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For a generic lattice Hamiltonian of the electron states in Weyl semimetals, we calculate the
electric charge and current densities in the first order in background electromagnetic and strain-
induced pseudoelectromagnetic fields. We show that the resulting expressions for the densities
contain contributions of two types. The contributions of the first type coincide with those in the
chiral kinetic theory. The contributions of the second type contain the information about the
whole Brillouin zone and cannot be reproduced in the chiral kinetic theory. Remarkably, the latter
coincide exactly with the Bardeen-Zumino terms that are usually introduced in relativistic quantum
field theory in order to define the consistent anomaly. We demonstrate the topological origin of the
Bardeen-Zumino (or, equivalently, Chern-Simons) corrections by expressing them in terms of the
winding number in the lattice Hamiltonian model.

I. INTRODUCTION

The possibility to observe the signatures of the chiral anomaly is one of the most intriguing aspects of the physics
of Weyl semimetals, whose low-energy quasiparticles are described by the corresponding relativistic-like equation in
the vicinity of Weyl nodes. A condensed-matter realization of Weyl fermions was first predicted theoretically in
pyrochlore iridates [1]. Later, a number of materials (e.g., TaAs, TaP, NbAs, NbP, MoxW1−xTe, and YbMnBi2) were
discovered to be Weyl semimetals [2–9]. In accordance with the general arguments of Nielsen and Ninomiya [10], Weyl
nodes in such condensed-matter materials come in pairs of opposite chirality. In fact, typical Weyl semimetals have
multiple pairs of opposite-chirality nodes in the reciprocal space that are shifted from each other either in momentum
or energy. The corresponding chiral structure implies that the time-reversal symmetry or parity is broken. This is
also what makes them qualitatively different from the Dirac semimetals, such as A3Bi (A = Na,K,Rb), Cd3As2, and
ZrTe5 [11–13], in which pairs of opposite-chirality nodes overlap, and both discrete symmetries are preserved.
Formally, the low-energy effective theory of a Weyl semimetal is invariant under the chiral symmetry that is

generated by independent phase transformations of the left- and right-handed fermions. Such a symmetry, however,
is anomalous in the presence of parallel electric and magnetic fields [14]. In relativistic quantum field theories, the
origin of the anomaly is connected with the absence of an ultraviolet (high-energy) regularization consistent with
both electric and chiral charge conservation. In condensed matter systems, on the other hand, the Brillouin zone is
always finite in the reciprocal space and, thus, ultraviolet divergences are absent. Because of its topological roots [10],
however, the chiral anomaly is still present and can have observable implications. One of them is a large negative
magnetoresistance [15–18] that was experimentally observed in Na3Bi [19], Cd3As2 [20, 21], ZrTe5 [22], GdPtBi [23],
and TaAs [24].
An efficient approach to study the electromagnetic response of Weyl semimetals is the chiral kinetic theory [25–

27], which is the generalization of the standard kinetic theory [28] to the case of Dirac and Weyl quasiparticles.
Not only does it capture the topological properties of the chiral fermions via the Berry curvature [29], but also
correctly describes the chiral anomaly in background electromagnetic fields. It turns out, however, that the chiral
kinetic theory does not include all topological contributions relevant for Weyl semimetals. In particular, it misses the
Bardeen-Zumino current (also known as the Chern-Simons current), which is critical for the correct description of
the chiral magnetic effect [30, 31], the anomalous Hall effect [32–36], and collective excitations in Weyl materials [37].
Note that the Bardeen-Zumino term [38] was first proposed in relativistic quantum field theories in order to define the
consistent anomaly (for an instructive discussion of the Bardeen-Zumino current in the context of Weyl semimetals,
see Refs. [39, 40]).
In this connection, let us briefly recall the concepts of covariant and consistent anomalies in the high energy physics

[40]. Because of the regularization ambiguity in the calculation of the triangle diagram [14], there is a freedom in
the definitions of electric and chiral current densities in quantum field theory with chiral fermions. The results are
defined up to a Bardeen–Zumino polynomial [38] in gauge fields. In the covariant scheme, the currents are required to
couple covariantly to background gauge fields. However, they cannot be defined as functional variations of a quantum
effective action. In the consistent scheme, the corresponding currents are given by the variations of the quantum
action. Such currents are consistent with the local electric charge conservation even in the presence of both vector
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and axial gauge fields.
Theoretically, the absence of the Bardeen-Zumino current in the chiral kinetic theory becomes a particularly acute

problem in Weyl semimetals subjected to pseudoelectromagnetic fields induced by mechanical strains [41–47]. In
essence, these fields resemble the ordinary electromagnetic ones, but couple to opposite chirality quasiparticles with
different signs. The standard formulation of the chiral kinetic theory would then imply a local nonconservation of
the electric charge in background electromagnetic and pseudoelectromagnetic fields. Clearly, this is unacceptable.
Therefore, the chiral kinetic theory should be amended by including the additional Bardeen-Zumino terms in the
definition of the charge and current densities [37]. In the four-vector notation, the explicit form of the corresponding

fermion current reads jν
BZ

= −e2ǫνραβA5
ρFαβ/(4π

2) [38–40], where field A5
ρ = bρ + Ã5

ρ consists of the strain-induced

pseudoelectromagnetic gauge field Ã5
ρ and the chiral shift four-vector bρ = (b0,−b). Note that b0 and b describe the

energy and momentum-space separation between the Weyl nodes, respectively.
In relativistic field theory, the structure of the Bardeen-Zumino term can be established [38, 39] by requiring that

the ultraviolet regularization of the theory is consistent with the electric charge conservation. The same argument is
often tacitly followed in Weyl semimetals, although there are no ultraviolet divergencies in condensed matter systems
and the concept of chiral quasiparticles works only in the vicinity of the Weyl nodes. Thus, one of the main goals of
this study is to understand whether the Bardeen-Zumino current is universal and topologically protected in realistic
models of Weyl semimetals with a finite Brillouin zone. As we will show, it is proportional to the winding number
of the mapping of a two dimensional section of the Brillouin zone onto the unit sphere and, thus, indeed has a
topological origin. Moreover, we will demonstrate that the result is quite general and works even in the case of multi-
Weyl semimetals [48–50] (i.e., Weyl semimetals with the topological charge of the nodes greater than one), whose
topological responses were recently discussed in Ref. [51] using the Fujikawa’s regularization method.
This paper is organized as follows. In Sec. II, we introduce a generic lattice model of Weyl semimetals and outline

the general formalism that we will use to study the electromagnetic response. In Sec. III, we derive the expressions
for the electric charge and current densities in the linear order in a background magnetic field and compare the results
with their counterparts in the chiral kinetic theory. We study the response to a background electric field in Sec. IV.
The response to strain-induced pseudomagnetic and pseudoelectric fields is studied in Secs. V and VI, respectively.
The summary of our results and general conclusions are presented in Sec. VII. Technical details of derivations are
given in several appendices at the end of the paper. Throughout the paper, we use the units with ~ = c = 1.

