ρ∗~Q,a(n+ 1) + ρ~Q′,a(n)ρ∗~Q′,a

(n+ 1) + c.c.
]

+
us
4N

[
|S ~K,a|

2 + |S ~K′,a|
2
]2

+
γs
2N
|S ~K,a|

2|S ~K′,a|
2 +

uρ
4N

[
|ρ~Q,a|

2 + |ρ~Q′,a|
2
]2

+
γρ
2N
|ρ~Q,a|

2|ρ~Q′,a|
2

+
v

2N

[
|ρ~Q,a|

2|S ~K,a|
2 + |ρ~Q′,a|

2|S ~K′,a|
2
]

+
v′

2N

[
|ρ~Q,a|

2|S ~K′,a|
2 + |ρ~Q′,a|

2|S ~K,a|
2
]}

+

M∑
a,b=1

∫
d~r

(
− 2σ2

T

)(
ρ∗~Q,aρ~Q,b + ρ∗~Q′,a

ρ~Q′,b

)
, (B.1)

where the appropriate factors of 1/N have been added, a, b are replica indices, M is the total number of repli-
cas. Similar to the zero-disorder case, we introduce a quadratic trial Hamiltonian with four variational parameters
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α̃s, α̃
′
s, α̃ρ, α̃

′
ρ:

H̃trial ≡
M∑
a=1

∫
d~r

{
κs‖

2

[
|∂xS ~K,a|

2 + |∂yS ~K′,a|
2
]

+
κs⊥

2

[
|∂yS ~K,a|

2 + |∂xS ~K′,a|
2
]

+
α̃s
2
|S ~K,a|

2 +
α̃′s
2
|S ~K′,a|

2

+
κρ‖

2

[
|∂xρ~Q,a|

2 + |∂yρ~Q′,a|
2
]

+
κρ⊥

2

[
|∂yρ~Q,a|

2 + |∂xρ~Q′,a|
2
]

+
α̃ρ
2
|ρ~Q,a|

2 +
α̃′ρ
2
|ρ~Q′,a|

2

−Jsz
[
S ~K,a(n) · S∗~K,a(n+ 1) + S ~K′,a(n) · S∗~K′,a

(n+ 1) + c.c.
]

−Jρz
[
ρ~Q,a(n)ρ∗~Q,a(n+ 1) + ρ~Q′,a(n)ρ∗~Q′,a

(n+ 1) + c.c.
]}

+

M∑
a,b=1

∫
d~r

(
− 2σ2

T

)(
ρ∗~Q,aρ~Q,b + ρ∗~Q′,a

ρ~Q′,b

)
. (B.2)

To minimize the free energy F ′ = Ftrial + 〈H −Htrial〉trial where the overline denotes the disorder configuration

average, one needs to diagonalize H̃ and H̃trial in replica space and taking the limit of M → 0. In the end one finds
that the disorder-averaged saddle-point equations remain formally the same as (A.2) ∼ (A.5), but with 〈. . . 〉 replaced

by 〈. . . 〉. Specifically,

〈|ρ~Q|2〉 =
1

2

∫
d~k

(2π)3

NT
κρ‖
2 k2

x +
κρ⊥

2 k2
y − 2Jρz cos kz +

α̃ρ
2

+

∫
d~k

(2π)3

Nσ2(
κρ‖
2 k2

x +
κρ⊥

2 k2
y − 2Jρz cos kz +

α̃ρ
2

)2 , (B.3)

〈|ρ~Q′ |2〉 =
1

2

∫
d~k

(2π)3

NT
κρ‖
2 k2

y +
κρ⊥

2 k2
x − 2Jρz cos kz +

α̃′
ρ

2

+

∫
d~k

(2π)3

Nσ2(
κρ‖
2 k2

y +
κρ⊥

2 k2
x − 2Jρz cos kz +

α̃′
ρ

2

)2 , (B.4)

meanwhile 〈|S ~K |2〉 and 〈|S ~K′ |2〉 remain the same as 〈|S ~K |
2〉 and 〈|S ~K′ |2〉 shown in Eqs. (A.6) and (A.7). Note that

〈|S ~K |
2〉 and 〈|S ~K′ |2〉 depend on the disorder strength implicitly via α̃s and α̃′s.

In the presence of disorder, the free energy calculation remains similar to the scheme described in Appendix A2,
except for the following differences:

1. Compared to (A.10) there will be two additional terms in Ftrial induced by disorder:

Ftrial =
V N

2β

∫
d~k

(2π)3

{
ln
[κs‖

2
k2
x +

κs⊥
2
k2
y − 2Jsz cos kz +

α̃s
2

]
+ ln

[κs‖
2
k2
y +

κs⊥
2
k2
x − 2Jsz cos kz +

α̃′s
2

]
+ ln

[κρ‖
2
k2
x +

κρ⊥
2
k2
y − 2Jρz cos kz +

α̃ρ
2

]
+ ln

[κρ‖
2
k2
y +

κρ⊥
2
k2
x − 2Jρz cos kz +

α̃′ρ
2

]
− 2σ2β
κρ‖
2 k2

x +
κρ⊥

2 k2
y − 2Jρz cos kz +

α̃ρ
2

− 2σ2β
κρ‖
2 k2

y +
κρ⊥

2 k2
x − 2Jρz cos kz +

α̃′
ρ

2

}
. (B.5)

2. 〈H −Htrial〉trial remains formally the same as (A.12), but with 〈|ρ~Q|
2〉 and 〈|ρ~Q′ |2〉 replaced by their disorder-

averaged values (B.3) and (B.4):

〈H −Htrial〉trial =

∫
d~r

{
αs − α̃s

4
〈|S ~K |2〉+

αs − α̃′s
4

〈|S ~K′ |2〉+
αρ − α̃ρ

4
〈|ρ~Q|2〉+

αρ − α̃′ρ
4

〈|ρ~Q′ |2〉

}
(B.6)

(〈|S ~K |2〉 and 〈|S ~K′ |2〉 remain the same as 〈|S ~K |
2〉 and 〈|S ~K′ |2〉.)
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18 M. Hücker, M. v. Zimmermann, G. D. Gu, Z. J. Xu, J. S.
Wen, G. Xu, H. J. Kang, A. Zheludev, and J. M. Tran-
quada, Phys. Rev. B 83, 104506 (2011).

19 R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. B
73, 180505 (2006).

20 O. Cyr-Choinière, D. LeBoeuf, S. Badoux, S. Dufour-
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