
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Application of the weighted-density approximation to the
accurate description of electron-positron correlation effects

in materials
Vincent Callewaert, Rolando Saniz, Bernardo Barbiellini, Arun Bansil, and Bart Partoens

Phys. Rev. B 96, 085135 — Published 24 August 2017
DOI: 10.1103/PhysRevB.96.085135

http://dx.doi.org/10.1103/PhysRevB.96.085135


Application of weighted-density-approximation (WDA) for accurate description of
electron-positron correlation effects in materials

Vincent Callewaert,1, ∗ Rolando Saniz,1 Bernardo Barbiellini,2 Arun Bansil,2 and Bart Partoens1

1Department of Physics, Universiteit Antwerpen, Antwerpen 2020, Belgium
2Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA

(Dated: July 28, 2017)

We discuss positron-annihilation lifetimes for a set of illustrative bulk materials within the frame-
work of the weighted-density-approximation (WDA). The WDA can correctly describe electron-
positron correlations in strongly inhomogeneous systems, such as surfaces, where the applicability
of (semi-) local approximations is limited. We analyze the WDA in detail and show that the elec-
trons which cannot screen external charges efficiently, such as the core electrons, cannot be treated
accurately via the pair-correlation of the homogeneous electron gas. We discuss how this prob-
lem can be addressed by reducing the screening in the homogeneous electron gas by adding terms
depending on the gradient of the electron density. Further improvements are obtained when core
electrons are treated within the LDA and the valence electron using the WDA. Finally, we discuss a
semi-empirical WDA-based approach in which a sum-rule is imposed to reproduce the experimental
lifetimes.

I. INTRODUCTION

Positron-annihilation spectroscopy (PAS) is widely ac-
cepted as a sensitive method to characterize vacancy type
defects in bulk solids1. The sensitivity of the method
arises from the strong repulsion of the positron by the
positive ions in the material. Hence, open volumes,
such as vacancies and voids, act as efficient positron
traps. If a positron gets trapped prior to annihila-
tion, the radiation carries information on the electronic
properties of the overlapping electronic states and thus
gives PAS the atomic resolution required to identify
the chemical environment of the defect. In this way,
one can also understand how positrons can be used
to probe surface properties. In fact, most materials
have a positive positron workfunction and hence when
a positron diffuses to the surface, it can either get ex-
pelled into the vacuum, or get trapped in its image po-
tential well2–4. This trapping mechanism of positrons
is exploited in positron-annihilation-induced Auger elec-
tron spectroscopy (PAES), where the surface bound
positron annihilates with a core electron at the surface
to trigger an Auger process5. The surface sensitivity of
positrons has been demonstrated via, e.g., monitoring
sub-monolayer coverages with adatoms on various sur-
faces6,7.

There a renewed interest in exploiting positrons in
surface studies. Recent examples include: Observa-
tion of surface segregation of Cu in Pd through time-
resolved PAES8; annihilation-induced O+ desorption
from TiO2(110) surfaces9; and, angle-resolved spec-
troscopy of positronium (Ps) emission from Cu(110)10.
Moreover, advances in slow positron techniques now al-
low direct deposition of very low-energy positrons (<
5 eV) in a bound surface state through a process called
Auger mediated positron sticking11. These advances
have been used to demonstrate multi-electron emission
in Auger processes12 to determine the binding energy of

positrons to the surface of Bi2Te2Se13, and directly mea-
sure Auger emission from holes created in the valence
band of graphene14. Finally, positrons have been shown
to act as self-seeking probes for the surface of colloidal
quantum dots15 to enable a detailed characterization of
their surface properties16,17.

First-principles modeling is widely recognized as a
valuable tool for understanding and interpreting PAS
results1. Such computations are normally carried out
within the framework of the two-component density func-
tion theory (2CDFT)18,19. For bulk PAS properties, the
local density approximation (LDA) and generalized gra-
dient approximations (GGA) have proven to yield reli-
able results. In the case of surfaces, however, these (semi-
) local approximations fail to correctly describe the cor-
rect behaviour of the correlation potential in the vacuum
far away from the surface. At very low densities, the LDA
predicts Ps− formation. This strongly negative correla-
tion potential (Vc = −7.13 eV with respect to the vacuum
level) prohibits the formation of a surface bound state.
A positive charge far away from a surface, however, ex-
periences an image potential Vc ∼ −1/(z − z0), where
z denotes the distance to the surface and z0 is the so-
called image potential reference plane20. The failure of
the LDA/GGA to reproduce this long-range correlation
is an inherent limitation of (semi-)local approximations.

An accurate description of positron states and their
annihilation properties near surfaces has, for this reason,
been a theoretical challenge for which a satisfactory so-
lution remains elusive. The most widely applied model
is the corrugated mirror model, originally proposed by
Nieminen and Puska21, in which the bulk LDA or GGA
correlation potential is matched to the ∼ 1/(z − z0(r))
potential outside the surface, where the image potential
reference plane is position dependent. The latter is de-
termined in such a way that the isocontours of the den-
sity and the image potential still coincide (at different
values in general), as is the case for the LDA potential.
Stated differently, the image potential ∼ 1/(z − z0) is
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parametrized as a function of the density along a ref-
erence line perpendicular to the surface. In the linear
response theory, the image potential reference plane z0
is determined by the charge induced due to the presence
of an external point charge20. This quantity can then
be calculated by directly solving the electronic problem
in the presence of an electrical field perpendicular to the
surface.

The corrugated mirror model suffers from a number of
flaws even though its results agree reasonably with exper-
iments13,22–25. In particular, while it is straightforward
to construct the corrugated image potential for perfect
surfaces, this quickly becomes unfeasible for more com-
plex surfaces. For example, imagine a molecule adsorbed
on a surface, a problem relevant to the study of positron
states in colloidal quantum dots17. In this case, one can
expect that, depending on the position of the positron,
the induced image charge will be distributed over the
molecule and/or the surface. Several issues now arise.
Firstly, the idea of an image potential assumes that the
induced charge is spread out over a perfect, infinite sur-
face. With the molecule in place, this is no longer the case
and, in general, the simple ∼ 1/(z − z0) form would no
longer apply. Secondly, z0 is in principle defined by the
center of the induced charge density. Since the screening
properties of the surface and the molecule will differ, a
single value will likely not be sufficient for an accurate de-
scription of the whole system. Another limitation of the
corrugated mirror model is that the LDA/GGA poten-
tial, which is reasonably accurate in the bulk, is matched
continuously to the image potential, which is the correct
limiting behavior only far away from the surface. In gen-
eral this matching happens in the vacuum region close
to the surface where neither the LDA/GGA or the im-
age potential are expected to give accurate results. Also,
even though the potential is continuous, its derivate is not
and in some systems this leads to unrealistically narrow
or wide wells at the surface. The matching procedure
can thus have a large influence on the predicted bind-
ing energy of the positron surface state and, in the end,
become critical for determining whether or not a given
surface can support the formation of a bound state.