II. MODEL

The electron states in a generic lattice Weyl semimetal can be described by the following Hamiltonian [30, 32] in
the momentum space:

Hlatt = d0 + d · σ, (1)

where σ = (σ1, σ2, σ3) are the Pauli matrices and functions d0 and d are periodic in quasimomenta k = (kx, ky, kz).
The latter can have, for example, the following explicit form:

d0 = g0 + g1 cos (azkz) + g2 [cos (axkx) + cos (ayky)] , (2)

d1 = Λ sin (axkx), (3)

d2 = Λ sin (ayky), (4)

d3 = t0 + t1 cos (azkz) + t2 [cos (axkx) + cos (ayky)] , (5)

where ax, ay, and az denote the lattice spacings and parameters g0, g1, g2, Λ, t0, t1, and t2 are material dependent.
Their characteristic values valid for Na3Bi are given in Appendix A and will be used in our numerical calculations.
Also, for the sake of simplicity, we will assume that the lattice is cubic, i.e., ax = ay = az = a.
As is easy to check, the dispersion relations of quasiparticles described by the model Hamiltonian (1) are given by

ǫk = d0 ± |d|. (6)

When the parameters are such that |t0 + 2t2| ≤ |t1|, this model has two Weyl nodes separated in momentum space
by ∆kz = 2bz, where the chiral shift parameter bz is given by the following analytical expression:

bz =
1

az
arccos

(−t0 − 2t2
t1

)

. (7)

For simplicity, we will assume that the energy vanishes at the position of Weyl nodes. In terms of the model parameters,
this implies that g0 + 2g2 − g1(t0 + 2t2)/t1 = 0. In a general case, this condition can be enforced by an appropriate
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redefinition of the reference point for the chemical potential. Further, as one can see from the left panel of Fig. 1, d0
introduces an asymmetry between the valence and conduction bands, which complicates the analysis. Therefore, for
the sake of simplicity, in what follows we will drop the term d0. It is instructive to note, that ǫ0 [which is the value
of energy (6) at k = 0] defines the height of the “dome” in the energy spectrum. On the other hand, parameter t1
affects both the momentum space separation between the Weyl nodes and the value of the Fermi velocity.
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FIG. 1. Left panel: The energy spectrum of the lattice model (1) given by Eq. (6) for d0 6= 0 (red solid lines) and d0 = 0 (blue
dashed lines) as a function of kz at kx = ky = 0. Right panel: The energy spectrum (6) for several different values of parameter
t1. The complete set of model parameters is given in Appendix A.

In order to study a linear electromagnetic response in the Weyl semimetal, we include an interaction with the gauge
field through the following interaction term:

Hint = j ·A, (8)

where the electric current density operator in the momentum space is given by

j(k) = −e∇kHlatt, (9)

and e is a fermion charge. By using Eqs. (2)–(5), we derive the explicit expressions for the components of the current,
i.e.,

jx = e ax [t2 sin (kxax)σz + g2 sin (kxax)− Λ cos (kxax)σx] , (10)

jy = e ay [t2 sin (kyay)σz + g2 sin (kyay)− Λ cos (kyay)σy ] , (11)

jz = e az [t1 sin (kzaz)σz + g1 sin (kzaz)] . (12)

In a many-body system, the electric charge and current densities are given in terms of the quasiparticles Green’s
function G(r, r′) as follows:

ρ = −e lim
r′→r

tr [G(r, r′)] , (13)

J = − lim
r′→r

tr [j(−i∇r)G(r, r′)] , (14)

where r = (t, r) and r′ = (t′, r′). To the linear order in the background electromagnetic fields, the Green’s function
has the form

G(r, r′) = G(0)(r − r′) +G(1)(r, r′) + . . . . (15)

Because of translation invariance in the absence of background fields, the zeroth-order Green’s function depends only
on the difference r− r′. The same is not true, in general, for the first-order part of the Green’s function. The Fourier
transform of G(0)(r − r′) follows directly from the model Hamiltonian (8), i.e.,

G(0)(ω;k) =
i [ω + µ+ (d · σ)]

[ω + µ+ i0 sgn (ω)]2 − |d|2 , (16)
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where we introduced a nonzero chemical potential µ and omitted d0. Now, the correction to the Green’s function
linear in the electromagnetic field can be obtained by using a perturbative expansion in the interaction Hamiltonian,
i.e.,

G(1)(r, r′) = −i

∫

dr′′G(0)(r − r′′)Hint(r
′′)G(0)(r′′ − r′). (17)

In the next two sections, we will use the above representation for the Green’s function in order to study the linear
response of Weyl semimetals to background electromagnetic fields. A similar representation, although with a different
interaction Hamiltonian, will be also used later in the case of strain-induced pseudoelectromagnetic fields.

III. RESPONSE TO BACKGROUND MAGNETIC FIELD

In this section we derive explicit expressions for the electric charge and current densities to the linear order in
a background magnetic field. We assume that the field points in the +z direction and is described by the vector
potential in the Landau gauge, i.e., A = (0, xB, 0). By making use of the definitions in Eqs. (13) and (14), as well as
the linear-order correction to the Green’s function G(1)(r, r′) obtained in Appendix D, we find

ρ =
eB

2

∫

dωd3k

(2π)4
tr

{

[

∂kx
G(0)(ω,k)

]

jy(k)G
(0)(ω,k)−G(0)(ω,k)jy(k)

[

∂kx
G(0)(ω,k)

]

}

, (18)

Jn =
B

2

∫

dωd3k

(2π)4
tr

{

jn(k)
[

∂kx
G(0)(ω,k)

]

jy(k)G
(0)(ω,k)− jn(k)G

(0)(ω,k)jy(k)
[

∂kx
G(0)(ω,k)

]

+ δn,x [∂kx
jx(k)]G

(0)(ω,k)jy(k)G
(0)(ω,k) + 2ixδn,xjx(k)G

(0)(ω,k)jy(k)G
(0)(ω,k)

}

. (19)

Note that both densities are given in terms of the zeroth-order Green’s function G(0)(ω,k) defined in Eq. (16), as well
as its derivatives with respect to the quasimomentum.
Let us first calculate the electric charge density (18). After substituting the explicit form of the zeroth-order Green’s

function G(0)(ω,k), we find that the integration over ω can be performed analytically. For the details of the derivation,
see Appendix E 1. In the case of the vanishing chemical potential, the final result reads

ρ = − e2B

2(2π)3

∫

d3k
(

d̂ ·
[

(∂kx
d̂)× (∂ky

d̂)
])

, (20)

where d̂ ≡ d/|d|. Its topological nature is evident from the fact that the integrand is proportional to the z component
of the Berry curvature. Indeed, the latter is defined by [52]

Ωi =

3
∑

l,m=1

ǫilm
4

(

d̂ ·
[

(∂kl
d̂)× (∂km

d̂)
])

. (21)

