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Motivated by the current interest in the understanding of the Mott insulators away from half
filling, observed in many perovskite oxides, we study the Mott metal-insulator transition (MIT) in
the doped Hubbard-Holstein model using the Hatree-Fock mean field theory. The Hubbard-Holstein
model is the simplest model containing both the Coulomb and the electron-lattice interactions,
which are important ingredients in the physics of the perovskite oxides. In contrast to the half-
filled Hubbard model, which always results in a single phase (either metallic or insulating), our
results show that away from half-filling, a mixed phase of metallic and insulating regions occur.
As the dopant concentration is increased, the metallic part progressively grows in volume, until it
exceeds the percolation threshold, leading to percolative conduction. This happens above a critical
dopant concentration ., which, depending on the strength of the electron-lattice interaction, can
be a significant fraction of unity. This means that the material could be insulating even for a
substantial amount of doping, in contrast to the expectation that doped holes would destroy the
insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean-
field remain an open question, our results provide a starting point for the understanding of the

density-driven metal-insulator transition observed in many complex oxides.

PACS numbers:
I. INTRODUCTION

It is well known that the half filled Hubbard model is a
Mott insulator! when the strength of the on-site Coulomb
interaction U exceeds a critical value. Within the Hub-
bard model, the Mott insulating state can exist only at
half filling, and just a single hole is supposed to destroy
the antiferromagnetic insulating ground state, turning it
into a ferromagnetic metal as suggested by the Nagaoka
Theorem?, strictly true in the infinite U limit.

Quite early on, the Mott insulator LaTiO3 was thought
to be a prototypical example of the Nagaoka Theorem,
where the undoped LaTiOs is an antiferromagnetic in-
sulator, as predicted for the half-filled Hubbard model,
but both the antiferromagnetism as well as the insulating
behavior are quickly destroyed with the introduction of a
small number of holes via the addition of extra oxygen3
or via Sr substitution (with as little as  ~ 0.05 for
La;_,Sr,TiO3)%. Indeed, a large number of perovskite
oxides have since been found to turn into metals upon
hole doping, but only after a substantial amount of hole
concentration has been introduced into the system. At
the same time, scanning tunneling microscopy images of
these doped oxides show mixed phases in the nanoscale,
meaning that there is no clear phase separation with a
single boundary separating the two phases, but rather
that the two phases break into intermixed nanoscale pud-
dles. In addition, transport measurements follow percola-
tive scaling laws with doping and temperature, further
confirming the existence of the mixed phase®”.

From a theoretical point of view, there have been many
studies of the doped Mott insulators® 22, largely for mod-
els in two dimensions (2D), because numerical methods
such as Quantum Monte Carlo are more feasible there.
However, the results vary depending on the methods

used. In the 2D Hubbard model, results from quan-
tum Monte Carlo calculations'®'# found no evidence for
phase separation, consistent with the “somewhat” exact
results of Su'®. However, other authors using the fixed-
node quantum Monte Carlo method'® or the Hartree-
Fock mean-field approximation'” have suggested phase
separation in large regions of the parameter space. Phase
separation at small doping levels was also found in the dy-
namical mean field calculation'® and the variational clus-
ter perturbation theory works'?. There are much fewer
studies of the phase separation for the Hubbard model
in 3D, although the existence of the phase separation
there was suggested by the early works of Visscher?® in
the 1970s. The recent Hartree-Fock calculations in 3D?”
and the dynamical mean-field theory (DMFT) work?’,
strictly valid for infinite dimensions, have found phase
separation in a large region of parameter space, as did
the work of Andriotis et al.?!, who used the coherent-
potential approximation and the Bethe lattice.

Phase separation in the closely related ¢-J model has
also been investigated because of its relevance to the
cuprate superconductors. The phase separation has been
reported for all values of J/t by several authors?? 24,
while some authors find it only for larger values of
J/t?526_ There is thus a general consensus for the phase
separation in the ¢-J model with a large J/t and the non-
half-filled band, where the system separates into two re-
gions, viz., an undoped antiferromagnetic region and a
carrier-rich ferromagnetic region.