A full first-principles alternative is provided by the
weighted density approximation (WDA)26–30. In this ap-
proach, which is inherently non-local as opposed to the
LDA/GGA, the screening cloud is modelled using the
electron-positron pair correlation function of the homo-
geneous electron gas. The correlation potential is then
determined by the Coulomb interaction with the screen-
ing cloud. The main advantage of the WDA is that it
reasonably captures the effects of the screening cloud lo-
calized at the surface when the positron is in the vac-
uum region, which in turn gives rise to the characteristic
∼ 1/z behavior of the potential14,28. This should be con-
trasted with the LDA/GGA where the screening cloud is
implicitly assumed to be centered around the positron.
The detachment of the screening cloud as the positron
leaves the surface is correctly described by the WDA,

and thus the transition between the bulk potential and
the asymptotic image potential takes place smoothly, so
that the WDA does not suffer from the limitations we
listed above of the corrugated mirror model.

The application of the WDA for modeling electron-
positron correlations has been discussed previously in
connection with jellium surfaces27–29 as well as bulk ma-
terials30. Here, we revisit the problem and construct a
new WDA scheme based on more recent quantum Monte
Carlo (QMC) results31. A necessary first step towards
establishing the efficacy of our new WDA scheme is to in-
vestigate its performance in bulk materials where exten-
sive experimental data is available for testing and bench-
marking, and accurate LDA results are readily available
for comparison. It is only when the new functional can
be shown to yield reasonable positron lifetimes in bulk
materials that we could expect it to also yield improved
results for positrons at surfaces.

The paper is organized as follows. In section II, we
present the theory behind the WDA. Section III discusses
the parameters used in the computations. In section IV
we undertake a detailed study of WDA-based positron-
annihilation lifetimes. A naive application of the WDA
scheme is shown to yield poor positron lifetimes. We
pinpoint the reasons for this failure, and discuss modifi-
cations of the WDA for obtaining improved results. We
conclude with a summary of our most important results
in section V.

II. THEORY

A good introduction to the WDA can be found in
Ref.28, although for the sake of completeness, we repro-
duce the most important ideas here. Throughout this
paper, we will use atomic units (e = h̄ = me = 1), unless
stated otherwise.

In this paper, our main concern is the zero positron-
density limit of the 2CDFT19, which applies when there
is a single, delocalized positron present in the system
(e.g. in perfect bulk crystals or at perfect surfaces). In
this case, the ground-state electron density remains un-
perturbed by the presence of the positron. The Kohn-
Sham potential for the positron in the absence of exter-
nal fields is then given by the sum of the ionic potential,
the Hartree interaction with the ground state electron
density and the electron-positron correlation potential.
In the rest of this section, we will focus on the electron-
positron correlation contribution.

An exact expression for the electron-positron correla-
tion energy can be written in terms of a coupling constant
(or adiabatic) integration27,32

Ee−pc [ne, np] = −
∫ 1

0

dλ

∫∫
dredrp

× ne(re)np(rp) {g(re, rp; [ne, np];λ)− 1}
|re − rp|

,

(1)
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where ne and np are the electron and positron den-
sities, respectively. The pair-correlation function
g(re, rp; [ne, np];λ) describes the relative increase of the
electron density ne at re given a positron density np at
rp. The pair correlation function is itself a functional of
the electron and positron densities, and thus, unknown
a priori. The coupling constant λ takes the electron-
positron interaction from the non-interacting, λ = 0, to
the fully interacting limit, λ = 1.

In the 2CDFT, the electron-positron correlation poten-
tials experienced by the electrons and the positrons are
obtained by the functional derivatives of the correlation
energy with respect to the densities,

V e−pe,c (r) =
δEe−p

δne(r)
, V e−pp,c (r) =

δEe−p

δnp(r)
. (2)

In the zero-density limit, the positron density approaches
zero at every point in space, np(rp) → 0 ∀rp, such that
electrons do not experience a correlation potential due to
the presence of the positron. Note that the term

−
∫ 1

0

dλ

∫
dre

ne(re)np(rp)

|re − rp|
δg

δnp(r)
(3)

gives no contribution to the positron’s correlation poten-
tial. We thus have

V e−pp,c (rp) = −
∫ 1

0

dλ

∫
dre

∆n(re|rp;λ)

|re − rp|
, (4)

where

∆n(re|rp;λ) = ne(re){g(re, rp; [ne, np];λ)− 1} (5)

is the screening charge for a positron at rp at a given
interaction strength λ. This potential can be easily in-
terpreted as the Coulomb interaction of the positron
with its coupling constant averaged induced screening
cloud, to which we will refer in the reminder of this
paper as ‘the screening cloud’. Also, we will denote
the electron-positron correlation potential experienced
by the positron by Vc, unless otherwise specified.

The expressions (4) and (5) are formally exact but
do not provide a scheme for practical calculations.
The pair-correlation function g is an unknown, system-
dependent function, and in order to proceed, the true
pair-correlation function must necessarily be approxi-
mated. In fact, the LDA is obtained by replacing both
the pair-correlation function and the electron-density
prefactor in eq. (5) by the corresponding quantities from
the homogeneous electron gas at the local density ne(rp)
as follows.

∆nLDA(re|rp;λ) = ne(rp){gh(|re − rp|;ne(rp);λ)− 1},
(6)

where the pair-correlation function for the homogeneous
electron gas gh depends only on the distance from
the positron. Note that in the zero-density limit, the
pair-correlation function does not depend on the local

positron density. Since the resulting potential then only
depends on the local electron density at rp, one can im-
mediately parametrize the correlation energy as a func-
tion of the local electron density. In the WDA, the idea is
to keep the pair correlation function of the homogeneous
electron gas, but restore the proper electron density pref-
actor in the equation for the screening cloud. In order to
retain some of the favorable properties of the LDA, one
additionally imposes conditions on the screening cloud in
the form of a sumrule, e.g. on the net induced screening
charge.

We comment on the question of generalizing the theory
beyond the zero-density limit, which is our focus in this
paper, to consider the case of finite positron densities.
One important difference here is that we will need to
take into account the correlation potential obtained from
the functional derivative of Eq. (2) in the Kohn-Sham
equation for the electrons. Next, the term of Eq. (3) will
now give a finite contribution to the positron correlation
potential, and finally, the pair correlation function of the
homogeneous electron-positron gas will depend on both
the local electron and positron densities.

Before developing our practical WDA scheme for the
zero-density limit below, we will discuss the matter of an
important sumrule. Next, we will examine more closely
the nature of the pair correlation function and derive
some constrains that it should satisfy. This will be fol-
lowed by the discussion of the WDA approach28 in the
subsequent sections of this paper.