A component of the Berry curvature can be also viewed as the Jacobian of the mapping of a two dimensional section

of the Brillouin zone onto the unit sphere k̂ → d̂, i.e., T 2 → S2. When integrated over the area of the cross-section
(for example, the kx-ky plane), it counts the winding number of the mapping, or the Chern number [53]

C(kz) =
1

4π

∫

dkx dky

(

d̂ ·
[

(∂kx
d̂)× (∂ky

d̂)
])

. (22)

As is easy to check, C(kz) depends on kz and vanishes for |kz | ≥ bz in the model under consideration. By integrating
the Chern number over kz , we find that the result for ρ coincides with the topological Bardeen-Zumino expression for
the electric charge density induced by a magnetic field [38–40], generalized to the case of a multi-Weyl semimetal, i.e.,

ρBZ = −n
e2Bbz
2π2

. (23)

Here n denotes the topological charge of the Weyl nodes in multi-Weyl semimetals, i.e., n = 1 in a Weyl semimetal,
n = 2 in a double-Weyl semimetal, and n = 3 in a triple-one. Indeed, as we show in Appendix B, the corresponding
lattice models of multi-Weyl semimetals can be defined by the same Hamiltonian as in Eq. (1), but with a different
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choice of functions d. Then, the electric charge density at µ = 0 will be formally given by the topological expression
(20) proportional to the winding number. This finding confirms that the Bardeen-Zumino contribution to the electric
charge density is reproduced exactly in lattice models of multi-Weyl semimetals with finite Brillouin zones.
As we already mentioned in the Introduction, the result in Eq. (23) cannot be captured by the chiral kinetic theory.

The easiest way to see this is to note that the equations of the chiral kinetic theory do not contain the chiral shift
parameter b at all. It is rather interesting, as we argue below, that the topological Bardeen-Zumino term appears to
be the only contribution that the chiral kinetic theory fails to reproduce. In order to fully substantiate this claim, it
is instructive to consider the calculation of the electric charge density in the same lattice model at nonzero chemical
potential µ.
To the linear order in magnetic field B, the complete expression for the electric charge density at nonzero chemical

potential µ reads

ρ = ρBZ + ρµ, (24)

where the additional “matter” part of the density is given by

ρµ =
e2B

2(2π)3

∫

d3k

|d|3
(

d ·
[

(∂kx
d)× (∂ky

d)
])

θ (|µ| − |d|) + e2B

(2π)3

∫

d3k

|d| δ
(

µ2 − |d|2
) (

d ·
[

(∂kx
d)× (∂ky

d)
])

. (25)

By making use of the Berry curvature defined in Eq. (21), the matter part can be cast in a simpler form, i.e.,

ρµ = e2
∫

d3k

(2π)3
(B ·Ω) [θ (|µ| − |d|) + |d| δ (|µ| − |d|)] . (26)

For a specific set of model parameters in Appendix A, it is straightforward to calculate the corresponding contribution
to the charge density using numerical methods. It is much more instructive, however, to compare Eq. (26) with its
counterpart in the chiral kinetic theory (see, e.g., Ref. [54]):

ρCKT =
∑

η=±

ηe

∫

d3k

(2π)3
[1 + ηe(B ·Ω)]

[

1 + e(vF k−eηvF k(B·Ω)−ηµ)/T
]

−
∑

η=±

ηe

∫

d3k

(2π)3
nη(vF k)

≃
∑

η=±

ηe

∫

d3k

(2π)3
[

nη(vF k) + ηe(B ·Ω)nη(vF k)− ηvF ke(B ·Ω)n′

η(vF k)
]

−
∑

η=±

ηe

∫

d3k

(2π)3
nη(vF k), (27)

where nη(x) = 1/
[

1 + e(x−ηµ)/T
]

is the Fermi-Dirac distribution, and we set c = 1 according to the conventions in
this paper. In the zero temperature limit, the corresponding contribution linear in the magnetic field reads

ρCKT = e2
∫

d3k

(2π)3
(B ·Ω) [θ(|µ| − vFk) + vFkδ(|µ| − vFk)] . (28)

As we see, the chiral kinetic theory result in Eq. (28) reproduces exactly the matter part of the charge density in
Eq. (26) obtained in the lattice model of a Weyl semimetal if we set d = vFk.
Let us discuss now the electric current density. As in the case of the electric charge density, after substituting the

zeroth-order Green’s function G(0)(ω,k), see Eq. (16), into the expression for the current density (19) and performing
the integration over ω analytically (see Appendix E 1 for details), we obtain

Jn = −e2B

∫

d3k

(2π)3
sgn (µ)

3
∑

i,l,m=1

ǫilm(∂kn
di)(∂kx

dl)(∂ky
dm)δ

(

µ2 − |d|2
)

, (29)

where we omitted the imaginary, as well as coordinate-dependent terms that vanish after the integration over the
momentum. Further, after integrating over the whole Brillouin zone, we find that the electric current density (29)
linear in a constant background magnetic field vanishes. This means that the chiral magnetic effect is absent in the
equilibrium state, which is in agreement with general requirements of the band theory of solids [30, 55].

IV. RESPONSE TO BACKGROUND ELECTRIC FIELD

In order to identify the topological Bardeen-Zumino contributions in the electric current density, one needs to study
the response of the lattice Weyl model to a background electric field. The corresponding analysis is performed in this
section using the Kubo’s linear response theory.



6

In the framework of the Kubo’s theory, the charge and current densities can be written in the form ρ = σ0mEm

and Jn = σnmEm, respectively. Here σνm with ν = (0, x, y, z) describes the response of the charge and direct current
densities to the electric field, which is related to the polarization tensor Πνm(Ω + i0;0) via the standard relation:

σνm = − lim
Ω→0

i

Ω
Πνm(Ω + i0;0), (30)

where the polarization tensor is defined in terms of the quasiparticle Green’s function, i.e.,

Πνm(Ω + i0;0) = −T

∞
∑

l=−∞

∫

d3k

(2π)3
tr
[

jν(k)G
(0)(iωl;k)jm(k)G(0)(iωl − Ω;k)

]

(31)

and ωl = (2l + 1)πT (with l ∈ Z) are the fermion Matsubara frequencies. Here, we also introduced the four-vector
jν = (e,−j). By following the standard approach, it is convenient to rewrite the Green’s function in terms of its
spectral function

G(0)(iωl;k) =

∫ ∞

−∞

dω
A(ω;k)

iωl + µ− ω
, (32)

where, by definition,

A(ω;k) ≡ i

2π

[

G(0)(ω + i0;k)−G(0)(ω − i0;k)
]

µ=0
= i

∑

s=±

|d|+ s(d · σ)
2|d| δ (ω − s|d|) . (33)

As indicated by the delta function, this spectral function describes noninteracting quasiparticles with a vanishing decay
width. In realistic models, of course, the corresponding decay width should be nonzero. This can be implemented by
using a phenomenological model, in which the delta function is replaced with the Lorentzian distribution, i.e.,

