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We study a novel type quantum criticality of the Lifshitz ϕ4-theory below the upper critical
dimension du = z+dc = 8, where the dynamic critical exponent z = 4 and the spatial upper critical
dimension dc = 4. Two fixed points, one Gaussian and the other non-Gaussian, are identified with
zero and finite interaction strengths, respectively. At zero temperature the particle density exhibits
different power-law dependences on the chemical potential in the weak and strong interaction regions.
At finite temperatures, critical behaviors in the quantum disordered region are mainly controlled by
the chemical potential. In contrast, in the quantum critical region critical scalings are determined
by temperature. The scaling ansatz remains valid in the strong interaction limit for the chemical
potential, correlation length, and particle density, while it breaks down in the weak interaction one.
As approaching the upper critical dimension, physical quantities develop logarithmic dependence
on dimensionality in the strong interaction region. These results are applied to spin-orbit coupled
bosonic systems, leading to predictions testable by future experiments.

PACS numbers: 73.43.Nq, 74.40.Kb, 03.75.Mn, 03.75.Nt

I. INTRODUCTION

Quantum phase transitions, uniquely driven by quan-
tum fluctuations, appear when the ground state energy
encounters non-analyticity via tuning a non-thermal pa-
rameter. Physical properties around quantum critical
points (QCPs) are of extensive interests because the in-
terplay between quantum and thermal critical fluctua-
tions strongly influence the dynamical and thermody-
namic quantities, giving rise to rich quantum critical
properties beyond the classical picture1,2. Quantum crit-
ical fluctuations are believed to be responsible for various
emergent phenomena, including the non-Fermi liquid be-
haviors in heavy fermion systems, unconventional super-
conductivity, and novel spin dynamics in one-dimensional
quantum magnets3–6.
The progress of ultra-cold atom physics with the syn-

thetic spin-orbit (SO) coupling has attracted a great deal
of interests7–21. In solid state systems, the SO cou-
pled exciton condensations have also been investigated
in semiconductor quantum wells9,22–24. For bosons un-
der the isotropic Rashba SO coupling, the single-particle
dispersion displays a ring minima in momentum space.
Depending on interaction symmetries, either a striped
Bose-Einstein condensation (BEC), or, a ferromagnetic
condensate with a single plane-wave, develops9,11–13,25,26.
The case of the spin-independent interaction is particu-
larly challenging: The striped states are selected through
the “order-from-disorder” mechanism from the zero-
point energy beyond the Gross-Pitaevskii framework9.
Inside harmonic traps, the skyrmion-type spin textures
appear accompanied by half-quantum vortices9,26, and
the experimental signatures of spin textures have already
been observed23,24.
Compared to the conventional superfluid BEC

phases27–32, the progress of SO coupled bosons paves
down a way to study novel quantum criticality. Con-
sider an interacting Bose gas under the Rashba SO and

Zeeman couplings: When the Zeeman field is tuned to
a “critical” value, the dispersion minimum comes back
to the origin exhibiting a novel q4-dispersion33, which
is referred as the Lifshitz-point in literature34. Quan-
tum wavefunctions at the Lifshitz-point exhibit confor-
mal invariance34–36, which have been applied to describe
the Rokhsar-Kivelson point37 of the quantum dimer
model and quantum 8-vertex model. For the SO coupled
bosons, by employing an effective non-linear σ-model
method, it is argued that at the Lifshitz point, a quasi-
long-range ordered ground state instead of a true BEC
develops due to the divergent phase fluctuations.33.

The SO coupled bosons are not the only system to
realize the Lifshitz dispersion. It has an intrinsic connec-
tion to a seemingly unrelated field of quantum frustrated
magnets. Suppose a spin- 12 antiferromagnetic Heisen-
berg model defined in the square lattice with the nearest-
neighbor coupling J1 and the next-nearest-neighbor cou-
pling J2. It can be mapped to a hard-core boson model,
and the Lifshitz dispersion appears at J2 = J1/2. These
bosonic systems are fundamentally different from the reg-
ular ones with the quadratic dispersion: They are be-
yond the paradigm of the “no-node” theorem, or, Perron-
Frobenius theorem38,39, or, the Marshall-sign rule in the
context of quantum antiferromagnetism40.

In this article, we investigate the quantum complex ϕ4-
theory with the Lifshitz dispersion, focusing on its novel
quantum criticality. Different from the usual case with
the qudartic dispersion, the dynamic critical exponent
z = 4 and the upper critical dimension du = 8, and thus
the spatial upper critical dimesion dc = 4. Below the up-
per critical dimension, there exist two fixed points (FPs)
– an unstable Gaussian FP and a non-Gaussian one with
a finite interaction strength. Quantum critical behaviors
at both zero and finite temperatures around these two
FPs are investigated. At zero temperature the particle
density shows power-law dependence on the chemical po-
tential with different exponents in the weak and strong
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interaction regions. At finite temperatures, according to
whether the chemical potential or temperature controls
the critical scalings, the disordered phase falls into the
quantum disordered or quantum critical regions, respec-
tively. In the quantum disordered region the power-law
dependence of the chemical potential dominates the crit-
ical behaviors, and thermal fluctuations generate expo-
nentially small corrections. While in the quantum crit-
ical region, physical quantities, including the chemical
potential, correlation length, and particle density, ex-
hibit power-law dependence on temperature. The scaling
ansatz2 breaks down in the weak interaction limit but
is sustained in the strong interaction one. Logarithmic
critical behaviors appear in both regions when the sys-
tem is near the upper critical dimension. The connection
of these results to the two-dimensional (2D) SO coupled
bosonic systems is discussed.

