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We study the magnetic field driven metal-to-insulator transition in half-filled Hubbard model on
the Bethe lattice, using the dynamical mean-field theory by solving the quantum impurity prob-
lem with density-matrix renormalization group algorithm. The method enables us to obtain a
high-resolution spectral densities in the presence of a magnetic field. It is found that the Kondo
resonance at the Fermi level splits at relatively high magnetic field: the spin-up and spin-down
components move away from the Fermi level and finally form a spin polarized band insulator. By
calculating the magnetization and spin susceptibility, we clarify that an applied magnetic field drives
a transition from a paramagnetic metallic phase to a band insulting phase. In the weak interac-
tion regime, the nature of the transition is continuous and captured by the Stoner’s description,
while in the strong interaction regime the transition is very likely to be metamagnetic, evidenced
by the hysteresis curve. Furthermore, we determine the phase boundary by tracking the kink in the
magnetic susceptibility, and the step-like change of the entanglement entropy and the entanglement
gap closing. Interestingly, the phase boundary determined from these two different ways are largely
consistent with each other.
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I. INTRODUCTION

The strong interplay between electron charge, spin and
orbital degrees of freedom renders exotic collective be-
haviors, which sensitively responds to external perturba-
tions and thus leads to the ubiquitous quantum phase
transitions in strongly-correlated systems.1 Among vari-
ous ways of tuning parameters, varying an external mag-
netic field is a useful and widely applied experimental
way for driving quantum phase transitions, by signifi-
cantly affecting the competition between the formation
of the Fermi-liquid and the magnetic state with long-
range spin correlations. The simplest model to realize
such kind of magnetic field-driven phase transitions is
the single-band Hubbard model2 in the presence of an
exchange field.
After decades of the study, however, a consensus on

the magnetic field-driven metal-to-insulator transition is
yet to be reached. Generally, there are two competing
descriptions of the metal-to-insulator transition. One
is the Stoner mean-field approach,3,4 which predicts a
smooth magnetization change with magnetic field, while
the other one is the Gutzwiller approximation predicting
a first-order metamagnetic transition with magnetization
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jump around the phase transition.5,6 The following up
works largely confirm that the nature of the transition
depends on the interaction strength. That is, for the
weakly correlated metal, a smooth crossover is found be-
tween the unpolarized metal and the fully polarized band
insulator, while for relatively strong interactions, the ap-
plied magnetic field drives a first-order metamagnetic
transition, forcing a jump in the magnetization curve.
Although a qualitative agreement has been achieved, the
predicted critical field has non-negligible deviation be-
tween the Gutzwiller approximation and the dynamical
mean-field theory (DMFT).7–9 In particular, the pre-
dicted metamagnetic transition has not been observed in
experiments of liquid 3He,10 which leaves the nature of
the field-driven metal-to-insulator transition still unset-
tled. Moreover, despite that DMFT is expected to cap-
ture the dynamics and the local fluctuations better, the
obtained results are sensitive to the choice of the impu-
rity solver. It has been noted that, previous studies using
numerical renormalization group as an impurity solver in
DMFT overestimate the transition phase boundary of the
Mott transitions.11,12 Thus, it is highly desired to inspect
the magnetic field-driven metal-to-insulator transition by
developing unbiased numerical techniques.

Here, we re-investigate the half-filled single-band Hub-
bard model with an external magnetic field. Al-
though a similar problem has been studied by exact
diagonalization7 and numerical renormalization group8

within the DMFT framework, the detailed behavior of
the crossover from the low-field paramagnetic metal to
high-field polarized insulator has not been examined sys-
tematically. To resolve this problem, we implement the
density-matrix renormalization group (DMRG)14,15 as a
quantum impurity solver into the DMFT.16,17 The new
method enables us to provide a comprehensive picture of
the crossover from low-field regime to high-field regime,
with focuses on single-particle and two-particle dynam-
ics, as well as entanglement measurements. It is found
that the Kondo resonance at the Fermi level splits at rel-
atively high magnetic field, where the spin-up and spin-
down components move away from the Fermi level and
finally form a spin polarized band insulator. In particu-
lar, an asymmetric kink appears in the magnetic suscep-
tibility, which signals the transition from a paramagnetic
metal to a fully polarized band insulator. With increas-
ing the interaction, the magnetic susceptibility curve be-
comes steeper approaching the transition point. Further-
more, we also identify the phase transition by entan-
glement measurements. The step-like change in entan-
glement entropy and entanglement gap closing faithfully
represents a quantum phase transition, with the criti-
cal field consistent with that obtained from the magnetic
susceptibility.

This paper is organized as follows: In Sec. II, we start
by briefly introducing the model and reviewing the gen-
eral framework of the DMFT and the DMRG impurity
solver. We close this section with a discussion on the
mapping of the usual impurity Anderson model to a two-

component spinless model. In Sec. III, we describe the
magnetic field dependent dynamics of the system. We
study the evolution of spectral densities, magnetization
curves and magnetic susceptibilities with the change of
the magnetic field. We also introduce the entanglement
measurements to detect the metal-to-insulator transition.
The conclusion is given in Sec. IV.