δΓ(ω − s|d|) ≡ 1

π

Γ(ω)

(ω − s|d|)2 + Γ2(ω)
. (34)

Note that, at low energies, the quasiparticle width includes a constant part Γ0 as well as a frequency-dependent part
proportional to ω2 [56], i.e., Γ(ω) = Γ0(1 + ω2/ǫ20). Henceforth, we will omit the argument of Γ. By making use of
the spectral representation for the Green’s function, Eq. (30) can be recast in the following form:

σνm = lim
Ω→0

i

Ω
T

∞
∑

l=−∞

∫

d3k

(2π)3

∫ ∫

dωdω′ tr [jν(k)A(ω;k)jm(k)A(ω′;k)]

(iωl + µ− ω) (iωl − Ω− i0 + µ− ω′)
. (35)

After performing the summation over the Matsubara frequencies and setting T = 0, we derive the following results:

σ0m = e2π

∫

d3k

(2π)3
δ2Γ(µ− |d|)− δ2Γ(µ+ |d|)

|d| (d · (∂km
d)) , (36)

σnn = e2π

∫

d3k

(2π)3
1

|d|2
{

((∂kn
d) · d)2

[

δ2Γ(µ− |d|) + δ2Γ(µ+ |d|)
]

− 2δΓ(µ− |d|)δΓ(µ+ |d|)
[

((∂kn
d) · d)2 − |d|2(∂kn

d)2
]}

. (37)

In addition, there are also nonzero off-diagonal components of the conductivity tensor. In the clean limit, in particular,
the latter read

σnm = −e2

2

∫

d3k

(2π)3

(

d̂ ·
[

(∂kn
d̂)× (∂km

d̂)
])

[1− θ(|µ| − |d|)] , (38)

and the only nonvanishing components of this conductivity tensor are σ12 = −σ21.
It should be clear that the off-diagonal conductivity σ12 in Eq. (38) has a topological origin in the limit of the

vanishing chemical potential (µ → 0). Indeed, as in the case of the charge density (20), it is determined by the
integral of the Chern number (22), or the winding number, which is equal to the topological charge of the Weyl
nodes n. After calculating the corresponding integral, we derive the following explicit result for the anomalous Hall
conductivity:

σ12 = −σ21
µ=0
= −n

e2bz
2π2

. (39)
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This result corresponds to the expected topological Bardeen-Zumino current that describes the anomalous Hall con-
ductivity [32–36]. For a set of model parameters in Appendix A, the zero-temperature Hall conductivity σ12 as a
function of the chemical potential µ is plotted in Fig. 2. From a physics viewpoint, the corresponding result includes
both the anomalous and matter contributions. It is interesting to note that the total Hall conductivity decreases
with increasing the absolute value of chemical potential. Moreover, the corresponding dependence is much steeper in
the case of double- and triple-Weyl semimetals. Since the second term with the theta-function in Eq. (38) contains
the integration over all filled quasiparticle states, naively it contradicts the conventional wisdom of the Fermi liquid
theory which states that the conductivity is related only to the states on the Fermi surface. However, it was shown
in Ref. [52] that the corresponding term can be rewritten as a Fermi surface integral and is always present in realistic
models at nonzero chemical potential. According to Ref. [57], the off-diagonal conductivity of a completely filled or
empty band should be proportional to a primitive reciprocal lattice vector (including zero). Notice that in the model
under consideration this requirement is trivially satisfied, because σ12 tends to zero when the bands are completely
filled or empty (µ → ±∞).

n=1

n=2

n=3

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

μ/ϵ0

σ12(μ)

σ12(0)

FIG. 2. The dependence of the zero-temperature Hall conductivity σ12 in a Weyl semimetal (red solid line), a double-Weyl
semimetal (blue dashed line), and a triple Weyl-semimetal (green dotted line) on the chemical potential. Here ǫ0 is the value
of energy (6) at k = 0. The numerical results are calculated for the model parameters in Appendix A.

V. RESPONSE TO A STRAIN-INDUCED PSEUDOMAGNETIC FIELD

In the preceding two sections, we studied the electric charge and current response of a Weyl semimetal to external
magnetic and electric fields in the lattice model (1). It is also of interest to investigate the response of Weyl materials
to pseudoelectromagnetic fields. The latter, as we mentioned in the Introduction, could be generated by applying
mechanical deformations to Weyl semimetals. In this section, we consider the response a Weyl semimetal with n = 1
to a strain-induced pseudomagnetic field B5. The response to a pseudoelectric field E5 will be studied in the next
section.
According to Ref. [46], strains in Weyl materials lead to the following additional terms in Hamiltonian (1):

δhstrain = Λ (u13σx + u23σy) sin (akz)− t1u33σz cos (akz), (40)

where uij = (∂iuj + ∂jui) /2 is the symmetrized strain tensor and u = (u1, u2, u3) is the displacement vector. In the
vicinity of Weyl nodes, the additional terms given by Eq. (40) can be interpreted as the interaction Hamiltonian of
Weyl quasiparticles with the background axial gauge field

A5 =
1

ea
{u13 sin (abz), u23 sin (abz), u33 cot (abz)} . (41)

As is clear, not all strains in Weyl materials can produce nontrivial pseudoelectromagnetic fields. For example, a time
independent u33 describes a stretching of the crystal along the +z-direction. This leads to a simple redefinition of
the parameter t1 → (1 − u33)t1 that, in turn, modifies the value of the chiral shift parameter (7). In the rest of this
section, we will primarily concentrate on the case of static strains with ∇ ×A5 6= 0 that describe pseudomagnetic
fields.
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We consider the case of a constant strain-induced pseudomagnetic field along the z direction. Such a field can be
induced, for example, by applying torsion to a wire made of a Weyl material,

B5 ≡ ∇×A5 = − θ

Lea
sin (abz)ẑ, (42)

where u = θz[r × ẑ]/L, θ is the torsion angle, and L is the length of the crystal. Then the interaction Hamiltonian
(40) takes the following explicit form:

δhstrain =
eB5aΛ sin (akz)

2 sin (abz)
(xσy − yσx) . (43)

It should be noted that the latter has the same structure as the interaction Hamiltonian in the case of a constant
magnetic field B. This becomes evident by introducing the following notation for the transverse components of the
axial current:

j5x =
eaΛ

sin (abz)
σx sin (akz), (44)

j5y =
eaΛ

sin (abz)
σy sin (akz). (45)

Then, in the full analogy with Eqs. (18) and (19), we derive the following expressions for the electric charge and
current densities induced by the pseudomagnetic field:

ρ =
eB5

4

∫

dωd3k

(2π)4
tr

{

− (∂ky
G(0))j5xG

(0) +G(0)j5x(∂ky
G(0)) + (∂kx

G(0))j5yG
(0) −G(0)j5y(∂kx

G(0))

}

(46)