II. QUANTUM LIFSHITZ ϕ4-MODEL

We construct the d-dimensional Euclidean quantum
Lifshitz ϕ4-action as

S0 = T
∑

ωn

∫ Λ

0

ddqϕ∗(−iωn − µ+ q4)ϕ,

SI =
u

2

∫ β

0

dτ

∫ ∞

1/Λ

ddx |ϕ(x, τ)|4, (1)

where d is the spatial dimension; Λ is the ultra-violet
(UV) momentum cut off; µ and u denote the chemical
potential and interaction strength, respectively; τ is the
imaginary time and β = 1/T ; ωn = 2nπT is the Matsub-
ara frequency; ϕ(x, τ) is a complex bosonic field. Due
to the q4-dispersion, the effective dimension deff = d+ z
with z = 4. The classical dimensions of T and µ are Λ4,
and that of u is Λε where ε = 8 − deff = 4 − d. Hence
the upper critical dimension du = 8, and the correspond-
ing spatial one dc = 4. In the following, we rescale T, µ
and u by their classical dimensions to be dimensionless.
For quantities of the correlation length, particles density,
ground state energy that will be studied below, they are
also rescaled by Λ−1, Λd, and Λ4 to be dimensionless,
respectively.
The zero temperature renormalization group (RG)

equations are derived following the momentum-shell
Wilsonian method as presented in the Appendix A.
Two fixed points (FPs) are identified as a Gaussian FP
(µ∗

1, u
∗
1) = (0, 0) and a non-Gaussian one (µ∗

2, u
∗
2) =

(0, 2ε/Kd) appearing at d < dc. The RG equations are
integrated as,

µl = e4lµ, ul = eεlu/Cd(µ, u, l), (2)

Cd(µ, u, l) = 1− u

8
Kd[Φ(µ, 1, ε/4)− eεlΦ(µl, 1, ε/4)],

with l being the RG scale parameter. Here, µl=0 = µ,
ul=0 = u, Kd = 2−d+1π−d/2/Γ(d2 ) with Γ(z) being the

FIG. 1: Diagram of the zero temperature RG flows. The red
and black dots mark the two FPs. Quantum phase transi-
tions occur when µ changes sign: The disordered and ordered
phases lie at µ < 0 and µ > 0, respectively. For µ > 0, sym-
bols I and II denote the weak and strong interaction regions,
respectively. The dashed line at µ > 0 marks the crossover
between these two regions.

Gamma function, and Φ(µ, s, ε4 ) ≡
∞
∑

k=0

µk(k + ε
4 )

−s the

Hurwitz Lerch transcendent. Φ(µ, s, ε4 ) has a branch cut
running from (+1,+∞) in the complex µ-plane. Since
|µl| < 1 is maintained throughout the RG process, ul re-
mains analytic as a function of µ. Furthermore, in the
complex ε-plane, Φ has a branch cut from (−∞, 0), there-
fore, ε can be analytically extended to a finite positive
value.
The Gaussian FP is unstable at ε > 0. Close to this

FP, the correlation length diverges as ξ(T = 0, µ) ≈ |µ|−ν

with the critical exponent ν = 1/4 rather than 1/2 as
a consequence of the Lifshitz dispersion. At the non-
Gaussian FP, ν = 1/4 remains at the one-loop level since
the interaction does not renormalize the chemical po-
tential at zero temperature, which is different from the
Wilson-Fisher FP of the classic phase transition.

u ul∗0
n eg

I u ≪ 2ε
Kd

(

µ
α

)ε/4
u
(

α
µ

)ε/4

µ/u µ/2

II u ≫ 2ε
Kd

(

µ
α

)ε/4
2ε/Kd

Kdα
ε/4

2ε
µd/4 µd

4+d

TABLE I: Critical properties in the weak and strong inter-
action regions. µ is close to the phase boundary marked by
µ = 0. eg = 1

n

∫

µdn gives the ground state energy density.

We consider the critical behaviors at zero tempera-
ture. The RG flows based on Eq. (2) are presented in
Fig. 1. The run-away flows indicate two stable phases:
one disordered at µ < 0 and the other ordered at µ > 0.
The disordered phase shows vanishing particle density
at the one-loop level, nevertheless, small but finite par-
ticle density could develop beyond one-loop at u > 0.
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The two FPs obtained above lie on the phase bound-
ary of µ = 0. To study the critical physics at µ > 0,
a stop scale l∗0 is introduced at which µl∗0

= α ≪ 1. α
is a non-universal parameter to control the RG flow re-
maining in the crossover from the critical to non-critical
regions32. According to different behaviors of the inter-
action strength ul∗0 , we define the weak and strong inter-

action regions via ul∗0 ≈ u(αµ )
ε
4 , or, u∗2, respectively. Cor-

respondingly, the crossover between these two regions is
approximately marked by the line of u ≈ 2ε

Kd
(µα )

ε
4 . The

critical behaviors of the particle density n and the ground
state energy density eg as well as ul∗0 in these two regions
are summarized in Table I [details in Appendix A].
The finite-temperature RG equations are presented in