A. Sum rule

An important reason why the LDA approximation for
electron-electron correlations works well for a large vari-
ety of systems is that it is in principle the exact functional
for the homogeneous electron gas. It thus also satisfies
all exact conditions that can be imposed on the func-
tional in the homogeneous case. In order to construct
reliable functionals that go beyond the LDA, it is impor-
tant in this spirit to satisfy known exact constrains and
limits as far as possible. In this connection, Gunnarsson
et al. realized that the sumrule on the electron-electron
exchange-correlation hole, which states that the hole cor-
responds to the removal of one electron worth of charge,
is a key reason for the success of the LDA26.

Note that the preceding sum rule arises because the in-
teraction involves indistinguishable particles (electrons),
so that the exchange-correlation energy cancels the self-
interaction of the Hartree term. Since electrons and
positron are different particles, there is no formal rea-
son for this sum rule to hold for the electron-positron
correlation cloud. In fact, the Coulomb correlation can
now only cause a redistribution of the electron charge,
suggesting that the positron’s correlation cloud should
integrate to zero33.

Despite these remarks, some statements can be made
about the short-range part of the correlation cloud. In
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a very dilute homogeneous electron gas, one expects
the formation of Ps−, indicating that a charge equal to
twice the electron charge is accumulated in the screen-
ing cloud. With this motivation, we assume that the
screening cloud can be written as ∆n = ∆nsr + ∆nlr,
where the first term is to capture the short-range part
and the second for the long range part of the screen-
ing cloud. From electron-positron pair-correlation data,
we expect that the short range part can be described
roughly by an exponentially decaying function, while the
long range part resembles Friedel oscillations31,34,35. If
we make the further assumption that the charge in the
short range part is compensated by the long range part,
i.e.

∫
dre ∆nsr(re|rp;λ) = −

∫
dre ∆nlr(re|re;λ), we can

write ∫
dre ∆nsr(re|rp;λ) = Q(rp;ne;λ). (7)

It is important to recognize that, in general, the screen-
ing charge Q depends on the screening properties of a
specific system and thus does not provide a sum rule
that holds for all systems. Indeed, going back to the case
of Ps− formation, we have limne→0Q(rp;ne; 1) = 2 for
the homogeneous electron gas. On the other hand, for
metallic systems, we generally expect Q(rp;ne; 1) ≈ 1,
whereas for good insulators, it seems reasonable to as-
sume Q(rp;ne; 1)� 1.

We would already like to emphasize that there is a
large difference between the ‘true’ screening chargeQ, i.e.
the one we would obtain from the true pair correlation
function and ground state densities, and the screening
charge Q, which is used in the sum rule of the WDA.
We will show below, for example, that even though for
insulators Q is expected to be small, a large Q has to be
imposed in order to obtain reasonable results within the
WDA. The reason for the counterintuitive behavior will
become apparent in the rest of the paper.

In order to construct a WDA functional for the
electron-positron problem, Jensen and Walker27 imposed
the charge-neutrality condition, which states that the
screening and positron charge should be exactly equal.
Stated differently, they assumed that the positron charge
is always perfectly screened by the electrons. Their
charge-neutrality condition takes the form∫ 1

0

dλ

∫
dre ∆n(re|rp;λ) = 1. (8)

Rubaszek28,30, on the other hand, interpreted the cou-
pling constant λ as the scaled charge of the positron,
and hence concluded that the charge neutrality condition
should hold for any λ. This slightly different interpreta-
tion yields the sumrule∫

dre ∆n(re|rp;λ) = λ, ∀λ ∈ [0, 1]. (9)

From our discussion above, it is clear that these sum-
rules should not be interpreted as exact conditions on

the electron-positron screening cloud but merely repre-
sent an ad hoc assumption on the screening properties of
the system. In fact, a priori there is no guarantee that
imposing either of these conditions will yield improved
results.

B. Electron-Positron pair correlation function

If the electron-positron pair correlation function is
known exactly for a given system, we could obtain the ex-
act Kohn-Sham potential for the positron through equa-
tion (4). As mentioned before, however, the exact pair
correlation function is in general not known and an es-
sential step in the WDA is the replacement of the true
pair correlation function by the one for the homogeneous
electron gas (in the zero-density limit)

g(re, rp; [ne, np];λ)→ gh(r;ne(re);λ), (10)

where r = |re − rp|. Also, the pair correlation gh is
not known in closed form, and additional assumptions
have to be made to obtain a useful expression. In the
remainder of this section, we first discuss the known part
of the pair correlation function, then introduce a reason-
able general form based on the exact limit at low electron
densities, and finally, we impose additional exact condi-
tions which will be seen to almost completely determine
gh.

Especially important in the calculation of positron an-
nihilation properties is the enhancement of the electron
density at the positron position given by the enhance-
ment factor γ. The expression for, e.g., the positron-
annihilation lifetime τ is given by

λa =
1

τ
= πr2ec

∫
drne(r)np(r)γ(r). (11)

where re is the classical electron radius, c the speed of
light and λa is the annihilation rate (subscript a is to
avoid confusion with the coupling constant). The in-
dependent particle model (IPM) neglects the enhance-
ment term (γ = 1), but its inclusion is well-known
to be necessary for obtaining any reasonable agreement
with experiments. In the LDA, the enhancement term
can be approximated by the value of the pair corre-
lation function at r = 0 of the homogeneous electron
gas evaluated at the local electron density, i.e. γ(r) →
γ(ne(r)) = gh(0;ne(r); 1). Several parametrizations of
the enhancement term derived from many-body calcula-
tions are available in the literature, see e.g. Refs19,31,36.

The gh(0;ne; 1) dependence of the pair correlation
function alone is not sufficient to obtain a useful form
of the pair correlation function. One can make progress,
however, by assuming that the short-range part of the
screening cloud resembles the Ps atom

gh(r;ne(re);λ) = 1 + α(ne(re);λ)e−β(ne(re);λ)r, (12)
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where several choices for α and β can be made. Interest-
ingly, a number of parametrizations of the LDA correla-
tion energy and the enhancement factor γ assume that
g(r;ne; 1) = 1 + e−r/(8πne) is an exact limit for ne → 0
as it yield the Ps contact density19,36. Recent quantum
Monte Carlo data furthermore confirm that this is a rea-
sonable assumption for the short range part of the screen-
ing cloud over a wide range of electron densities31.