Jn =
B5

4

∫

dωd3k

(2π)4
tr

{

− jn(∂ky
G(0))j5xG

(0) + jnG
(0)j5x(∂ky

G(0))− δn,y(∂ky
jy)G

(0)j5xG
(0) − 2iyδn,yjyG

(0)j5xG
(0)

+ jn(∂kx
G(0))j5yG

(0) − jnG
(0)j5y(∂kx

G(0)) + δn,x(∂kx
jx)G

(0)j5yG
(0) + 2ixδn,xjxG

(0)j5yG
(0)

}

, (47)

where for the sake of simplicity we dropped the arguments of j, j5, and G(0). By making use of the integrals in
Eqs. (C3)–(C5), we can integrate over ω. Then, by setting u33 = 0 (see also Appendix E 1), we obtain

ρtop =
e2B5aΛ

4 sin (abz)

∫

d3k

(2π)3
sin (akz)

|d|3
{

[(∂ky
d)× d]x − [(∂kx

d)× d]y
}

, (48)

ρµ = − e2B5aΛ

4 sin (abz)

∫

d3k

(2π)3
sin (akz)

|d|3
{

[(∂ky
d)× d]x − [(∂kx

d)× d]y
}

[θ (|µ| − |d|) + |d|δ (|µ| − |d|)] , (49)

and

Jn = − e2B5aΛ

2 sin (abz)

∫

d3k

(2π)3
sin (akz) sgn (µ) δ

(

µ2 − |d|2
)

{

[

(∂kn
d)× (∂ky

d)
]

x
− [(∂kn

d)× (∂kx
d)]y

}

, (50)

where we also omitted imaginary and coordinate dependent terms which vanish after the integration over the whole
Brillouin zone. Our numerical calculations show that ρtop = ρµ = Jx = Jy = 0. Thus, unlike the magnetic field
considered in Sec. III, the pseudomagnetic field does not induce any electric charge density. On the other hand, the
component of electric current along the direction of the pseudomagnetic fields is nonzero. The dependencies of Jz for
a Weyl semimetal on the parameters ǫ0, t1, and chemical potential µ are shown in the left, middle, and right panels of
Fig. 3, respectively. In particular, the right panel of of Fig. 3 shows that, at sufficiently small values of µ, the electric
current agrees with the corresponding expression in the chiral kinetic theory [41, 45],

Jz,CKT = −e2µB5

2π2
. (51)

Notably, however, the latter is not exact and receives corrections at large enough values of µ. Also, as we see from the
left and middle panels of Fig. 3, the result for the current Jz depends on other model parameters and, consequently,
is not fully protected by topology. While this might appear surprising, the reason for this is rather simple and related
to the fact that the interpretation of the strain-induced background field (41) as a conventional axial vector potential
A5 deteriorates outside of the immediate vicinity of the Weyl nodes.
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FIG. 3. The electric current density Jz in the direction of the pseudomagnetic field as a function of ǫ0 (left panel), t1 (middle
panel), and µ/ǫ0 (right panel). In the left and middle panels, the chemical potential is µ = 43.45 meV. In the middle and right
panels, we used ǫ0 = 86.9 meV, which corresponds to the “dome” energy at k = 0 in the model defined in Appendix A.

VI. RESPONSE TO A STRAIN-INDUCED PSEUDOELECTRIC FIELD

In this section, we study the response to a strain-induced pseudoelectric field E5. Such a field can be generated
by time-dependent deformations of a Weyl crystal. As in Sec. IV, here we use the Kubo’s linear response theory.
By reexpressing the deformation tensor components uij ∼ t in terms of the axial vector potential A5 and using the
relation E5 = −∂tA5, we obtain the following interaction Hamiltonian:

δhstrain = −eE5,xaΛ sin (akz)

sin (abz)
σxt−

eE5,yaΛ sin (akz)

sin (abz)
σyt+

eE5,zat1 cos (akz)

cot (abz)
σzt. (52)

By comparing this with the electromagnetic interaction Hamiltonian (8), we found that the components of the current
density operator j5x and j5y are given by Eqs. (44) and (45), respectively, and j5z reads

j5z = −e
at1 cos (akz)

cot (abz)
σz. (53)

The DC conductivity tensor σ
(5)
νm that quantifies the response of the electric charge and current densities to a

background pseudoelectric field E5 is given by the standard Kubo’s formula,

σ(5)
νm = − lim

Ω→0

i

Ω
Π(5)

νm(Ω + i0;0), (54)

where the current-current correlator on the right-hand side is defined in terms of the quasiparticle Green’s function
as follows:

Π(5)
νm(Ω + i0;0) = −T

∞
∑

l=−∞

∫

d3k

(2π)3
tr
[

jν(k)G
(0)(iωl;k)j

5
m(k)G(0)(iωl − Ω;k)

]

. (55)

By following the same method as in Sec. IV, we can express the conductivity in terms of the spectral function,

σ(5)
νm = lim

Ω→0

i

Ω
T

∞
∑

l=−∞

∫

d3k

(2π)3

∫ ∫

dωdω′
tr
[

jν(k)A(ω;k)j
5
m(k)A(ω′;k)

]

(iωl + µ− ω) (iωl − Ω− i0 + µ− ω′)
. (56)

Then performing the summation over the Matsubara frequencies and setting T = 0 at the end, we derive the following
result for the dissipative

σ
(5)
0m = −e2π

∫

d3k

(2π)3
δ2Γ(µ− |d|)− δ2Γ(µ+ |d|)

|d| dmj̃5m, (57)

σ(5)
nm = −e2π

∫

d3k

(2π)3
1

2|d|2
∑

s,s′=±

δΓ(µ− s|d|)δΓ(µ− s′|d|)
{

|d|2 (∂kn
dm) j̃5m

+ ss′
3

∑

i1,i2,i3=1

[δi1i2δmi3 − δi1mδi2i3 + δi1i4δi2m] (∂kn
di1)di2 j̃

5
mdi3

}

, (58)
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as well as nondissipative parts of the conductivity tensor

σ̃(5)
nm = e

∫

d3k

(2π)3
j̃5m [d× (∂kn

d)]m
2|d|3 [1− θ(|µ| − |d|)] . (59)

Here j̃5n =
∑3

m=1 tr
(

σnj
5
m

)

/2. Note that in the last equation we explicitly set Γ → 0. Formally, it is similar to
the topological off-diagonal components of the conductivity tensor in Eq. (38). Numerically, however, all spatial
components vanish after the integration over the whole Brillouin zone.
It is instructive, therefore, to investigate the conductivity tensor in Eqs. (57) and (58) in the case of a nonzero

quasiparticle width Γ. The corresponding calculations can be done straightforwardly using numerical methods for a

representative set of model parameters in Appendix A. The analysis shows that σ
(5)
03 is the only nonzero component

of the conductivity tensor. The value of the corresponding component does not appear to be protected by topology.
This is clear from its dependence on the chemical potential shown in Fig. 4 for several choices of the quasiparticle
width. Note that, by assumption, the transport quasiparticle width includes a constant part Γ0 as well as a frequency-

dependent part proportional to µ2 [56], i.e., Γ(µ) = Γ0(1 +µ2/ǫ20). We would like to mention also that a nonzero σ
(5)
03

is quite interesting from a physics viewpoint. It represents a form of dynamical piezoelectric effect that is driven by
time-dependent strains in Weyl metals.