Appendix B. We focus on two parts of the disordered re-
gion close to the QCPs: The quantum disordered region
with negative and large chemical potential, i.e., µ < 0
and |µ| ≫ T , and the quantum critical region with small
chemical potential |µ| ≪ T . Since the RG process ceases
to work at µl∗ = −1, a stop scale l∗ is accordingly de-
fined at which the coarse-graining length scale reaches
the correlation length ξ(T, µ).
In the quantum disordered region, the running tem-

perature remains low at the stop scale l∗, i.e., Tl∗ ≪ 1.
Similar to the zero temperature case, two different limits
of the running interaction strength are introduced, cor-
responding to the weak and strong interaction regions
set by ul∗ ≈ uµ− ε

4 and u∗2, respectively. As shown in
Appendix C, the correlation length is calculated as

ξ(T, µ) ≈ |µ|−1/4

[

1− c(T, u)
T

|µ|e
−2 |µ|

T

]

, (3)

where c(T, u) = 1
8uKdT

− ε
4 and ǫ/4 for the weak and

strong interaction regions, respectively. The finite tem-
perature corrections are exponentially small.
Next consider the quantum critical region (QCR)

where T ≫ |µ|. Then at the stop scale l∗ with µl∗ = −1,
Tl∗ ≫ 1, indicating that the system flows into the high-
temperature region. For simplicity, we set µ = 0 (QCP)
since in this region the correction to thermodynamic
quantities from a finite µ is sub-leading. The correlation
length, and particle density are denoted as ξT and nT ,
respectively. Similarly, based on the interaction strength
ul∗ the critical behaviors at finite temperatures also fall
into weak and strong interaction regions characterized

by ul∗ ≈ u [ε/(2KduT )]
ε/4

1+ε/4 and u∗2, respectively. The
crossover line qualitatively follows u ∼ εT ε/4.

III. WEAK INTERACTION REGION IN THE

QCR

In this region, under the condition ln[1/(uT )] & 1/ε,
ξT and nT are derived in Appendixes (D,E) as

ξT ≈
[

ε

2KduT

]
1

4+ε

, nT ≈ ad

[

ε

2Kdu

]

ε/4
1+ε/4

T
1

1+ε/4 , (4)

where ad = 1
8Kd[ψ((4 + d)/8) − ψ(d/8)] with ψ(z) =

d ln Γ(z)/dz being the digamma function. In this case,
even though the interaction is relevant, ul∗ remains small,
leaving a weak interaction window to justify the RG cal-
culation. The weak interaction results in Eq. (4) can
also be obtained following the one-loop self-consistent
method, whose details are presented in Appendix D.
The scaling ansatz is believed to be valid for the system

below the upper critical dimension2. In our case, it dic-
tates that the critical behavior of the correlation length in
the QCR can be cast into the form, ξT ∝ T−1/4g(|µ|/T ),
where g(x) is a universal scaling function2,32. Then in
the QCR, by setting µ = 0, the scaling ansatz pre-
dicts ξT ∼ T−1/4. Nevertheless, Eq. (4) yields a novel
thermal exponent for the temperature dependence of ξT
as νT = 1/(4 + ε) beyond the scaling ansatz. In con-
trast, typically scaling-ansatz-breakdown behaviors are
observed in systems equal to or above the upper critical
dimension41,42.
When approaching the upper critical dimension dc,

such that Γ(d/4,1)
T ε/4 ≪ ln

(

2
KduT

)

≪ 4
ε , the critical scal-

ings are obtained in Appendix D as

ξT ≈
(

KduT

2
ln

2

KduT

)− 1
4

, (5)

nT ≈ adT

(

KduT

2
ln

2

KduT

)− ε
4

, (6)

which exhibit the expected non-universal logarithmic be-
haviors.
Based on Eqs. (4,5,6), the limits of u→ 0 and ε→ 0 of

ξT and nT do not commute, reflecting the singular nature
of the QCP. At finite temperatures ξT and nT diverge
as u → 0 at µ = 0 (QCP), which signals the strong
instability around the unstable Gaussian FP. Thermal
fluctuations are enhanced by the Lifshitz dispersion near
the QCP due to the divergence of single-particle density
of states. Both divergences are cut off when the system
has a finite µ and/or a finite interaction strength.

IV. STRONG INTERACTION LIMIT IN THE

QCR

In this limit, u≫ 2ε/Kd, ξT and nT exhibit power-law
scalings as [Appendix E],

ξT ≈ G
−1/4
d T−1/4, nT ≈ adG

−1
d T d/4, (7)

where Gd = ε{A+ln[(1+Aε)/(Aε)]} and A ≈ 0.46. It in-
dicates universal scaling behaviors near the non-Gaussian
FP, obeying the scaling ansatz2. Interestingly, at ε≪ 1,
Eq. (7) shows a non-analytic logarithmic dependence on
ε as

ξT ≈ T− 1
4 [ε ln(1/ε)]−

1
4 , nT ≈ adT

d
4 [ε ln(1/ε)]−

ε
4 . (8)

The above discussion for finite ε in the QCR is sum-
marized in Fig. 2. The effective interaction strength is
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ξ

ξ

-1/4 -1/4

FIG. 2: A sketchy illustration for the quantum critical behav-
iors in the QCR at µ = 0 with a finite ε. The blue dot-dashed
line shows the crossover between the weak and strong inter-
action regions.

actually temperature-dependent. Increasing temperature
enhances thermal fluctuations, which subdues quantum
fluctuations generated from the interaction. In contrast,
when decreasing temperatures, the system gradually en-
ters a strong interaction region as long as u > 0.