All these theoretical works do not include the coupling
of lattice to the electrons, which is an important ingre-
dient in the physics of many perovskite oxides, where a
strong Jahn-Teller coupling plays a critical role in the
behavior of the material. In this paper, we study the
Hubbard-Holstein model with the Hartree-Fock method,
which includes both the Coulomb interaction as well



as the electron-lattice coupling. We study the energet-
ics of the various magnetic phases including the para-
magnetic and the spiral phase (which incorporates the
AFM and FM phases as special cases) and compute the
phase stability in the doped system near half filling.
For small number of dopants (electrons or holes), the
system phase separates into an undoped antiferromag-
netic insulator and a carrier-rich, ferro or spiral mag-
netic, metallic phase. As the dopant concentration is
increased, the metallic part grown in volume, and even-
tually at a critical dopant concentration, the percolation
threshold is reached and the system becomes a conduc-
tor. The critical concentration for this percolative Mott
metal-insulator (MIT) transition is studied for varying
interaction parameters, and the theoretical results are
connected with the existing experiments in the literature.

II. MODEL

We consider the Hubbard-Holstein model for a cubic
lattice

Z t” cwcj(, +He)+ Uanan

(ij)o
- uzniaa (1)
o

+ Z(§KQ? — 9Qin;)
3

which contains both the Coulomb interaction and the
electron-lattice coupling terms. Here cza is the electron
creation operator at site ¢ with spin o, n;; = c;fgcw is
the number operator, t;; is the hopping amplitude be-
tween nearest-neighbor sites denoted by (ij), U is the
onsite Coulomb repulsion, @); is the lattice distortion at
site i, K and ¢ are, respectively, the stiffness and the
electron-lattice coupling constants, and p is the chemical
potential that controls the carrier concentration. Tak-
ing the nearest-neighbor hopping integral as t;; = —t,
there are two parameters in the Hamiltonian, viz., U/t
and A = g%/(KW), where W = 12|t| is the band width
and A is the effective electron-lattice coupling strength.
Note that we have considered the static Holstein model??,
which contains a simpler version of the local lattice inter-
action such as the Jahn-Teller interaction, and, in addi-
tion, it does not contain any phonon momentum depen-
dence.

The key problem to study is the energy of the ground
state and the stability of the various phases as a func-
tion of the carrier concentration away from the half fill-
ing. Both magnetic (ferro, antiferro, or spiral) as well
as non-magnetic phases are considered. In fact, all these
solutions are special cases of the spiral phase, which is
conveniently described in terms of a site-dependent local
spin basis set described by the unitary transformation!”
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where «; is the site dependent spin rotation angle. The
spiral phase is described by a; = (¢- ]ﬂ) Z, where &
is the spin rotation axis, ]%Z is the site position, and
7 = (¢z,9y,q-) is the modulation wave vector of the
spiral state. The ferro, para, as well as the antiferro-
magnetic states, considered in this work, are all special
cases of the spiral state. Explicitly, ¢ = 0 for the ferro
or paramagnetic state, while it is w(1,1,1) for the Néel
antiferromagnetic state.

In the new basis, the Hamiltonian (1) remains un-
changed except for the first term, which becomes Hy, =
2 igyo0r (55 d djor + H.c.), where the hopping is now
Spln—dependent
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and in the remaining terms in (1), the number operators

are redefined to mean n;, = dzadio. Making the Bloch

transformation into momentum space
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and using the Hartree-Fock approximation: nin, =
(n1)ns + (no)ny — (d{ds)dbdy — (dbdy)ddy — (n1)(ns) +
(dldy)(did,), we get the quasi-particle Hamiltonian
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where T (k) = —2t[cos(kya) cos(qza/2) +

cos(kya) cos(gya/2) + cos(k.a)cos(g.a/2)], To(k) s
the same as Tl(l;) except that all cosine functions are
replaced by sines, only the nearest-neighbor hopping
t;j = —t has been kept in the original Hamiltonian (the
unit of energy is set by ¢ = 1), and the expectation values
(did,) are to be determined self-consistently. Note
that the exact form of Hj; would depend on the spin
rotation axis & in the spiral phase (here chosen along
Z). However, the final results should not depend on this
choice as there is no coupling between the space and the
spin coordinates. We also find from direct calculations
that the exchange terms U(dld_,) appearing in Eq.
(5) contribute very little to the total energy. This
contribution would be exactly zero, if the spins don’t
mix, so that the density matrices p,,» = (dld,/) are
diagonal in the spin space.
The total energy per site is given by

2,2
EB(g) = NZ b = Ulne) (ny) + U(dldy) (d]ds) = T
(6)

where e are the eigenvalues of the Hamiltonian in Eq.
(5), the second and the third terms correct for the double
counting of the Coulomb energy, and the last term is the
lattice energy gain at each site, obtained from minimiz-
ing the lattice energy OE/0Q = 0 from Eq. (1). The