Γ0 0.1× 0

Γ0 0.15× 0

Γ0 0.2× 0

0.0 0.5 1.0 1.5 2.0
-0.5

0.0

0.5

1.0

1.5

2.0

/ 0

102×a 03

(5)(μ)

e2

FIG. 4. The dependence of the conductivity tensor component σ
(5)
03 on the chemical potential for three difference values of the

quasiparticle decay width: Γ0 = 0.1 ǫ0 (red solid line), Γ0 = 0.15 ǫ0 (blue dashed line), and Γ0 = 0.2 ǫ0 (green dotted line),
respectively. The numerical values of other parameters are defined in Appendix A.

VII. SUMMARY

By making use of a generic lattice model of a Weyl semimetal, we calculated the electric charge and current
densities in the first order in background electromagnetic and strain-induced pseudoelectromagnetic fields. A special
attention in the analysis was paid to identifying the topological contributions associated with the chiral properties of
low-energy quasiparticles. In this connection, it should be mentioned that the key features of the model (including
the chiral anomaly) are captured by its topology in the reciprocal space. Unlike the relativistic models in high-energy
physics, which are commonly used as a source of intuition for Weyl semimetals, lattice models require no ultraviolet
(high-energy) regularization and encounter no ambiguities in predicting physical observables.
Our results for the linear response in background electromagnetic and strain-induced pseudoelectromagnetic fields

show that, in addition to the usual matter part, there are two types of topological contributions in the electric charge
and current densities. The contributions of the first type are sensitive only to the Berry curvature at Weyl nodes
and can be reproduced exactly in the framework of the chiral kinetic theory. The contributions of the second type
are determined by a topological invariant (winding number), which is a global property of the whole Brillouin zone,
and cannot be captured by the chiral kinetic theory in its standard formulation. Our direct calculations in the lattice
model show that the contributions of the second type are given exactly by the Bardeen-Zumino (or, equivalently,
Chern-Simons) current. This finding reconfirms, therefore, our claim in Ref. [37] that the physical definition of the
electric current in the consistent chiral kinetic theory must be amended by adding the Bardeen-Zumino term.
Our calculations indicate that the linear response in Weyl semimetals in the background pseudoelectromagnetic

fields, unlike its counterpart in the electromagnetic fields, is not expected to be completely universal. Indeed, we
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found that even the formally topological part of the electric current induced by a constant pseudomagnetic field in
Eq. (51) has a nontrivial dependence on the model parameters when the chemical potential is not very small. Such
a discrepancy between the naive expectation and the actual calculation can be explained by the fact that the strain-
induced fields in Weyl semimetals can be interpreted as the conventional pseudoelectromagnetic fields (i.e., introduced
via an axial vector potential A5 in the covariant derivatives) only in a close vicinity of the Weyl nodes.
In this paper, we also showed that the same two types of topological currents are also induced in the case of the

multi-Weyl semimetals. Our direct calculations reveal, in fact, that the corresponding contributions in the multi-Weyl
semimetals contain an additional multiplication factor, which is the integer topological charge of the Weyl nodes. This
conclusion is not surprising and, in fact, agrees with a recent independent analysis in Ref. [51], where the high-energy
inspired Fujikawa’s regularization method was used.
Last but not least, by taking into account the topological origin of the winding number that determines the Bardeen-

Zumino terms, our calculation of the current in the lattice model also provides an instructive way of justifying the
definition of the consistent electric current in relativistic field theories. Indeed, the formulation of the lattice model
itself can be viewed as a form of regularizing a relativistic model that ensures the exact local conservation of the
electric charge. In this connection, one should remember, however, that the realization of the chiral symmetry is
nontrivial on a lattice [58]. Nevertheless, its implementation as an anomalous symmetry in the low-energy effective
theory might be sufficient for most practical purposes.
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Appendix A: Model parameters

In this appendix, we present a representative set of model parameters that we use in our numerical calculations
throughout the paper. In order to have a realistic model, we relate the parameters in model (1) to those in Na3Bi
using the parametrization of Ref. [12]. The corresponding relations between the two sets of model parameters read

t0 = M0 − t1 − 2t2, t1,2 = −2M1,2

a2
, (A1)

g0 = C0 − g1 − 2g2, g1,2 = −2C1,2

a2
, (A2)

Λ =
A

a
, (A3)

where the numerical values of the new parameters are fixed by the band structure in Na3Bi [12],

C0 = −0.06382 eV, C1 = 8.7536 eV Å
2
, C2 = −8.4008 eV Å

2
,

M0 = 0.08686 eV, M1 = −10.6424 eV Å
2
, M2 = −10.3610 eV Å

2
,

A = 2.4598 eV Å.

(A4)

For the sake of simplicity, in this paper, we assume that the Weyl semimetal model has a cubic lattice, i.e., ax =
ay = az = a = 7.5 Å. Although typically this is not the case in real materials, there are no important topological
consequences resulting from such an assumption.

Appendix B: Multi-Weyl semimetals

In this appendix, we discuss how to define a lattice Hamiltonian for multi-Weyl materials by using the same general
model as in Eq. (1).
By definition, the multi-Weyl semimetals are Weyl semimetals with the topological charges of Weyl nodes greater

than one. The low-energy effective Hamiltonian for the multi-Weyl semimetal can be given in the following form
[48–51]:

Hλ = λvF
[

(p+ λb)3σz + (p+ λb)n+σ− + (p+ λb)n−σ+

]

, (B1)
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where n = 2, 3 is the topological charge of the Weyl nodes, λ = ± is the chirality, p± = (p1 ± ip2) /
√
2, σ± =

(σx ± iσy) /
√
2, and b is the chiral shift parameter that defines the momentum space separation between the Weyl

nodes. It is straightforward to check that the corresponding lattice formulation of the Hamiltonian can be given by
the same Eq. (1), but with a different choice of functions d1 and d2. In the case of Weyl nodes with the topological
charge n = 2, for example, one can use the following choice of functions:

d1 = Λ
sin2 (axkx)− sin2 (ayky)√

2
, (B2)

d2 = Λ
sin (axkx) sin (ayky)√

2
. (B3)

Similarly, in the case of the Weyl nodes with the topological charge n = 3, one can use

d1 = Λ
sin3 (axkx)− 3 sin (axkx) sin

2 (ayky)

2
, (B4)

d2 = −Λ
sin3 (ayky)− 3 sin (ayky) sin

2 (axkx)

2
. (B5)

Appendix C: Integrals over ω

In this appendix, we present the results for several types of integrals over ω that we encounter in the calculation of
the linear response in the main text, as well as in other appendixes. By omitting the intermediate steps of derivations,
here we give only the final results:

I1 =

∫

dω

[ω − d0 + i0 sgn (ω)]2 − |d|2
= − πi

|d| [1− θ(|d0| − |d|)] , (C1)

I2 =

∫

(ω − d0) dω

[ω − d0 + i0 sgn (ω)]
2 − |d|2

= −πi sgn (d0) θ(|d0| − |d|), (C2)

I3 =

∫

dω
{

[ω − d0 + i0 sgn (ω)]2 − |d|2
}2 =

πi

|d|

{

1

2|d|2 [1− θ (|d0| − |d|)]− δ
(

d20 − |d|2
)

}

, (C3)

I4 =

∫

(ω − d0) dω
{

[ω − d0 + i0 sgn (ω)]2 − |d|2
}2 = πi sgn (d0)

[

δ
(

d20 − |d|2
)

− δ
(

−|d|2
)]

, (C4)

I5 =

∫

(ω − d0)
2dω

{

[ω − d0 + i0 sgn (ω)]2 − |d|2
}2 = −πi

{

1

2|d| [1− θ (|d0| − |d|)] + |d0|δ
(

d20 − |d|2
)

}

, (C5)

where θ(x) is the unit step function. Note that the above integrals are straightforward to calculate by using the
following relations obtained in Ref. [59]:

1
{

[ω − d0 + i0 sgn (ω)]
2 − |d|2

}n =
1

[

(ω − d0)
2 − |d|2 + i0

]n

+
2πi(−1)n−1

(n− 1)!
θ (|d0| − |ω|) θ (ωd0) δ(n−1)

[

(ω − d0)
2 − |d|2

]

, (C6)

2n (ω − d0)
{

[ω − d0 + i0 sgn (ω)]
2 − |d|2

}n+1 = − ∂

∂ω





1
{

[ω − d0 + i0 sgn (ω)]
2 − |d|2

}n





− 2πi(−1)n

(n− 1)!
sgn (d0) δ

(n−1)
[

(ω − d0)
2 − |d|2

]

[δ(ω)− δ(ω − d0)] . (C7)

Appendix D: The Green’s function in the first order in magnetic field

In this appendix, we present the details of the Green’s function calculation in the first order in a constant background
magnetic field. Because of the dependence of the vector potential on the spatial coordinate(s), e.g., in the Landau gauge
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Aν(r) = (0, 0,−xB, 0), the translation invariance is formally broken and the calculation of the first-order correction
to the Green’s function G(1)(r, r′) becomes rather nontrivial. Indeed, while it is natural to use the momentum-space
representation for the translation invariant zeroth-order Green’s function, the spatial dependence in the gauge field
Aν(r) (which enters through the interaction Hamiltonian) complicates the analysis.
In order to partially circumvent the technical complications associated with the absence of translation invariance,

it is convenient to utilize the following representation for the spatial coordinate:

x′′ =

∫

dpx

[

−i∂px
eipxx

′′

]

δ(px) =

∫

dpxe
ipxx

′′

i[∂px
δ(px)]. (D1)

Then, by using Eq. (17), we can rewrite the first-order correction to the Green’s function in the form:

G(1)(r, r′) = −B

2

∫

dωd3k

(2π)4
e−iω(t−t′)+ik(r−r

′)
{

i(x− x′)G(0)(ω,k)jy(k)G
(0)(ω,k) + 2ix′G(0)(ω,k)jy(k)G

(0)(ω,k)

+
[

∂kx
G(0)(ω,k)

]

jy(k)G
(0)(ω,k)−G(0)(ω,k)jy(k)

[

∂kx
G(0)(ω,k)

] }

. (D2)

Because of the dependence on the relative coordinate x − x′ in the first term in the square brackets, a special care
should be taken when using this in the calculation of the current density defined by Eq. (14). Indeed, the definition

also contains the current operator j(−i∂r) that acts not only on the phase factor eik(r−r
′), but also on (rn − r′n). The

corresponding result can be calculated systematically by using a series representation for the trigonometric functions
in the definition of j(−i∂r); see Eqs. (10)–(12) with k replaced by −i∂r. Thus, by making use of the relations

sin (−ian∂n)e
iknrnrn

∣

∣

∣

rn→0
=

∞
∑

m=0

(−1)n(−ian)
2m+1 (ikn)

2m

2m!
= (−ian) cos (ankn), (D3)

cos (−ian∂n)e
iknrnrn

∣

∣

∣

rn→0
=

∞
∑

m=1

(−1)n(−ian)
2m (ikn)

2m−1

(2m− 1)!
= −(−ian) sin (ankn), (D4)

we derive the following result for the current density due to the first term in Eq. (D2):

−B

2
lim
r′→r

∫

dωd3k

(2π)4
jn(−i∂r)i(rn − r′n)G

(0)(ω,k)jy(k)G
(0)(ω,k)e−iω(t−t′)+ik(r−r

′)

= −B

2

∫

dωd3k

(2π)4
(∂kn

jn(k))G
(0)(ω,k)jy(k)G

(0)(ω,k). (D5)

By combining this with the two additional contributions due to the other three terms in the first-order Green’s function
in Eq. (D2), we will obtain the final result for the current density presented in Eq. (19) in the main text.

Appendix E: Derivation of the electric charge and current densities in background electromagnetic fields

In this appendix, we provide the detailed derivations of the electric charge and current densities in background
magnetic and electric fields.

1. Background magnetic field

Let us start with the case of a background magnetic field. The electric charge density in Eq. (18) can be rewritten
as follows:

ρ =
eB

2

∫

dωd3k

(2π)4
1

N2
tr

[

(∂kx
Q)jy(k)Q − 1

N
(∂kx

N)Qjy(k)Q −Qjy(k)(∂kx
Q) +

1

N
Qjy(k)Q(∂kx

N)
]

, (E1)

where we used the following shorthand notations for the numerator and denominator of the zeroth-order Green’s
function G(0)(ω,k):

Q ≡ i [ω + µ+ (d · σ)] , (E2)

N ≡ [ω + µ+ i0 sgn (ω)]
2 − d2. (E3)
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After some algebraic simplifications, this can be rewritten in the following simple form:

ρ =
eB

2

∫

dωd3k

(2π)4

3
∑

i1,i2,i3=1

4iǫi1i2i3
N2

(∂kx
di1)

(

∂ky
di2

)

di3 . (E4)

Finally, performing the integration over ω using the result in Eq. (C3), we obtain the topological and matter parts of
the charge density in Eqs. (20) and (26), respectively.
In the case of the electric current density Jn, where n = 1, 2, 3, we use the definition in Eq. (19). In the first order

in an external magnetic field, it gives

Jn = −e2B

2

∫

dωd3k

(2π)4
1

N2
tr

{

(∂kn
Q)(∂kx

Q)(∂ky
Q)Q− (∂kn

Q)Q(∂ky
Q)(∂kx

Q)