V. LIFSHITZ BOSE GAS FROM SO COUPLING

We apply the above general analysis to the 2D bo-
son system with the Lifshitz dispersion – the SO coupled
bosons under the Zeeman field. As shown in Appendix F,
tuning the Zeeman field and SO coupling strength λ
can convert the single-particle dispersion into the form,

εq = −µ + q4

4λ2 . λ can be used to re-scale all quantities

in the system by ϕ(ωn, ~q)/(4λ
2) → ϕ(ωn, ~q), 4λ2µ →

µ, 4λ2T → T, 4λ2u → u, ~q → ~q. Accordingly the low-
energy physics is effectively described by the quantum
Lifshitz action Eq. (1) at d = 2.

u ul∗ n eg

I u ≪ 8π
√

µ
α

u
√

α
µ

µ/u µ/2

II u ≫ 8π
√

µ
α

8π 1

8π

√
αµ µ/3

TABLE II: The zero temperature critical properties of the 2D
SO coupled bosons with the Lifshitz dispersion. µ is close to
the phase boundary.

At zero temperature, we focus on the region at µ > 0.
According to the previous analysis, when µ is close to
the phase boundary, the crossover between the weak
and strong interaction regions is characterized by u ≈
8π

(

µ
α

)1/2
. The critical behaviors are summarized in Ta-

ble. II. In the weak interaction region, µ = un follow-
ing the mean-field result, and in the strong interaction
regime, n ∝ √

µ. In comparison, for the 2D bosons with

the q2-dispersion32, n ≈ µ
8π ln α

µ at µ ≪ Λ2. The rela-

tion of n ∝ √
µ is similar to that of 1D bosons with the

q2-dispersion in the low density regime32,43,44. Such sys-

tems are well-known to be renormalized into the strong
interaction region, nearly fermionized. This relation is
also similar to a free 2D Fermi gas with the same q4-
dispersion, whose single-particle density of states also ex-
hibits the 1D-like feature as ρ(ε) ∝ ε−

1
2 . Thus the dom-

inant critical physics carries certain features of fermions.
Similar fermionization behaviors in the strongly interact-
ing boson systems have also been studied in the SO cou-
pled BEC systems whose energy minima lies in a ring in
momentum space45, and also in the region of resonance
scattering46,47.
Similar analysis can also be applied to the ground state

energy density eg. When u is sufficiently small, eg ≈
µ/2 ≈ nu/2 coincides with the leading order result of
the usual weak-interacting dilute Bose gas with the q2-
dispersion31. However, in the strong interaction region,
eg ≈ µ/3 ≈ (8πn)2/(3α), which is very different from
4πn/[ln 1/(4πn)] for the case of the q2-dispersion.
At finite temperatures, we focus on µ = 0 in the QCR

of the 2D boson system. The crossover between the weak
and strong interaction regions now becomes u ≈ 2T 1/2.
In the weak interaction region,

ξT ∼ (uT )−
1
6 , nT ∼ u−

1
3T

2
3 , (9)

showing the divergences of ξT and nT as u→ 0. In cold
atom experiments, interactions are typically weak in the
absence of Feshbach resonances, therefore, the thermal
exponent νT = 1/6 could be measurable. Furthermore,
these scaling relations deviate from the double logarith-
mic behaviors of 2D boson gases with the q2-dispersion32.
In contrast, in the strong interaction region,

ξT ∼ T−1
4 , nT ∼ T

1
2 . (10)

ξT is nearly determined by thermal fluctuations indepen-
dent on the interaction strength. It can be understood
as a decoherent effect from the strong inter-particle scat-
tering.

VI. DISCUSSION AND CONCLUSIONS

We have studied the quantum critical properties of
a complex ϕ4-model with the Lifshitz dispersion, which
gives rise to novel type quantum critical phase transitions
with the dynamic critical exponent z = 4. At zero tem-
perature, the particle density depends on the chemical

potential as n ∝ µ and µ
d
4 in the weak and strong interac-

tion regions controlled by the Gaussian and non-Gaussian
FPs, respectively. At finite temperatures, the correlation
length in the quantum disordered region scales as |µ|− 1

4

in both weak and strong interaction limits, while the fi-
nite temperature corrections are exponentially small. In
the quantum critical region, the temperature dependence

of the correlation length scales as ξT ∝ T− 1
4+ε and T− 1

4

in the weak and strong interaction regions, respectively.
The critical behaviors in the weak interaction region are
beyond the scaling ansatz while it is maintained in the
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strong interaction region. In both interaction limits, log-
arithmic behaviors appear when the system is close to the
upper critical dimension. The above studies based on the
field-theoretical method are general, which are applied to
the 2D interacting SO coupled bosonic system with the
Lifshitz dispersion. Their critical behaviors are testable
by future experiments.
An interesting point is whether bosons with the Lif-

shitz dispersion can support superfluidity. Under the
mean-field theory, the Bogoliubov phonon spectrum,
εq =

√

q4(q4 + nu/2), scales as q2 in the long wavelength
limit. It implies the vanishing of the critical velocity, and
thus the absence of the superfluidity. In 2D, even in the
ground state, the quantum depletion of the condensate
diverges signaling the possible absence of BEC even at
zero temperature33. Nevertheless, the pairing order pa-
rameter of bosons could be non-vanishing. The results
obtained in33 are based on the non-linear σ model with a
finite condensate fraction. Thus they can not be simply
extended to the region near the QCP where the conden-
sate part is vanishingly small. Therefore, the obtained re-
sults in33 are complementary to our general ε-expansion
RG analysis near the QCP. Based on our analysis, it is
possible that bosons at the Lifshitz-point do not exhibit
superfluidity even in the ground state with interactions,
which will be deferred for a future study.