II. MODEL AND METHODOLOGY

A. Hubbard model in a magnetic field

We study the two-dimensional Hubbard model in the
presence of a magnetic field:

H = U
∑

i

(

ni,↑ −
1

2

)(

ni,↓ −
1

2

)

−t
∑

〈i,j〉,σ

c†i,σcj,σ + h
∑

i

(ni,↑ − ni,↓) (1)

where c†i,σ creates a spin-σ electron at site i. t is the
hopping matrix element between two nearest neighbor
sites and U is the on-site interaction. Zeeman splittng
strength h is determined by external magnetic field (H)
by h = gµBH/2 (µB is Bohr magneton and g is Lande
factor). In the present work, we have made several as-
sumptions to simplify the problem: First, we consider the
single orbital model. Second, we just consider the exter-
nal magnetic field leading to Zeeman effect and neglect
the orbital effect from magnetic field. Third, throughout
the work, we focus on the half-filling case (or Fermi level
(chemical potential) is set to be µ = 0.) and t = 1.
In this paper, we study the Hubbard model, Eq. (1),

defined on the Bethe lattice, and solve it within DMFT.
Working on the Bethe lattice significantly simplifies the
self-consistent calculations within DMFT, as shown in
Sec. II B. To be specific, we only use the property of the
Bethe lattice, whose density of states in the absence of
interactions takes the form of

ρ0(ω) =
2

πD2

√

D2 − ω2, (2)

where 2D = 4 stands for the corresponding band width
(see Sec. A for details).

B. Dynamical mean-field theory

The DMFT16,17 is a non-perturbative treatment of the
electronic structure in strongly-correlated systems, which
bridges the gap between the fully itinerant limit and the
fully localized limit of electronic states. The key idea
of DMFT is the mapping of a many-body lattice prob-
lem to an Anderson impurity model, which is solved self-
consistently. The Anderson impurity model describes
the hybridization of interacting electrons located on one
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or several sites (the impurity sites) with a “bath” of
conduction electrons.18 While the mapping itself is ex-
act, the approximation made in ordinary DMFT schemes
is to assume the lattice self-energy to be momentum-
independent (neglecting all non-local correlations), which
only becomes exact in the limit of lattices with an infinite
coordination number (for example, the Bethe lattice).
Generally, the DMFT self-consistent condition is the

lattice Green’s function (Gσ(ω)) coincides with impu-
rity Green’s function (gσ(ω)) from the Anderson impurity
model by (See Appendix. A for details)

Gσ(ω) ≈ gσ(ω) . (3)

This equation is used to set up a DMFT iteration cycle
to find a self-consistent solution. To be specific, on the
Bethe lattice, the self-consistent condition can be repre-
sented by (see Appendix A)

Γσ(ω) =
D2

4
Gσ(ω). (4)

C. Dynamic DMRG as impurity solver

Solving the Anderson impurity model amounts to com-
puting observables such as the interacting Green’s func-
tion and related spectral function for a given hybridiza-
tion function. There exists a number of ways to solve the
Anderson impurity model,17,18 including exact diagonal-
ization,29–31 the numerical renormalization group,19,20 it-
erative perturbation theory,16,32 the Hirsch-Fye22–26 and
continuous-time27,28 quantum Monte Carlo methods. Al-
though the above impurity solvers have been proposed
and developed for decades, they have strength and weak-
ness. For instance, the numerical renormalization group,
being designed for impurity problems, is unable to re-
solve a good resolution of spectral density at high energy
regime, due to the limitation of logarithmic discretization
of the bath density of states. Moreover, related general-
ization of numerical renormalization group to the multi-
orbital or multi-band lattice model is still unfeasible.
Quantum Monte Carlo method can efficiently deal with
multi-band models, but it lacks high resolution of the
spectral function when formulated in imaginary time, due
to the ill-conditioned analytic continuation from imagi-
nary to real frequencies. Exact diagonalization naturally
works with real frequencies, but it is severely limited by
its accessible system sizes. This again reduces the spec-
tral resolution considerably.
On the other hand, over more than twenty years of

the development, DMRG14,15 has become a mature nu-
merical technique dealing with generalized Hamiltonian,
which is widely accepted as the most successful method
for one-dimensional interacting systems. Since the impu-
rity problem in DMFT can be transformed to be actu-
ally one-dimensional, it is natural to explore the combi-
nation of DMFT and DMRG, and apply DMFT+DMRG
method to problems in dimension higher than one. Along

this direction, several promising schemes have been pro-
posed in the past years, for example, the dynami-
cal DMRG algorithm33–38 and the extended Chebyshev
matrix-product impurity solver.39–42 General advantages
are that the DMRG-based impurity solver works at zero
temperature and real frequency domain, and the spec-
tral function can be obtained with high precision for all
frequency and calculated with uniform resolution.