We now discuss additional constraints on the pair
correlation function. Two obvious conditions are
limr→∞ gh(r;ne(re);λ) = 1 and gh(r;ne(re); 0) = 1. The
first condition tells us that the electron density remains
unperturbed far away from the positron and it is satis-
fied by the Ps form for any reasonable choice of α and β.
The second condition simply states that electrons remain
unperturbed by the presence of the positron, if there is
no interaction between them, so that α(ne(re); 0) = 0.
Next, we should recover the LDA enhancement term
in the fully interacting case, which poses the condi-
tion α(ne(re); 1) = {γ(ne(re))− 1}. A final condition
comes from the Coulomb interaction between the parti-
cles, namely the Kimball cusp condition35,37(

∂gh

∂r

)
r=0

= −gh(0), (13)

from which one can easily derive that

β(ne(re);λ) =
1 + α(ne(re);λ)

α(ne(re);λ)
. (14)

Note that, with the exception of the scaling of α with λ,
the Ps form of the pair correlation function is thus com-
pletely determined by the enhancement term γ(ne(re)).

C. The WDA approximation

We now present the WDA approximation developed
by Rubaszek28. In this approach, the starting point is
the sumrule (9), which is imposed to hold for all rp. The
pair correlation function is assumed to take the form

gh(r;ne(rp);λ) = 1 + λ {γ(ne(rp))− 1} e−a(ne(rp))r,
(15)

where the decay length a is derived from the sumrule (9)
for the homogeneous electron gas

a3(ne(rp)) = 8πne(rp) {γ(ne(rp))− 1} . (16)

For inhomogeneous systems, the sumrule is, using the
pair correlation function for the homogeneous electron
gas, generally not satisfied. In order to restore it, one
introduces an effective (weighted) electron density n∗e(rp)
at each point, i.e. one determines n∗e(rp) such that

{γ(n∗e(rp))− 1}
∫
drene(re)e

−a(n∗e(rp))|re−rp| = 1, (17)

where the coupling constant dependence drops out due
to the linear scaling of gh with λ, and as a result the

adiabatic integration in the expression for the correlation
potential (4) can be performed analytically to obtain:

Vc(rp) = −1

2
{γ(n∗e(re))− 1}

×
∫
dre

ne(re)e
−a(n∗e(rp))|re−rp|

|re − rp|
.

(18)

For the calculation of positron lifetimes, the local density
ne in the enhancement factor has to be replaced by the
effective density n∗e,

λa =
1

τ
= πr2ec

∫
drne(r)np(r)γ(n∗e(r)). (19)

We note that the pair correlation function in this ap-
proach does not satisfy the Kimball cusp condition (13),
and as discussed earlier, there is no formal reason why
the sum rule should hold. We will return to investigate
the effect of modifying the sum rule below. It will be
interesting to examine positron lifetimes with a pair cor-
relation function that satisfies the cusp condition, which
we hope to take up elsewhere.

Despite these shortcomings, the pair correlation func-
tion defined by Eqs. (15) and (16) has some favorable
properties. The first is that the correlation potential for
the homogeneous electron gas obtained within this ap-
proach

Vc = −3 {γ(ne)− 1}1/3
2× 62/3 × rs

, (20)

results in the correct Ps limit Vc = −1/4 Ha for the di-
lute electron gas, if the enhancement factor has the cor-
rect limiting γ ∼ r3s/6 behavior. In the limit rs → 0, on

the other hand, the potential goes as ∼ r
−2/3
s and does

not reduce to the RPA limit38 ∼ r−1/2s . A second advan-
tage is that the adiabatic integration can be performed
analytically, which reduces the required computational
resources.

Fig. 1 shows a comparison between the LDA
parametrizations of Refs.19,31 and the WDA potential for
the homogeneous electron gas. Note that the WDA pre-
dicts a correlation potential which is generally more nega-
tive than the LDA. Only at very high densities (rs < 0.9),
the Drummond LDA is more negative than the WDA.
The agreement between the LDA and WDA is reasonable
for the Boronski-Nieminen parametrization19, whereas
the WDA is substantially more negative for the Drum-
mond parametrization31. It is important to point out
that in the present study of bulk positron annihilation
lifetimes, only the relative values of the positron corre-
lation potential in different parts of the unit cell can in-
fluence the results, i.e. our results do not depend on the
absolute value of the potential.

III. COMPUTATIONAL DETAILS

The electronic densities used in this work were ob-
tained with the PAW method39 as implemented in the
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VASP ab-initio package40–42. All parameters in the cal-
culation were checked until the positron lifetimes were
converged to within 1 ps. Due to the sensitivity of the
positron lifetimes to the lattice constant of the mate-
rial, we used experimental lattice parameters43 for all
systems. In the following discussion, we will distinguish
between the core and valence electrons in each system for
which we take the same partitioning as in the electronic
groundstate calculation. The electrons taken as valence
electrons are summarized in table I.

We compared the lifetimes obtained with the ground
state LDA44,45 and PBE46 electron densities (using ex-
perimental lattice parameters) but in none of the con-
sidered cases, we found a difference in the lifetime larger
than 1 ps. Therefore, the uncertainty in positron life-
times due to electronic and structural properties depends
mainly on the accuracy with which the electron correla-
tion functional used can predict lattice constants. Ac-
cordingly, in the remainder of this paper, we will only re-
port our results obtained with the LDA. Positron lifetime
calculations were performed with the MIKA/doppler
package47. Details of our WDA implementation are given
in the Appendix.

TABLE I. Electrons treated as valence electrons in the ground
state calculations and in the shell-partitioning of Section IV C.

Li C Na Al Si

2s 2s2 2p2 3s 3s2 3p 3s2 3p2

Fe Cu Nb W Pt

3d6 4s2 3d10 4s 4p6 4d4 5s 5d4 6s2 5d9 6s

IV. BULK TESTS

Here we consider a set of elemental bulk materials
for which experimental positron-annihilation lifetimes
are available48. Table II gives the experimental and
LDA lifetimes, obtained with the Brandt-Reinheimer
(BR) expression28,49,50, the Boronski-Nieminen (BN)
parametrization19 and the Drummond (Dr) parametriza-
tion31 of the LDA. In principle, the Drummond
parametrization is the most accurate one currently avail-
able but the BN is still in wide use. The BR does not
involve a very accurate parametrization of the enhance-
ment term, including the fact that it does not satisfy the
RPA limit, but we consider it nonetheless because it was
used in early WDA work27,28,51.

A. Rubaszek WDA

We now apply the WDA of Rubaszek as explained in
Section II C for different parametrizations of the enhance-
ment factor to a set of elemental bulk materials. Fig-
ure 2(a) shows the results of our calculations. Our WDA

TABLE II. Overview of the elemental materials considered.
The third to fifth columns give positron-annihilation life-
times using an LDA derived from the Brandt-Reinheimer ex-
pressiona, the Boronski-Niemenen LDA and the Drummond
LDA. The last column gives experimental lifetimes taken from
Ref.48 and references therein.

System Structure BR BN Dr Expt.