+ δn,x(∂
2
kx
Q)Q(∂ky

Q)Q+ 2irxδn,x(∂kx
Q)Q(∂ky

Q)Q

}

. (E5)

The first two terms in the curly brackets can be combined to give

J (1)
n = −e2B

2

∫

dωd3k

(2π)4
ω + µ

N2

3
∑

i1,i2,i3=1

4iǫi1i2i3(∂kn
di1)(∂kx

di2)(∂ky
di3). (E6)

The last two terms in the curly brackets in Eq. (E5) can be rewritten as follows:

J (2)
n = −δn,xe

2B

∫

dωd3k

(2π)4
(ω + µ)2

N2

[(

(∂2
kx
d) · (∂ky

d)
)

+ 2ix
(

(∂kx
d) · (∂ky

d)
)]

− δn,xe
2B

∫

dωd3k

(2π)4
1

N2

3
∑

i1,i2,i3,i4=1

[δi1i2δi3i4 − δi1i3δi2i4 + δi1i4δi2i3 ]
[

(∂2
kx
di1) + 2ix(∂kx

di1)
]

di2 (∂ky
di3)di4 .

(E7)

Then, we integrate over ω by using Eqs. (C3)–(C5) and arrive at the following result:

Jn = −e2B

∫

d3k

(2π)3
sgn (µ)

3
∑

i1,i2,i3=1

ǫi1i2i3(∂kn
di1 )(∂kx

di2)(∂ky
di3)δ

(

µ2 − |d|2
)

+ iδn,xe
2B

∫

d3k

2(2π)3
[(

(∂2
kx
d) · (∂ky

d)
)

+ 2ix
(

(∂kx
d) · (∂ky

d)
)]

{

1

2|d| [1− θ (|µ| − |d|)] + |µ|δ
(

µ2 − |d|2
)

}

− iδn,xe
2B

∫

d3k

2(2π)3
1

|d|

3
∑

i1,i2,i3,i4=1

[δi1i2δi3i4 − δi1i3δi2i4 + δi1i4δi2i3 ]
[

(∂2
kx
di1) + 2ix(∂kx

di1)
]

di2(∂ky
di3)di4

×
{

1

2|d|2 [1− θ (|µ| − |d|)]− δ
(

µ2 − |d|2
)

}

. (E8)

Note that the last two parts vanish after the integration over the whole Brillouin zone.

2. Background electric field

In this subsection we present the details of derivation of the conductivity tensor (35) in Sec. IV. By perform-
ing the summation over the Matsubara frequencies in the corresponding expression, we arrive at the conventional
representation for the DC conductivity tensor in terms of the spectral function:

σνm = Re

(

lim
Ω→0

i

Ω

∫

d3k

(2π)3

∫ ∫

dωdω′
nF (ω)− nF (ω

′)

ω − ω′ − Ω− i0
tr [jν(k)A(ω;k)jm(k)A(ω′;k)]

)

, (E9)

where nF (ω) = 1/
[

e(ω−µ)/T + 1
]

is the Fermi-Dirac distribution, ν = 0, 1, 2, 3, and the spectral function A(ω,k) is
defined in Eq. (33).
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In the case of ν = 0, the trace in the expression for the conductivity reads

tr [j0(k)A(ω;k)jm(k)A(ω′;k)] =
e2

2|d|2
∑

s,s′=±

ss′δΓ(ω − s|d|)δΓ(ω′ − s′|d|)|d|(s+ s′) (d · ∂km
d) , (E10)

where δΓ(x) is a regularized form of the δ-function defined in Eq. (34). By substituting this in Eq. (E9), extracting
the real part with the help of the Sokhotski formula, and integrating over ω′, we obtain

σ0m = e2π

∫

d3k

(2π)3

∫

dω
1

4T cosh2 ω−µ
2T

1

2|d|
∑

s,s′=±

ss′δΓ(ω − s|d|)δΓ(ω − s′|d|)(s+ s′) (d · (∂km
d))

T→0
= e2π

∫

d3k

(2π)3
δ2Γ(µ− |d|)− δ2Γ(µ+ |d|)

|d| (d · (∂km
d)) . (E11)

In the case of ν = n, the result for the trace in Eq. (E9) is given by the following expression:

tr [jn(k)A(ω;k)jm(k)A(ω′;k)] = − e2

4|d|2
∑

s,s′=±

ss′δΓ(ω − s|d|)δΓ(ω′ − s′|d|) [i|d|(s′ − s)T1 + T2(s, s
′)] , (E12)

where we introduced the shorthand notations,

T1 ≡ 2

3
∑

i1,i2,i3=1

ǫi1i2i3(∂kn
di1 )di2(∂km

di3), (E13)

T2(s, s
′) ≡ 2ss′|d|2 (∂kn

d)(∂km
d) + 2

3
∑

i1,i2,i3,i4=1

[δi1i2δi3i4 − δi1i3δi2i4 + δi1i4δi2i3 ] (∂kn
di1)di2 (∂km

di3)di4 . (E14)

It is convenient to calculate separately the contributions to the conductivity tensor originating from the two different
terms in the square brackets in Eq. (E12). By using the definition in Eq. (E9), we rewrite the contribution due to the
first term as follows:

σ(1)
nm = −Re

(

e2 lim
Ω→0

i

Ω

∫

d3k

(2π)3

∫ ∫

dωdω′
nF (ω)− nF (ω

′)

ω − ω′ − Ω

1

2|d|
[

δΓ(ω + |d|)δΓ(ω′ − |d|)− δΓ(ω − |d|)δΓ(ω′ + |d|)
]

iT1

)

.

(E15)
In order to extract the topological part of the conductivity, we consider the clean limit in Eq. (E15). Thus, by setting
Γ → 0 and integrating over ω, we arrive at

σ(1)
nm = e2 lim

Ω→0

1

Ω

∫

d3k

(2π)3
Ω

|d| [nF (−|d|)− nF (|d|)]
T1

4|d|2 − Ω2
= e2

∫

d3k

(2π)3
T1

4|d|3 [nF (−|d|)− nF (|d|)] . (E16)

Taking the limit T → 0, one can easily obtain Eq. (38).
Similarly, the contribution to the conductivity tensor due to the second term in the square brackets in Eq. (E12) is

given by

σ(2)
nm = e2 lim

Ω→0

i

Ω

∫

d3k

(2π)3

∫ ∫

dωdω′ [nF (ω)− nF (ω
′)] (π i)δ(ω − ω′ − Ω)

1

4|d|2
∑

s,s′=±

ss′δΓ(ω − s|d|)δΓ(ω′ − s′|d|)

× T2(s, s
′) = e2π

∫

d3k

(2π)3

∫

dω
1

4T cosh2 ω−µ
2T

1

4|d|2
∑

s,s′=±

ss′δΓ(ω − s|d|)δΓ(ω − s′|d|)T2(s, s
′). (E17)

After integrating over ω and taking the limit T → 0, the above expression reduces to Eq. (37).
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