FIG. 1: Ground-state energy as a function of the hole con-
centration 6 for U/W = 1.25 and A = 0. The lines show
results for a single-site unit cell, while the crosses show the
results for a double-site unit cell, which allowed for charge and
spin disproportionation, but no such disproportionation was
found, and the double-site results converged to the single-site
results. Note that the double-site calculations allowed for the
ferro or the anti-ferro phase, but not the spiral phase.

chemical potential is related to the number of electrons
by the expression N~'> - 0(u —ez,) = n, N being
the number of lattice sites. For a fixed value of doping
0 = 1 — n, where n is the total number of electrons per
lattice site, we have minimized the total energy E(q) nu-
merically as a function of the spiral vector ¢ by varying
each component between 0 and 27. The minimum yields
the ground state. All Brillouin zone integrations were
performed with 1000 k-points. We restrict ourselves to
the hole doping region n < 1 without loss of generality,
since we have the electron-hole symmetry in the problem.

III. RESULTS

To determine the phase diagram, we calculated the
ground-state energy of the system according to Eq.(6)
for the given input parameters n, U, and A. Figure (1)
shows a typical plot of the ground-state energy per lattice
site as a function of the hole concentration ¢ for different
magnetic phases. As seen from the figure, the ground
state is antiferromagnetic (AF) at half-filling (6 = 0),
in agreement with the standard result for the Hubbard
model. With increasing hole concentration 4, the system
first turns into a spiral (S) state, then into a ferromag-
netic (F) state, and eventually into the paramagnetic (P)
state.

Note that we have considered the spiral state in Eq.
(2), which is a spin density wave (SDW) state, with the
modulation wave vector ¢, but not the charge density
wave (CDW) state, which is a higher energy state and
is not expected to occur in the parameter regime we
are working. The CDW state is difficult to incorporate
within our calculation as it requires a supercell of arbi-
trary size depending on the modulation wave vector of

u/w

FIG. 2: Ground-state phase diagram for the Hubbard model
for the simple cubic lattice. The red dashed line separates
the stable and unstable single phase regions, while the black
dashed line indicates the MIT (these two lines were calculated
from the total energy curve E(¢) for each U/W as illustrated
in Fig. (4) below). The hatched region indicates existence
of the mixed phase. The dash dotted line shows the Stoner
criterion result, Eq. (9), for a sinusoidal model density-of-
states.

the CDW. However, we can study the CDW in a special
case, viz., where the modulation ¢ = (m, 7, 7), in which
case we have two sites in the unit cell of the crystal, and
we can allow for both charge and spin disproportionation
between the two sublattices. Results of this calculation
are also shown in Fig. (1) as crosses and they go over to
the single-site results indicating the absence of any CDW
for this wave vector.

We note further that the CDW state could be favored
when the electron-lattice interaction is strong. We can
estimate the condition for this by considering the en-
ergy of the charge-disproportionated state (a special case
of the CDW) for the half-filled Hubbard-Holstein model
and comparing it with the energy of the state without
any charge disproportionation. In the former case, the
charges on the two sublattices are 1 £ 71 (n < 1 is the
charge disproportionation amplitude), and the total en-
ergy would be E = —(g%/2K)[(1 +n)? + (1 —n?)] + Un.
The first term here is the energy gain due to lattice inter-
action, the second term is due to the fact that n electrons
are forced to occupy the upper Hubbard band, and we
have neglected the kinetic energy difference in order to
get a simple estimate. It immediately follows from this
expression that such a CDW state would be favorable
it U/(WA) < 1. For the parameter regime relevant for
the oxides, this condition is not satisfied, so that it is
reasonable to omit the CDW state, which we have not
considered in our work.

Fig. (2) shows the calculated phase diagram. For
the half-filled case, there is perfect Fermi surface nest-
ing [e(kp) = e(kp+q,) = 0, @, = 7(1,1,1) is the nesting
vector], which leads to an anti-ferromagnetic insulator
for any value of U. As we move away from half filling,
perfect nesting is lost and a critical value U, is needed for
the onset of magnetic order. Below a certain hole dop-
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FIG. 3: Energy as a function of the spiral wave vector ¢ =
(¢w, ™, ) for the Hubbard model with three different Coulomb
parameters, indicating the paramagnetic (P), ferromagnetic
(F), or the spiral (S) ground state, depending on the strength
of the Coulomb U. Here, the hole concentration is § = 0.6 and
the zero of the energy has been shifted to correspond to the
minimum in each case.

ing 4, the system goes from the paramagnetic state to a
spiral state, and eventually to the ferromagnetic state, as
U is increased, while for a larger value of 4, the system
goes directly from the paramagnetic to the ferromagnetic
state.