Li bcc 295.914 300.287 304.261 291

C diamond 81.152 92.862 94.569 98

Na bcc 315.587 328.082 342.821 338

Al fcc 157.749 164.743 161.128 160

Si diamond 204.313 210.620 207.929 216

Fe bcc 86.373 100.263 101.355 105

Cu fcc 87.604 104.518 105.596 110

Nb bcc 111.738 121.280 120.760 120

W bcc 102.742 111.951 111.641 105

Pt fcc 83.716 96.089 97.380 99
a This expression can be derived from the Brandt-Reinheimer
enhancement factor by solving the WDA correlation potential
equation (18) for the homogeneous electron gas. The result is
Vc(rs) = −0.25(1 + 10/r3s)

1/3

based on the BN and Drummond enhancements is seen to
result in a systematic overestimation of the lifetime. The
BR expression for the enhancement term gives a some-
what better results, although it does not satisfy the RPA
limit, and that the BN and Drummond parametrizations
are more accurate. We expect the BR-based WDA to
benefit from a fortunate cancellation of errors.

Insight into the failure of the present WDA approach
is obtained by considering the expression of the annihila-
tion rate, Eq. (19), which shows that the decrease of the
annihilation rate (increase of the lifetime) with respect to
the LDA could result from two different factors: (1) a de-
crease of the electron-positron overlap, or (2) a decrease
of the enhancement factor. The first factor is driven by
the change in the correlation potential between the LDA
and WDA. This effect can be quantified by comparing the
lifetimes obtained within the IPM (setting γ(r) = 1) from
the LDA and WDA positron densities. More specifically,
we examine the relative increase of the electron-positron
overlap for the WDA, i.e. (λWDA

IPM − λLDA
IPM )/λLDA

IPM . The
results are displayed in Fig. 2(b). The WDA is seen to
systematically predict a larger electron-positron overlap
compared to the LDA. This implies that the WDA cor-
relation potential is more attractive near the cores com-
pared to the interstitial region. Since an increase of the
overlap will lead to an increased annihilation rate, our
lifetime results can only be explained through a decrease
of the enhancement factor.

In this connection, it is interesting to examine the be-
havior of the effective density n∗ in the vicinity of a local
minimum and maximum52. For the minimum case, con-
sider the model density

ne(re) =
1

2
(1 + sin2(r)), (21)
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where r = |re|, and we take rp = 0. In the LDA, the
screening charge is given by

∆n(r) = ne(0){γ(ne(0))− 1}e−a(ne(0))r, (22)

which, by the choice of a (Eq. (16)), satisfies the sum
rule. The dependence is plotted (green line) in Fig. 3(b).
In the WDA, we take into account the inhomogeneity of
the electron density around rp

∆n(r) = ne(r){γ(n∗)− 1}e−a(n∗)r, (23)

where n∗ has to be determined such that ∆n(r) integrates
to one. If one takes n∗ = ne(0) around a local minimum,
the screening charge will be overestimated, see the or-
ange curves in Figs. 3(b) and (c). For this simple model,
one can easily solve (17) to find n∗ ≈ 1.59ne(0), where
we used the enhancement factor parametrized by Boron-
ski and Nieminen19, see the blue curves in Figs. 3(b)-
(c). The final result is that the local contribution to the
annihilation rate decreases due to a decrease in the en-
hancement term g(0, n∗) ≈ 0.94 g(0, ne(0)). Around a
local maximum, the opposite conclusion holds. Indeed,
consider

ne(re) =
1

2
(1 + cos2(r)), (24)

for which the effective density is found to be n∗ ≈
0.70ne(0), which yields a relative increase of the enhance-
ment term g(0, n∗) ≈ 1.05 g(0, ne(0)). The corresponding
curves are given in Figs. 3(d)-(f).

These results explain why the average enhancement
factor decreases. The reason is that even though there is
a shift of the positron density towards the core regions in
the WDA, the positron is still mostly localized in the in-
terstitial region due to the large Coulomb repulsion from
the ions. In the interstitial region, the effective density
will generally decrease due to the large contributions of
the cores to the screening charge, leading to a decrease
in the enhancement factor and, hence, the annihilation
rate.

We note that, physically the charge of the positron
will mostly be screened by the valence electrons, so that
core electrons should not contribute significantly to the
screening charge. If we can reduce the contribution of
the cores to the screening charge, we expect an increase
in the annihilation rate. In the next sections, we will ex-
plore two such approaches, which are motivated by these
observations.

B. Gradient correction

One obvious way to reduce the screening effect of core
electrons is to introduce a correction based on the gra-
dient of the electron density. Since the density varies
rapidly near the ions but more smoothly in the valence
region, the density gradient provides a convenient han-
dle for selective reduction of the core contribution to the

screening cloud. In fact, the GGA correction to the LDA
positron correlation potential is derived from a gradient
correction to the induced contact charge density53

∆nGGA
e (rp|rp) = ∆nLDA

e (rp|rp)e−αε(rp), (25)

with ε = |∇ne|2/q2TF , where 1/qTF is the Thomas-Fermi
screening length. The parameter α can be chosen phe-
nomenologically53,54, though recently a connection with
the LDA potential was found48.

In the non-local case we could apply the gradient cor-
rection to the pair-correlation function at the positron
position, i.e.

g(r;ne(rp);λ) = 1 + λ {γ(ne(rp))− 1}
× e−a(n(rp))re−αε(rp),

(26)

but this would not reduce the relative contribution of the
core electrons to the screening cloud. Note that the form
above is equivalent to imposing the position dependent
sum rule ∫

dre ∆ne(re|rp) = eαε(rp), (27)

which would imply that the screening charge is larger
near the cores, which seems unphysical. We will return
to discuss this point below. Instead, let us look at a
modification of the screening charge of the form:

∆ne(re|rp) = {γ(n∗e(rp))− 1}
× ne(re)e−αε(re)e−a(n

∗
e(rp))|re−rp|.

(28)

This means that we replace the true electron density by
the modified form ne(r)e−αε(r) that takes into account
the local ability of the electron density to screen external
charges. The modified pair correlation function is then
given by

g(re, rp;ne(rp);λ) = 1 + λ {γ(ne(rp))− 1}
× e−a(n(rp))re−αε(re),

(29)

where the gradient correction is evaluated at the electron
position re instead of the positron position rp, as is the
case in Eq. (26). The resulting lifetime formula is

λa =
1

τ
=

∫
drne(r)np(r)

[
1 + {γ(n∗e(r))− 1} e−αε(r)

]
,

(30)
which, with exception of the effective density n∗e in the
enhancement term, has the same form as the GGA cor-
rection to the lifetime formula53.