ACKNOWLEDGEMENTS

We thank L. Balents for helpful discussions. J. W and
C. W. are supported by the NSF DMR-1410375, AFOSR
FA9550-14-1-0168. F. Z. is supported by the NSERC,
Canada through Discovery grant No. 288179 and Cana-
dian Institute for Advanced Research. J. W. acknowl-
edges the hospitality of Rice Center for Quantum Mate-
rials (RCQM) where part of this work was done.

Appendix A: Zero temperature critical behaviors of

the quantum ϕ4 model with the Lifshitz dispersion

We start with Eq. (1) in the main text. Following
the main text, the same rescaled dimensionless physical
variables are used. The one-loop RG equations at zero
temperature for d = 4− ε are derived as,

dµl

dl
= 4µl,

dul
dl

= εul −
u2l
2

Kd

1− µl
, (A1)

where µl=0 = µ and ul=0 = u are the initial chemical
potential and interaction strength, respectively. In addi-
tion, Kd = 2−d+1π−d/2/Γ(d2 ) with Γ(z) being the gamma
function. Eq. (A1) exhibits a Gaussian and a non-
Gaussian fixed points located at (0, 0), and (0, 2ε/Kd),
respectively, as shown in the main text.
When µ = 0, the stop scale is infinite, i.e., l∗ → ∞.

For a finite ε = 4 − d > 0, the interaction u is relevant.

Following Eq. (2) in the main text, ul→∞ = 2ε/Kd ≡ u∗2,
indicating flowing towards the non-Gaussian fixed point.
Now consider µ > 0 but close to the FPs. At the

stop scale l∗0 , µl∗0
= µe4l

∗
0 = α ≪ 1, which yields el

∗
0 =

(α/µ)1/4. By integrating Eq. (A1) for the interaction
strength, we arrive at

ul∗0 ≈ ueεl
∗
0

1 +Kdueεl
∗
0/(2ε)

≈
{

u(αµ )
ε
4 , u≪ uc,

2ε/Kd, u≫ uc,
(A2)

where uc =
2ε
Kd

(µα )
ε
4 .

At zero temperature, the particle density is defined as

n = 〈GS|ϕ∗(x)ϕ(x)|GS〉 , (A3)

where 〈GS|· · ·|GS〉 denotes the ground state expectation
value. The RG equation for n simply follows as

dnl

dl
= dnl, (A4)

with nl=0 = n being the initial particle density, which
yields nl∗0

= edl
∗

n.
At the stop scale l∗0, the RG solution flows to the or-

dered phase, in which the mean-field approximation32,48

applies,

µl∗ = nl∗ul∗ . (A5)

Based on Eq. (A2), nl∗0
= edl

∗

n, and µl∗ = e4l
∗

µ, we
obtain

µ =

(

α

µ

)(d−4)/4
nu(α/µ)ε/4

1 + (α/µ)ε/4Kdu/(2ε)
(A6)

=
nu

1 + (α/µ)ε/4Kdu/(2ε)
. (A7)

Consequently, the particle-density n is solved as

n ≈
{

µ/u, u≪ uc,
Kdα

ε/4

2ε µd/4, u≫ uc.
(A8)

The average ground state energies in the weak and strong
interaction regions are expressed as

eg = EG/N = (1/n)

∫

µdn ≈
{

µ/2, u≪ uc,
µd
4+d , u≫ uc.

(A9)

Appendix B: RG equations at finite temperatures

At finite temperatures, the RG equations are derived
as

dTl
dl

= 4Tl, (B1)

dµl

dl
= 4µl −

2Kdul
e(1−µl)/Tl − 1

, (B2)

dul
dl

= εul −Kdu
2
l







coth
[

1−µl

2Tl

]

2(1− µl)
+

csch
[

1−µl

2Tl

]

Tl







, (B3)
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where Tl=0 = T , µl=0 = µ, and ul=0 = u are the
initial temperature, chemical potential, and interaction

strength, respectively.
The RG Eqs. (B2,B3) can be formally solved as

Tl = e4lT, (B4)

µl = e4l

{

µ− 2Kd

∫ l

0

e−4l′ul′dl
′

exp [(1− µl′)/Tl′ ]− 1

}

≡ e4lµ(u, T, l), (B5)

ul = eεl

{

u−Kd

∫ l

0

e−εl′u2l′

[

coth ((1− µl′)/(2Tl′))

2(1− µl′)
+

1

Tl′
csch2

(

1− µl′

2Tl′

)]

}

≡ eεlu(µ, T, l), (B6)

where

µ(u, T, l) = µ− 2Kd

∫ l

0

e−4l′ul′dl
′

exp [(1 − µl′)/Tl′ ]− 1
, (B7)

u(µ, T, l) = u−Kd

∫ l

0

e−εl′u2l′

[

coth ((1− µl′)/(2Tl′))

2(1− µl′)
+

1

Tl′
csch2

(

1− µl′

2Tl′

)]

, (B8)

correspond to the renormalized chemical potential and
interaction strength at the scale l, respectively. These
equations are the staring point to analyze the critical
behaviors in the quantum disordered and critical regions
introduced in the main text.