Fig. (3) shows the calculated energy as a function
of the spiral wave vector for three different parameters.
Note that for the paramagnetic solution corresponding
to U/W = 0.3, the energy is independent of the spiral
wave vector, since the magnetic moment is zero.

Para-Ferro phase boundary — The boundary between
the paramagnetic and the ferromagnetic phases in the
Hubbard model (Fig. 2) can be understood by taking a
model density of states and applying the Stoner criterion
for ferromagnetic instability. We consider the sinusoidal
density-of-states for each spin

ple) = {g&vsm (em/W) f0<e<W, )
else,

of bandwidth W. The total energy E is a sum of the

band energy, the Coulomb energy, and the lattice energy,

which is immediately obtained from a direct integration

to yield
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where z =1-n—-m,y=1-n+m, n =ny +ny
is the number of electrons, and m = ny — ny is the
spin polarization. The Fermi energies for the up and
down spins are, respectively, ez = 7 1W cos™! z and
erp) = m 'Wcos™!y. The onset of ferromegetism is de-
termined from the Stoner criterion Up(ep) > 1, where
ep = W cos™1(1—n) is the Fermi energy of the para-
magnetic phase, while the spin polarization is determined
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FIG. 4: Ground-state energy as a function of the hole concen-
tration J, indicating phase instability near half filling (6 = 0),
and the Maxwell construction that yields the upper concen-
tration §* for the existence of the mixed phase. The system
remains an insulator for § < d., the percolation threshold,
beyond which the metallic fraction forms a percolation net-
work making the system a conductor. Parameters used are:
U/W =2.0 and A = 0.

by the minimization of the energy, Eq. (7), as a function
of the polarization m. The Stoner criterion leads to the
equation of the para-ferro transition line:

2w,

d=1—-—n=4/1 (WU)’ (9)
which is plotted as a dotted line in Fig. (2) and re-
produces the trend found from the full solution of the
Hubbard model for the cubic lattice. It is readily seen
from Eq. (9) that for the Coulomb interaction below the
critical value U. = 2/m, the system is paramagnetic for
all values of the hole concentration §.

Percolative metal-insulator transition — Returning to
our original Hubbard-Holstein model, as seen from Fig.
(1), the ground-state energy is not everywhere convex,
which indicates a phase separation, which is seen for
small doping near half filling. At half filling, we have
an antiferromagnetic insulator. As holes are introduced,
the system phase separates into two regions, one is the
anti-ferro insulating state with hole concentration zero,
and the second is a spiral or ferro phase (depending on
the strength of U) with hole concentration §*. As ¢ is
increased, so does the volume of the metallic fraction.
When it exceeds a certain threshold d., given by the per-
colation theory, the metallic regions form a percolative
network and the system conducts.

The fraction of the two phases can be obtained from
the standard Maxwell construction, which is illustrated
for the case of U/W = 2 in Fig. (4). If v,,(v;) is the
volume fraction of the substance in the metallic (insulat-
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FIG. 5: Phase diagram indicating the various phases as a
function of carrier (electron or hole) doping 6. As ¢ is in-
creased starting from the AF insulator state at half-filling
(6 = 0), the system continues to be a mixed-phase insulator,
turning into a percolative metal beyond J = J., and eventu-
ally becoming a single-phase metal beyond 6" as discussed in
the text.

ing) phase in the mixed phase region (6* < ¢ < 0), then
we have the two equations: v, + v; = 1 and v,,0* = 6,
which means that the metallic volume fraction linearly
increases with the hole concentration, i.e., v, = §/0*.
The hole concentration §* separates the mixed phase re-
gion from the single phase region and depends on the
Hamiltonian parameters as seen, e.g., from Fig. (2), and
it must be calculated from the total energy curve for each
set of parameters from a Maxwell construction.