An important difference between the gradient correc-
tion proposed here and the GGA correction to the LDA
should be emphasized. In the LDA, the potential is too
attractive and the enhancement factor is overestimated
in the core region due to an overestimation of the lo-
cal screening of the core electrons. As a result, positron
lifetimes are generally slightly underestimated. By intro-
ducing a local gradient correction53 both these effects are
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corrected, leading to an increase in the lifetime because
the gradient corrections dominate in the core regions. In
our proposed gradient correction to the WDA, we at-
tempt to correct for the overestimation of the non-local
screening of the core densities, i.e. the contribution of
the core charges to the screening cloud of the positron
at a (possibly) different position. Since the density par-
ticipating in the screening is decreased w.r.t. the true
electron density, the screening length must be increased
w.r.t. the unmodified WDA in order to accumulate the
same amount of total screening charge. An increase of
the screening length is obtained via a decrease of the ef-
fective density and, as a consequence, the enhancement
term is increased everywhere. Since the correction will
again dominate in the core regions, we would expect a
shift of the positron density away from the ions. If the
gradient correction to the annihilation rate is neglected,
these effects will always lead to a decrease of the lifetime.
In reality, however, the results depend on the balance
between the decreased effective density and the gradient
correction to the enhancement term.

Our results for this approach with the Drummond en-
hancement are shown in Fig. 4 as a function of the pa-
rameter α, which controls the strength of the gradient
correction. We start our evaluation of the gradient cor-
rection by discussing the change in the electron-positron
overlap, shown in Fig. 4(b), which results from the change
in the correlation potential. In most cases, we see a
slight, nearly linear decrease in the overlap with increas-
ing α. For diamond and Si, the change in the overlap
quickly saturates and the gradient correction has a rela-
tively small effect. On the other hand, this correction is
much more pronounced for the alkali metals Li and Na.
Note that the gradient correction decreases the electron
density participating in the screening cloud mainly in the
core regions. As a result, it yields a correlation potential
that is less attractive in the core regions relative to the
valence region when compared to the uncorrected WDA,
hence explaining the observed decrease in the overlap.

Next, we discuss the decrease in annihilation rate
caused by the gradient correction to the enhancement
factor. For this purpose, we replace the effective elec-
tron density n∗e in the enhancement factor γ in Eq. (30)
by the true electron density ne. The results are shown
in Fig. 4(c). Note that the gradient correction has the
largest effect on the lifetime in those regions where the
positron density is large. This explains why the gradi-
ent correction has a more pronounced effect in systems
such as Si and diamond, where there are larger inhomo-
geneities in the valence electron density due to covalent
bonding, than in metals like Al and W.

The final lifetime results are shown in Fig. 4(a). The
gradient correction to the WDA is seen to decrease the
lifetime with increasing α for all metals considered. This
implies that the effect of the decrease of the effective den-
sity n∗ in the interstitial regions dominates over that of
the decrease in the electron-positron overlap and the gra-
dient correction to the enhancement factor. On the other

hand, for Si and diamond, the opposite scenario holds,
leading to a slight increase of the lifetime. These results
show that we cannot expect accurate lifetimes from the
gradient correction to the WDA proposed in this section.
Despite a slight improvement for the metallic systems,
we do not obtain acceptable lifetimes with reasonable val-
ues of the parameter α, which for the Boronski-Nieminen
LDA is set to α = 0.2253 and for the Drummond LDA
to α = 0.0554. [For systems with larger inhomogeneities,
worse results are obtained.] It is clear that another ap-
proach is needed for screening the core electrons.

C. Shell-partitioning

The idea of shell-partitioning is as old as the WDA
itself and in connection with electron-electron exchange,
it provides a scheme to correct the (erroneous) large ex-
change interaction involved in the WDA between spa-
tially well separated electron shells26. Rubaszek et
al.30,55 proposed such a scheme for electron-positron cor-
relation in which the electron density is separated into
core and valence parts. The latter is again split into its
s-, p-, d- and f -components in a sphere around each ion,
and the part in the remainder of the unit cell. The idea is
that each of these electrons will in general contribute dif-
ferently to the screening cloud around the positron56–62.
One can then introduce a specific enhancement factor γt
for each type of electron density ne,t. For instance, for the
core electrons we expect γc ≈ 1 whereas for the valence
electrons in the interstitial region the LDA enhancement
factor is likely a reasonable approximation. Next, for
each contribution, a sum rule is imposed, which in the
work of Rubasek et al. is assumed to take the form∫

dre ne,t(re)
{
ght (|re − rp|, ñe,t(rp), λ)− 1

}
= Q

{
ght (0, n(rp), λ)− 1

}
nt(rp)∑

t′

{
ght′(0, n(rp), λ)− 1

}
nt′(rp)

,

(31)

where

ñe,t(re) = ne(re) + (n∗e,t(re)− ne,t(re)), (32)

is the effective density for a given type of electron t.
The preceding sum rule states that various electrons con-
tribute to the screening charge depending on the ratios of
their local densities to the total electron density. Though,
note that each electron type is weighted by its local en-
hancement term ght − 1, and not the bare density. As a
result, valence electrons, for example, can contribute a
larger fraction to the screening cloud than d-electrons,
even though their local density can be smaller. As, re-
quired, this form reproduces the LDA in the homoge-
neous electron gas30.

Although excellent results for positron lifetimes have
been obtained within this shell-partitionig approach30,
a number of technical issues arise. One is that there
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is no unique way to split the electron density into in-
terstitial part and its angular momentum components
around each ion. It is also not clear what form for the
enhancement factor should be used for each l channel.
Rubaszek et al.30 used a Kahana-type enhancement fac-
tor ε(El/EF , ne(rp)), where El are the l-dependent lin-
earization energies used in the LMTO method and EF is
the Fermi energy. Even though the results obtained are
excellent, this choice is arbitrary and depends on method-
specific computational parameters, which do not carry
over easily to our present approach. In order to address
these difficulties, we investigate a simpler shell partition-
ing scheme in this study in which we distinguish only
between the valence and core electrons. The latter are
treated within the LDA and the former within the WDA.
We expect that the essence of the problems in the pre-
vious sections will be solved by removing the core elec-
trons from the non-local screening. The introduction of
l-dependent enhancementfactors can be expected to pro-
vide a further improvement of the results, but are likely
only of secondary importance.

We now turn to present details of our shell-partitioning
approach, which is based on Refs.63,64. We start by writ-
ing the (total) effective electron density as

ñe(r) = n∗e,v(r) + ne,c(r), (33)

where ne,c is the core electron density and n∗e,v is an
effective valence electron density, which is determined by
solving the modified sum rule∫

dre ∆n(re|rp) = {γ(ñe(rp))− 1}

×
∫
dre ne,v(re)e

−a(ñe(rp))|re−rp|

=
ne,v(rp)

ne(rp)
.