Appendix C: Critical behaviors in the quantum

disordered region

In the quantum disordered region, |µ| ≫ T and µ < 0,
then Tl∗ ≪ 1 at µl∗ = −1, which means the running tem-
perature remains small at the stop scale. Consequently,
the running interaction strength is well approximated by
its zero-temperature form,

ul ≈
ueεl

1 +Kdueεl/(2ε)
. (C1)

In the weak interaction limit, namely, u ≪ 2ε
Kd
e−εl∗ , the

chemical potential in Eq. (B7) is solved as,

µ(u, T, l) ≈ µ− uKd

2
e−|µ|/TT 1−ε/4T

ε/4
l e−T−1

l . (C2)

From µl∗ = e4l
∗

µ(u, T, l) = −1, the correlation length
can be determined as,

ξT = el
∗ ≈

{

|µ|+ TW

(

uKd

2T ε/4e2|µ|/T

)}− 1
4

≈ |µ|−
1
4

(

1− 1

4

uKdT
1−ε/4

2 |µ| e−2|µ|/T

)

, (C3)

where W (z) is the Lambert function — the solution of
z = WeW . From Eq. (C3), the weak-interaction condi-
tion can be cast into

u =
2ε

Kd
e−εl∗ =

2ε

Kd
µε/4, (C4)

i.e., ul∗ = uµ−ε/4 ≪ 2ε/Kd = u∗2. Plugging Eq. (C3) into
Eq. (C2), the renormalized chemical potential follows,

µ(u, T, l∗) ≈ − |µ| − uKd

2
T 1−ε/4e−2|µ|/T (C5)

In the strong interaction limit, namely, u ≫ 2ε/Kd =
u∗2. The chemical potential in Eq. (B7) can be calculated
as

µ(u, T, l) ≈ µ− εT e−|µ|/T e−T−1
l . (C6)

Again from µl∗ = e4l
∗

µ(u, T, l) = −1, we determine the
correlation length as

ξT = el
∗ ≈

{

|µ|+ TW
(

εe−2|µ|/T
)}− 1

4

≈ |µ|−
1
4

(

1− 1

4

εT

|µ|e
−2|µ|/T

)

. (C7)

Then the renormalized chemical potential in the strong
interaction region follows,

µ(u, T, l∗) ≈ − |µ| − εT e−2|µ|/T . (C8)

Based on Eqs. (C3,C5,C7,C8) in the quantum disordered
region, thermal fluctuations only give exponentially small
corrections in both weak and strong interaction regions.

Appendix D: Weak interaction limit in the QCR

In the QCR with |µ| ≪ T , the running temperature
flows into the high-temperature region Tl∗ ≫ 1 at the
stop scale with µl∗ = −1. The renormalized chemical
potential (Eq. (B7)) becomes
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µ(u, T, l) ≈ µ− uKdΓ(d/4, 1)

2
T d/4 − 2uKdT

eεl − T−ε/4

ε
+O(u2) (D1)

with Γ(x, z) =
∫∞

z tx−1e−tdt being the incomplete
gamma function. Assuming ε is small enough such
that εl ≪ 1, then the third term of Eq. (D1) becomes
2uKdT

[

l − ln 1
T 1/4

]

. In this limit there are many differ-
ent analytic regions for the correlation length and chemi-
cal potential. For simplicity, we focus on the region where

l ≫ ln
1

T 1/4
, (D2)

then the chemical potential in Eq. (D1) becomes

µ(u, T, l) ≈ µ− uKdΓ(d/4, 1)

2
T d/4 − 2KduT l+O(u2).

(D3)
Furthermore, the third term of Eq. (D3) is asked to dom-
inate over the second one, which gives rise to

4uKdT l

uKdΓ(d/4, 1)T d/4
=

4T ε/4l

Γ(d/4, 1)
≫ 1. (D4)

Under the above conditions, Eq. (D1) becomes,

µ(u, T, l) ≈ µ− 2uKdT l. (D5)

At the stop scale l∗, µl∗ = e4l
∗

µ(u, T, l∗) = −1, which
gives rise to

2uKdT l
∗e4l

∗

= 1 ⇒ l∗ ≈ 1

4
ln

2

KduT
. (D6)

Eq. (D6) automatically satisfies the condition Eq. (D2)

since ln
(

2
Kdu

)1/4

≫ 1. Furthermore, the conditions of

εl∗ ≪ 1 and Eq. (D4) lead to the condition for the inter-
action strength,

Γ(d/4, 1)

T ε/4
≪ ln

(

2

KduT

)

≪ 4

ε
(D7)

which always holds once ε→ 0+ and T 6= 0.
Therefore, at finite temperatures as long as ε is

small enough, the obtained stop scale in Eq. (D6) self-
consistently satisfies all conditions for the analytic region
we study. From Eqs. (D5,D6), the renormalized chemical
potential follows,

µ(u, T, l∗) ≈ µ− KduT

2
ln

(

2

KduT

)

. (D8)