The Maxwell construction indicates phase separation
into two separate regions consisting of single phases, sep-
arated by a single boundary. However, in the actual
solids, one does not encounter such clear phase separa-
tion, but rather a mixed phase usually results, where
the two phases are intermixed on the nanoscale. There
are many reasons why a mixed phase could be more fa-
vorable. For example, the presence of a small amount of
charged impurities because of unintentional doping could
cause a deviation from charge neutrality of the two com-
ponents and would impede the formation of the phase
separation due to the large cost in Coulomb energy. Thus
one would encounter a nanoscale inhomogeneous phase
(or mixed phase) with intermixed metallic and insulating
components (Coulomb frustrated phase separation)3?. It
has also been suggested that the mixed phase could even
originate due to kinetic reasons, i.e., self-organized in-
homogeneities resulting from a strong coupling between
electronic and elastic degrees of freedom®. A large num-
ber of experiments point to the existence of the mixed
phases in the oxide materials, including transport results
and scanning tunneling microscopy images.*'43

The percolation threshold v., beyond which the metal-
lic regions touch and the percolative conduction begins,
depends on the specific model used in the percolation
theory, but is typically about v. =~ 0.30. For example,
in the percolation model, where the metallic region con-

sists of randomly-packed, overlapping spheres of radius
r in an insulating matrix, the critical volume fraction of
the spheres for the onset of percolation is v, ~ 0.29 and
is independent of 744, On the other hand, for the site
percolation problem in the cubic lattice, the percolation
threshold is about v, = 0.31. The site percolation thresh-
olds are long well known,*> but are summarized in Table
I for ready reference. We have used the value v, = 0.3 in
our calculations, which is similar to the site percolation
result for the cubic lattice.

cubic |diamond | bee | fee [square | triangular | honeycomb
ve| 0.31 | 043 |0.25/0.20| 0.59 0.5 0.7

TABLE I: Site percolation threshold v. for various lattices

Percolative conduction occurs, when the metallic vol-
ume fraction exceeds v, i.e., 6/5* = vy, > v, or

§ > 0o = ve6%, (10)

where 0* is the critical concentration, beyond which the
system turns into a single-phase metal, which is either
ferromagnetic or in the spin spiral state depending on
the strength of U/W (see Fig. (2)). For the specific
parameters used in Fig. (4), the full metallic phase for
0 > §* is ferromagnetic; for intermediate values of § be-
tween 0 and §*, the phase separation occurs between the
AFT half-filled (6 = 0) phase and the FM metallic phase
with carrier concentration 0*. Fig. (5) summarizes the
phase diagram showing the MIT boundary. The system
continues to remain an AF insulator until dopant con-
centration (electrons or holes) exceeds the critical value
Oc.
Effect of electron-lattice coupling— A finite value of the
electron-lattice coupling in the Hubbard-Holstein model
does not change the relative energies of the various phases
for a fixed concentration n as already noted, since it alters
the energy of each phase equally (see Egs. (6) and (8)).
The presence of charge disproportionation or a CDW (n
varies from site to site) would change the phase diagram;
However, as we have already argued at the beginning
of this Section, for parameters relevant to the oxides,
the CDW phase is unlikely to occur, which we have not
considered in this work. Thus the various phase regions
(AF, F, P, or S) in the phase diagram, Fig. (2), remain
unchanged. However, the curvatures of the ground-state
total energy as a function of n or 4, as in Fig. (1), change,
leading to the phase separation regions which now change
with A, and therefore so do the quantities §. and d*. This
is clearly seen from Fig. 6, where 6* increases as the
electron-lattice coupling strength A is increased.

Fig. (7) shows the critical doping ¢. as a function of
the electron-lattice coupling strength A for several values
of U/W. As seen from the figure, the larger the value
of A, the higher is the dopant concentration J needed for
the transition into the metallic state. Finally, Fig. (8)
shows the phase diagram in the Hubbard-Holstein model
for a specific value of A.



FIG. 6: Energy vs. doping § for different strengths of the
electron-lattice coupling A = 0,0.25, and 0.6 with U/W =
1.25. A linear term const. xn has been subtracted from the
energy and the zero of the energy has been redefined to more
clearly show the Maxwell construction.
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FIG. 7: The critical dopant concentration . for the MIT as
a function of the electron-lattice coupling strength . d. was
obtained from the Maxwell construction (Fig. (6)) and Eq.
(10).

To make connections with the experiments, we sum-
marize the measured critical carrier density for the MIT
in several perovskite oxides from the existing literature
in Table II. As these results indicate, the critical car-
rier concentration d, needed to transform the insulating
phase into the metallic phase is a significant fraction of
unity, starting from 0.05 for LaTiOg3 to as high as 0.5 for
YVOg3. However, other than a few systems, where ¢, is
as high as 0.5, for most compounds shown in Table II, it
is between 0.05 and 0.2, which is the typical value of §.
predicted by our theory.