(34)

The correlation potential is given by

Vc(rp) =
ne,c(rp)

ne(rp)
εe−pc [ne(re)] +

1

2

∫
dre

∆ne(re|rp)
|re − rp|

,

(35)
where εc is the LDA correlation potential. Lifetimes are
given by

λ =
1

τ
= πr2ec

∫
drne(r)np(r)γ(ñe(r)). (36)

The electrons taken as valence electrons are listed in ta-
ble I.

This approach, even though somewhat arbitrary as it
depends on the chosen partitioning between core and va-
lence electrons, leads to substantially improved lifetime
results, see Fig. 5. In particular, Li and Na now give
better lifetimes than the LDA, whereas WDA results
without shell-partitioning were poor. We attribute this
striking improvement to the fact that valence electrons

of alkali metals are quite free electron-like. These elec-
trons are very efficient in screening the positron charge,
so that the core electrons contribute little to screening.
For the five materials in our test set that do not have
d valence orbitals, we obtain results comparable to the
LDA using the Drummond parametrization of the LDA
potentials and enhancement factors. The results for tran-
sition metals are notably poorer due to an overestima-
tion of the effect of d-electrons in the screening process.
Overall, our analysis indicates that WDA with shell-
partitioning yields reasonable results. An l-dependent
shell-partitioning should provide further improvement.

Our tests of shell partitioning indicate that the LDA
is generally more reliable than the WDA, although the
WDA appears to work well when all valence electrons
are sufficiently free-electron-like. This is a consequence
of the local nature of the LDA, which prevents localized
non free electron like electrons from strongly influencing
the overall potential.

D. Effect of the sum rule

In section II A, we pointed out that in the treatment of
electron-electron correlation, the sum rule expresses that
electrons should not experience self-interaction. We also
commented that such a self-interaction is not involved in
treating electron-positron correlation effects, and we ar-
gued that there is no real reason why the short ranged
part of the screening cloud should have a value of one.
In fact, as we showed in section IV B on the gradient cor-
rection (Eqs. (26) and (27)), the charge of the screening
cloud determines the screening length, which is expected
to be system dependent.

In this section we discuss, within the framework of the
shell-partitioning scheme of the preceding section, effects
of the imposed screening charge on the positron lifetime,
i.e. we now determine the effective electron density by
solving the modified sum rule:∫

dre ∆n(re|rp) = {γ(ñe(rp))− 1}

×
∫
dre ne,v(re)e

−a(ñe(rp))|re−rp|

= Q
ne,v(rp)

ne(rp)
.

(37)

In particular, we determine, which value of the screening
charge Q reproduces the experimental lifetime. In order
to accumulate more charge in the screening cloud, the
effective density n∗e must decrease, and thus we expect
the lifetime to decrease monotonically with increasing Q.
The scaling of the lifetime w.r.t. the imposed value of
the sum rule is displayed in Fig. 6 and the related val-
ues which reproduce experimental lifetimes are given in
table III.
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Table III reveals interesting trends. The experimental
lifetimes in free-electron-like materials (Li, Na and Al)
are all reproduced with Q ≈ 1. The d-electron materials,
on the other hand, require significantly larger values of Q,
especially Cu and Nb. We attribute this to the presence
of the 3d-shell in Cu and the 4p-shell in Nb, both of
which are physically expected to contribute little to the
screening of the positron. For Si and diamond, which
have strong covalent bonds, we also find an optimal value
of Q slightly larger than one. This again is in line with
the expectation that screening in these materials is less
effective than in metals, a point to which we return in
the next paragraph. The sensitivity of the lifetime w.r.t.
changes in Q, see Fig. 6, is related to the density ne which
enters in the sum rule, where lower densities yield greater
sensitivity to the choice of Q.

Values of Q > 1 discussed above seem counterintuitive
and deserve further explanation. Physically, we expect
the true screening cloud to have Q < 1 in a good insu-
lator. Even so, we need to impose Q > 1 in the WDA
because, like the core electrons, the electron density in
the sum rule involves electrons which do not participate
efficiently in the screening process, at least not as effi-
ciently as free electrons, which is implicit through the
use of the pair correlation function of the homogeneous
electron gas. In order to understand how this plays out
technically, assume that the positron is located at a point
where the local electron density screens the positron like
free electrons, even though there may be some electrons
in the neighborhood that are very ineffective in screen-
ing, such as the those forming strong covalent bonds.
The enhancement effect in this case is described correctly
by the LDA evaluated at the local electron density. In
the WDA, however, the effective density will generally
be higher than the local electron density since the re-
gions where electrons do not participate significantly in
screening are often characterized by large local electron
densities. Thus, the (approximately) free electrons in
the material are located close to local minima, and the
conclusions from our simple model of section IV A hold.
These considerations also lead to an underestimation of
the local enhancement factor. There are two ways to ad-
dress this problem, as was already indicated in our dis-
cussion of the gradient correction in section IV B above.
The first approach is to replace the true electron density
in the sum rule with a modified value (generally reduced)
that takes into account its screening capacity. We inves-
tigate this approach within the gradient correction and
shell-partitioning schemes. The second approach is to
allow the screening cloud to accumulate more than one
electron to approximately account for the fact that too
many electrons are contained in the electron density that
enters in the sum rule equation.

With all this in mind, it is natural to wonder if the
results could be improved by applying the gradient cor-
rection of section IV B in combination with the shell par-
tioning. We have investigated this possibility but did not
find any improvement. The reason is that the decrease

in the effective density turns out to be too small to com-
pensate for the gradient correction to the enhancement
term in the lifetime formula, Eq. (30).

The screening charge Q can, in principle, be used
as a phenomenological parameter in WDA calculations.
[As we have already pointed out, Q defines a material-
dependent screening length.] In this vein, we could fit
the Q value to reproduce the experimental lifetime in
a specific material. This value of Q can then be em-
ployed to investigate PAS properties at defects and sur-
faces/interfaces more generally. This approach will be in
the spirit of the hybrid functionals in electronic struc-
ture calculations, where a part of the exact exchange is
used to correct the bandgap. We do not claim that this
approach is guaranteed to give a reliable description of
the positrons properties and tests will have to point out
whether it is useful. Such tests are, however, outside the
scope of the current paper.

TABLE III. Screening charge values that reproduce exper-
imental lifetimes using the WDA scheme with Drummond
enhancement term and shell-partitioning.