Then at µ = 0, the correlation length becomes,

ξT ≈
[

KduT

2
ln

(

2

KduT

)]−1/4

. (D9)

When ε & ln−1[1/(uT )], the renormalized chemical po-
tential from Eq. (D1) becomes

µ(u, T, l) ≈ µ− uKdΓ(d/4, 1)

2
T d/4 − 2Kdu

Teεl

ε

+ O(u2). (D10)

We consider the region that the third term in Eq. (D10)
dominates over the second one, which gives rise to the
condition for the weak-interacting limit,

2KduTe
εl/ε

uKdΓ(d/4, 1)T d/4/2
≫ 1. (D11)

At the stop scale l∗, µl∗ = e4l
∗

µ(u, T, l) = −1, then the
correlation length is determined as,

ξT = el
∗ ≈

(

ε

2Kd

)
1

4+ε

(uT )−
1

4+ε . (D12)

Correspondingly, the renormalized chemical potential in
Eq. (D10) follows as

µ(u, T, l∗) ≈ µ−
(

ε

2Kd

)− 4
4+ε

(uT )
4

4+ε . (D13)

Eqs. (D11,D12) lead to the condition for the weak-
interaction limit,

a1u
4
ε ≪ T ≪ 1 (D14)

where

a1 =

[

ε

2Kd

]− 4
ε
[

4

εΓ(d/4, 1)

]− ε2

4(4+ε)

. (D15)

The weak interaction condition in Eq. (D14) can be re-
formulated as,

u≪ ε

2Kd

(

4

εΓ(d/4, 1)

)
ε3

16(4+ε)

T ε/4 ≈ ε

2Kd
T ε/4, (D16)

where, except the constant factor 1
2Kd

, the right hand

side of Eq. (D16) is just the crossover interaction strength
dividing the strong and weak interaction regions at finite
temperatures, as silhouetted in Fig. 2 in the main text.
The above weak-interaction results can also be

obtained following the one-loop self-consistent (SC)
method. Set µ = 0 (QCP), then the one-loop SC equa-
tion for the self-energy µsc

T (≪ T ) follows,

|µsc
T | ∼ u

∫ ∞

0

qd−1dq

e(q
4+|µsc

T |)/T − 1
≈ uT

ε |µsc
T |ε/4

, (D17)
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which gives rise to µsc
T ∼ − (uT/ε)

1
1+ε/4 . Consequently,

ξscT ∼ (uT/ε)−
1

4+ε with the same thermal exponent as
that for ξT in Eq. (D12). Furthermore, nsc

T becomes,

nsc
T ∼

∫ ∞

0

E−ε/4dE

e(E+|µsc
T |)/T − 1

≈
( ε

u

)

ε/4
1+ε/4

T
1

1+ε/4 ,(D18)

which agrees with nT in Eq. (3) in the main text up to a
constant prefactor.

Appendix E: Strong interaction limit in the QCR

In the strong interaction region, 2ε/(uKd) ≪ 1, i.e.,
u ≫ 2ε/Kd. When reaching the stop scale l∗, we deter-
mine the renormalized chemical potential (Eq. (B7)) as
follows,

µ(u, T, l) ≈ µ−AεT − εT ln

[

e4lT (1 +Aε)

1 +Aεe4lT

]

+ O(ε2), (E1)

with A = ln[e/(e− 1)] ≈ 0.46. Therefore at ε≪ 1, since
Tl = Te4l ≫ 1 in the QCR, the third term in Eq. (E1)
dominates over the second term. In this case, at µ = 0,
µl∗ = e4l

∗

µ(u, T, l) = −1 leads to

εT e4l
∗

ln

[

e4l
∗

T (1 +Aε)

1 +Aεe4l∗T

]

= 1, (E2)

which is solved as

Te4l
∗

= − 1

ε (A−W [eA(A+ (1/ε))])
. (E3)

Expanding the Lambert function as

W [eA(A+ (1/ε))] = ln
eA

ε
− ln ln

eA

ε
+

ln ln eA

ε

ln eA

ε

− ln ln eA

ε − 1
2 ln

2 ln eA

ε

ln2 eA

ε

+O(ε) ≈ A− ln ε, (E4)

we arrive at

Te4l
∗

= − 1

ε (A−W [eA(A+ (1/ε))])
≈ 1

ε ln(1/ε)
⇒ ξT = el

∗ ≈ [εT ln(1/ε)]
−1/4

. (E5)

Therefore at ε≪ 1,

µ(u, T, l∗) ≈ µ− εT [ln (1/ε) + ln ln (1/ε)] ≈ µ− εT ln (1/ε) = µ+ εT ln ε when ε≪ 1. (E6)

At finite ε, the third term in Eq. (E1) is comparable with the second one, then

µ(u, T, l∗) = µ−AεT − εT ln

[

1 +Aε
1

e4lT +Aε

]

≈ µ−AεT − εT ln

[

1 +Aε

Aε

]

= µ−GdT, (E7)

where Gd = ε {A+ ln [(1 +Aε)/(Aε)]}. From the stop-
scale condition µ∗

l = −1, we reach (µ = 0)

ξT = el
∗ ≈ G

−1/4
d T−1/4. (E8)