Fig. (9) shows the experimental conductivity
behavior®® of the doped titanates RTiO3 plotted against
the bandwidth of the material as well as the same cal-
culated from our theory. Although inclusion of the de-
tail interactions in the Hamiltonian may be necessary
for a quantitative description of a specific compound,
the general trend for the onset of the MIT is well de-
scribed within the Hubbard-Holstein model. As seen

s
D
1 holes 0 electrons 1
)
FIG. 8 Ground state phase diagram for the Hubbard-

Holstein model for the simple cubic lattice for A = 0.6, with
d. indicating the critical carrier concentration for percolative
MIT, where 6§ > d. is the metallic region.

perovskite oxide |critical hole | Ref.
doping (4.)
SmNiOs 0.1 »
LaTiOs 0.05 1
PrTiOs 0.14 50
NdTiOs 0.2 50
SmTiO3 0.24 50
YTiOs 0.35 5T
LaMnOs 0.17- 0.2 [°%53
PrMnOs 0.3-0.5 [°*°°
NdMnOs3 0.5 56
LaVO3 0.176 [T
YVOs; 0.5 16,18

TABLE II: Summary of the experimental results for the crit-
ical hole doping in the perovskite oxides for transition to the
metallic state.

from Fig. (9), for a large bandwidth (U/W less than
a critical value), the system is a metal for all doping lev-
els, and as U/W is increased beyond a critical value, the
critical carrier concentration for MIT increases, roughly
linearly. This agrees with the experimental data, where
Katsufuji et al.?? have plotted the inverse bandwidth vs.
the conduction behavior for a large number of samples
with different carrier concentrations in the titanates. As
was argued in Ref.’°, the magnitude of the Coulomb
U may be expected to be relatively unchanged for the
R1-2Ca;TiO3,, /2 series, allowing a direct comparison
of the trends seen in theory vs. experiments.

One point to note is that Eq. (10) puts an upper limit
on the critical doping 6. ~ 0.3, since §* can not exceed
one and v, ~ 0.3, which is what is observed for most
of the samples in Table I. For carrier concentration ¢ as
high as 0.5, as is the case for some of the samples, the
crystal and electronic structures are likely changed sig-
nificantly, making the model less applicable for such sys-
tems. In our theory, we have assumed that the percola-
tive conduction occurs in the mixed phase, where the two
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FIG. 9: Experimental conductivity data, taken from Katsu-
fuji et al.??, for the hole-doped RTiOs system, with the x-axis
showing the renormalized bandwidth W (ratio of the band-
width of each RTiOs3 to that of LaTiOs) (top) and the theo-
retical phase diagram from the present calculations, with the
electron-lattice coupling strength A = 0.6 (bottom).

components (metallic and insulating) occur randomly, so
that the percolation theory applies. If the two compo-
nents do not occur randomly, but rather that there is
a tendency towards coalescing of the components, this
would increase the critical value d., as more volume frac-
tion of the metallic component will be needed before a
percolation path for conduction forms.

Note that the Hartree-Fock approximation due to its
mean-field nature does omit the effect of fluctuations

on the phase separation. It has been shown that such
quantum fluctuations can indeed modify the magnetic
phase boundary within the Hubbard model®”-*8. How-
ever, the qualitative similarity of our theoretical results
with the experiments (as seen from Fig. (9)) suggests
that the Hartree-Fock results should contain the qualita-
tive physics of the problem, while the fluctuation effects
will likely alter the predicted critical doping quantita-
tively. The effect of the fluctuations on the phase sepa-
ration remains an open question for future study.

IV. SUMMARY

In summary, we studied the phase diagram and ener-
getics of the Hubbard-Holstein model using the Hartree-
Fock method. For a wide range of the Hamiltonian pa-
rameters, we found the existence of a mixed phase, con-
sisting of an undoped component which is an anti-ferro
insulator and a carrier-rich metallic phase, which is ei-
ther ferromagnetic or spiral magnetic. As the carrier
concentration (electrons or holes) increases with doping,
the metallic portion slowly grows forming isolated islands
in an insulating matrix. As the volume fraction of the
metallic islands increases with carrier doping, eventually
they form a percolative conducting network and the ma-
terial conducts beyond the critical dopant concentration
d.. This happens for §. which is typically between zero
and 0.2 or so, in general agreement with the experimental
results. We furthermore showed that the electron-lattice
interaction favors the insulating phase with respect to
the metallic phase and the critical doping value increases
along with the strength of the electron-lattice coupling.
The general trends for the critical doping concentration
for MIT predicted by our theory agrees with the existing
experimental results for the hole doped perovskite oxides.
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