Li C Na Al Si Fe Cu Nb W Pt

1.06 1.10 1.00 1.02 1.13 1.43 1.66 1.60 1.33 1.35

V. SUMMARY AND OUTLOOK

We have carried out an in-depth study of the WDA
approach for describing electron-positron correlations as
a basis for constructing a functional, which is suitable
for modeling PAS properties of strongly inhomogeneous
systems such as surfaces. We critically examined the gen-
eral theory behind the WDA and the approximations and
assumptions underlying earlier related work in the litera-
ture27,28,30. Positron annihilation lifetimes obtained from
the WDA of Ref.28 were shown to yield poor results due
to the (unphysical) involvement of core electrons in the
screening of the positron charge. This lead us to consider
a gradient correction for removing the large core-electron
contribution to the screening cloud, but this approach
fails to obtain accurate lifetimes. A shell-partitioning
scheme, on the other hand, was shown to yield excellent
results for positron lifetimes in free-electron-like materi-
als. The results are somewhat worse for insulators and
d-electron systems, though, where not all valence elec-
trons participate in the screening of the positron as free
electrons. We have attempted to account for this by com-
bining the gradient correction with the shell partition-
ing but, unfortunately, found no further improvement of
the results. It is expected that more sophisticated ver-
sions of the shell partitioning, such as the one from Ref.30

can further improve the results. Finally, we considered
a semi-empirical scheme in which the screening charge is
described in terms of a single material-specific parame-
ter, which is fitted to reproduce experimental lifetimes;



11

0 1 2 3 4 5 6 7 8
rs

−0.50

−0.45

−0.40

−0.35

−0.30

−0.25

−0.20
Po

te
nt

ia
l(

H
a)

BN LDA
BN WDA
Dr LDA
Dr WDA

FIG. 1. Comparison of the LDA potentials as parametrized
by Boronski and Nieminen19 (BN), and Drummond et al.31

(Dr) with the corresponding WDA potentials of Eq. (20) for
the homogeneous electron gas. For the enhancement factors,
we took the parametrizations from the same references.

the scheme will then allow effective treatment of positron
properties more generally in strongly inhomogeneous re-
gions such as surfaces and large voids. Future tests will
have to point out, though, if a realistic description of
positron properties in strongly inhomogeneous environ-
ments can be obtained in this way.

Notably, we do not expect the WDA and its modi-
fications discussed in this paper to provide more accu-
rate functionals (compared to the standard LDA or GGA
schemes) for treating relatively homogenous bulk systems
and small defects. Instead, their usefulness lies in the
treatment of strongly inhomogeneous systems where the
semi-local approximations are known to fail.

Recent work has shown that incorporation of exact
constraints on electron-electron correlation functionals
can yield improved results in a wide variety of diversely
bonded systems65–67. It will be interesting to explore the
extent to which improvements in WDA-based electron-
positron correlation functionals could be obtained along
similar lines. A specific example will be the imposi-
tion of the Kimball cusp condition35,37 on the WDA-
based electron-positron functional. A different approach
to achieve better results would be to move away from
results for the homogeneous gas, and instead calculate
a pair correlation function directly from the electronic
structure of the material.
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FIG. 2. Results of (a) positron annihilation lifetime calcu-
lations and (b) the relative change in the electron positron
overlap w.r.t. the LDA for various elemental materials us-
ing Rubaszek’s28 approach. Horizontal black lines denote the
LDA lifetimes for each system. Different colors are used to
distinguish the results for various choices of the enhancement
factor γ: BR (Brandt-Reinheimer); BN (Boronski-Nieminen);
and, Dr (Drummond).
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Appendix A: Details of implementation.

This appendix provides some details of the WDA im-
plementation used in this work. We determine the ef-
fective electron density n∗e(r) and the correlation poten-
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FIG. 3. Results of a simple model (discussed in the text) to
illustrate the behavior of WDA screening in the vicinity of a
local minimum (left column of panels) and maximum (right
column of panels) of the electron density. The position of the
positron, rp, is taken at r = 0 (red dots in topmost figures).
The second row plots the radial dependence of the screening
cloud for the LDA (green), the WDA using the local electron
density (orange), and the WDA using an effective density
that satisfies the sum rule (blue). The insets show the same
quantities on a linear scale. Figures in the bottom row show
the radially integrated differences between the WDA and LDA
screening clouds; in order to satisfy the sum rule, this quantity
should integrate to zero.

tial Vc(r) on a regular 3-dimensional real space grid.
The value of the effective density n∗e(rp) is determined
at all grid points by searching for the roots of the sum
rule equation. Our algorithm uses an implementation of
Brent’s method.

Because it is not feasible to accurately integrate the
contribution of core and valence charges on the same grid,
we separate the total charge density as, ne(r) = nv(r) +
nc(r), where nv and nc are the valence and core charge
distributions, respectively. The valence electron density
is represented on a regular 3-dimensional real-space grid,
while the core charges are stored on logarithmic radial
grids, which are centered around ionic positions. The

screening charge is thus calculated as

Q = Qv +
∑
α

Qα, (A1)

where Qv and Qα are valence and core contributions,
respectively. The former can be readily obtained as a
weighted sum over all grid points within a selected cutoff
radius Rmax:

Qv =
∑

ri≤Rmax

winive
−ari , (A2)

with niv = nv(r
i
e), r

i = |rie − rp| and the wi are the
integration weights. Core contributions are taken into
account for all ions for which dα = |Rα − rp| < Rmax +
Rc,α, where Rα denotes the position of the ion and Rc,α

is its core radius. The contribution of an ion labeled α
to the sum rule is given by

Qα = 4π
∑
i

wiri(nαc )if i (A3)

where, for d 6= 0,

f i =
1

2adα

[(
1

a
+ |dα − ri|

)
e−a|d

α−ri|

−
(

1

a
+ |dα + ri|

)
e−a|d

α+ri|
]
, (A4)

and, for d = 0,

f i = rie−ar
i

. (A5)

For the correlation potential, we apply the same parti-
tioning of the valence and core charges. In this case the
relevant formulas are:

V vc =
∑

ri≤Rmax

winiv
e−ar

i

ri
, (A6)

and

V αc = 4π
∑
i

wiri(nαc )if i, (A7)

where

f i =
1

2adα

(
e−a|d

α−ri| − e−a|dα+ri|
)

(A8)

for d 6= 0 and

f i = e−ar
i

(A9)

for dα = 0.
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FIG. 4. Scaling of (a) the relative error of the lifetime and (b) the relative change in the electron-positron overlap w.r.t. the
LDA with the gradient correction parameter α applied to the WDA. (c) Lifetimes obtained via Eq. (30) where the local density
is inserted in the enhancement factor instead of the effective density (unlike the results in panel (a)). Only results obtained
with the Drummond enhancement term are shown. Markers indicate calculated results and lines serve as guides to the eye.
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FIG. 5. Results of (a) positron annihilation lifetime calcula-
tions and (b) the relative change in the electron positron over-
lap w.r.t. the LDA for various elemental materials using the
WDA with shell partitioning. Horizontal black lines denote
the LDA lifetimes for each system. Different colors are used to
distinguish the results for various choices of the enhancement
factor γ: BR (Brandt-Reinheimer); BN (Boronski-Nieminen);
and, Dr (Drummond).
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