The particle density in the QCR at the stop scale l∗

can be derived as

nT = Kde
−dl∗

∫ 1

0

qd−1dq

e(q4+1)/Tl∗ − 1

≈ KdTl∗e
−dl∗

∫ 1

0

qd−1dq

q4 + 1
= adTe

εl∗ , (E9)

where el
∗

= |µ(u, T, l∗)|−1/4 and

ad =
Kd

8

[

ψ

(

4 + d

8

)

− ψ

(

d

8

)]

(E10)

with ψ(z) = d ln Γ(z)/dz and Γ(z) are digamma and
gamma functions, respectively. Since in the quantum dis-
ordered region ξT = el

∗

is finite, thus Eq. (E9) indicates
the particle density vanishes at zero temperature. Nev-
ertheless, a small particle density could appear when RG
calculation is carried out beyond one loop. Plugging the
correlation lengths of Eqs. (D9,D12,E8) into Eq. (E9),
particle densities in the QCR under different situations
are derived as presented in Eqs. (3,5,6) in the main text.
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Appendix F: Derivation of Lifshitz-type Action from

the 2D Bose gas

We consider the following Hamiltonian H = H0 +HI

defined as

H0 =

∫

d2~q ψ†
α(~q)hαβ(~q)ψβ(~q), (F1)

HI =
u

2

∫

d2~r ψ†
α(~r)ψ

†
β(~r)ψβ(~r)ψα(~r), (F2)

where ~q = (qx, qy) and h(~q) = −µ + 1
2m [q2x + q2y −

2λ(σxqx + σyqy) + 2λΩσz ]. In Eqs. (F1,F2), ψα is the
bosonic annihilation operator; the pseudospin indices
α, β =↑, ↓ refer to two different internal components;
σµ’s are the Pauli matrices associated with the spin com-
ponents Sµ = 1

2σ
µ (µ = x, y, z); λ and λΩ, reduced

by 2m, are the isotropic Rashba SO strength and Zee-
man coupling, respectively; u is the s-wave scattering
interaction. Eqs. (F1,F2) describe a two-dimensional in-
teracting Bose gas with an isotropic Rashba spin-orbit
coupling under a Zeeman field. The quadratic part,
H0, yields the single-particle spectra of two branches as

εq± = −µ+ (q2 ± 2λ
√

Ω2 + q2)/(2m) with q = |~q|.
We work in the regime of a large Zeeman splitting field

and large Rashba SO coupling strength, therefore, for the
low energy physics, only the lower branch of εq− is con-
sidered. The global minimum of εq− is either located at

q = 0 if λ < Ω, or, at q =
√
λ2 − Ω2 if λ ≥ Ω. At λ = Ω,

the two minima merge into one with a quartic low-energy
dispersion as εq− = −µ + q4/(8mλ2) (the minimum en-
ergy reference point −λ2/m is shifted to zero), where
large λ implies that the band given by εq− is almost flat.
An effective action for the low-energy bosons is con-

structed as follows. The Rashba SO coupling is assumed
strong enough such that only the lower branch bosons
needs to be considered. We assume that bosons are al-
most fully polarized with the Zeeman field at small values
of ~q, and thus the Berry phase effect associated with the
variation of spin eigenstates with ~q neglected.
The boson field variable is denoted as ϕ(~x, τ) with the

momentum cut-off defined as Λ inversely proportional to
the average interaction range in real space. Following
the method of bosonic coherent state path integral49, we
write down the low-energy effective action S = SG + SI

with the quartic single-particle dispersion at λ = Ω in
the imaginary time formalism as

SG = T
∑

ωn

∫ Λ

0

d2~q ϕ∗(ωn, ~q)

[

−iωn − µ+
q4

4λ2

]

ϕ(ωn, ~q),

SI =
u

2

∫ β

0

dτ

∫

1/Λ

d2~x |ϕ(~x, τ)|4, (F3)

where 2m is absorbed into λ. The powers of Λ can be
used as the natural units of different physical quantities.
The units of T , ωn, and µ are Λ2, and those of λ and
ϕ(x, τ) are Λ. u is dimensionless. As discussed above the
effective interaction in Eq. (F3) is isotropic.
Though the effective action in Eq. (F3) is derived

from the Hamiltonian with a spin-isotropic interaction
[Eq. (F2)], it also holds for the systems with spin-
anisotropic interactions. In the later situation the orig-
inal Hamiltonian may contain interaction terms mixing
spin components different from the isotropic one. How-
ever, with the assumed strong spin-orbit coupling and
Zeeman field, the high-energy branch can be effectively
gaped out. Consequently, the above single-component
boson field description still effectively works with the
interaction coefficient now being a linear combination
of the original spin-anisotropic interaction parameters.
Therefore the Lifshitz ϕ4 action with an isotropic inter-
action in Eq. (F3) generally holds regardless of the spin
symmetry the original interaction possesses.
For the situation we are interested in, λ is always fi-

nite, which now can be used to re-scale all quantities
in Eqs. (F3) by ϕ(ωn, ~q)/(4λ

2) → ϕ(ωn, ~q), 4λ2µ →
µ, 4λ2T → T, 4λ2u → u, ~q → ~q. Then the action
of Eqs. (F3) is converted to the action of Eq. (1) at d = 2
in the main text. Following the analysis in the main text,
at zero temperature two FPs are immediately identified
as (µ∗

1/Λ
4, u∗1/Λ

2) = (0, 0) and (µ∗
2/Λ

4, u∗2/Λ
2) = (0, 8π).
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