In this paper, we choose the scheme proposed by
Refs. 33,34. To be specific, the ordinary DMRG is just
for targeting the ground state, saying |0〉. To reach the
dynamics of the system, generally speaking, one should
know the knowledge about excited states or excitation
information. As proposed in Ref. 33, if only the spectral
function or dynamical correlation function is concerned,
one does not need to target full excitation energy spec-
trum. Instead, the spectral function can be calculated
directly using a correction vector state:

|x±d (ω + iη)〉 =
1

ω ± (E0 − Ĥ) + iη
d̂±|0〉. (5)

With the help of the correction vector, the Green’s func-
tion can be calculated directly:

Gd(ω + iη) = 〈0|d̂|x+d (ω + iη)〉+ 〈0|d†|x−d (ω + iη)〉 (6)

where η is a nonzero positive value for smearing energy
(in this paper we focus on the retarded Green’s func-

tion). Taking these states (|0〉,d̂†|0〉 and |x±d (ω)〉) as
target states and optimizing the DMRG basis to rep-
resent them allow for a very precise calculation of the
Green’s function for a given frequency ω and the broad-
ening factor η. This is usually called dynamical DMRG
algorithm.33,34

In Appendix B and C, we have performed extensive
tests of the above DMRG scheme and DMFT+DMRG
scheme. Through these benchmarks, we conclude the
current scheme can reach reliable dynamical properties
efficiently.

D. Two-component mapping of single impurity

Anderson model

Within the DMFT scheme, the key procedure is to map
the original Hamiltonian, Eq. (1), to a one-dimensional
Anderson impurity model.16,17,20,26 The linear chain ver-
sion of the single impurity Anderson model, where the
bath of conduction electrons is described by a hybridiza-
tion function in continued fraction representation (see
Appendix A), can be illustrated in Fig. 1 (a). Note that
the interaction term only appears on the impurity site
(square dot in Fig. 1 (a)). Thus it is possible to mapping
the single impurity Anderson model from a spinful model

to a two-component spinless model (ĉi,↑ → âi, ĉi,↓ → b̂i)
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as:

H = U(nd,↑ − 1/2)(nd,↓ − 1/2)

+V (d†↑a1 + h.c.) +
∑

i

εia
†
iai +

∑

i

γi(a
†
iai+1 + h.c.)

+V (d†↓b1 + h.c.) +
∑

i

εib
†
ibi +

∑

i

γi(b
†
ibi+1 + h.c.),

(7)

where d̂†σ creates a spin-σ electron at impurity site and

â†i (b̂
†
i ) creates spinless electron in the bath20 (see Ap-

pendix D). After this mapping, it is straight forward to
see two fermion bath are actually decoupled. In numeri-
cal calculation, we use the geometry shown in Fig. 1 (b),
where two impurity sites interact through density-density
interaction and each is coupled with one semi-infinite
fermion bath respectively. In literature, the geometry
of Fig. 1 (a) is widely used since this is the specific set-
ting for numerical renormalization group calculations20.
For the DMRG calculation, the alternative geometry of
Fig. 1 (b) is a more natural choose21.

U
V 43210 . . .(a)

(b) V 0 10 . . .
UV. . .

�1

FIG. 1: (a) Single impurity Anderson model with the bath as
half-infinite chain. (b) Equivalent model with two impurities
coupled with two half-infinite bath chain. Square and circle
dot respectively represent the impurity site and bath site.

The mapping from the spinful Hubbard model onto
a two-component spinless model has several advantages,
due to the essential realization of DMRG algorithm.
First, this two-component mapping improves the accu-
racy of DMRG calculations. The DMRG is a real space
variational scheme where building blocks of the whole
system are enlarged by one lattice site and then are up-
dated at each iterative step. After updating, the enlarged
building blocks need to be projected onto a reduced (or
“importance”) basis set, therefore the projection (trunca-
tion) error is relatively smaller if the Hilbert space of en-
larged building blocks are kept small. In the current case,
the two-component mapping makes the original Hilbert
space be the direct product of two local Hilbert space
(spin-up and spin-down), so that the fermionic Hilbert
space at each site is reduced from four to two. Thus,
adding a single spinless site instead of a spinful site in
each DMRG step leads to a much smaller truncation error
or higher resolution. Second, this two-component map-
ping saves the computational resources in DMRG calcu-
lations. Generally, when we work on the problem with
smaller local Hilbert space, the numerical cost in DMRG
is exponentially reduced. But this is not transparent here
because the total Hilbert space is not changed (as we split
each spinful site into two spinless sites). In Appenidx
G, we compare the computational performance of spinful

Hubbard model and two-component spinless model. It is
found that the performance of the two-component spin-
less model is faster by an approximate factor of two. To
sum up, we conclude that two-component mapping has
a great advantage for solving Anderson impurity model
based on DMRG.

III. RESULTS AND DISCUSSION

A. Spectral density

First of all, we examine the effect of magnetic field on
spectral density function defined as

ρ(ω) = −
1

π
ImGR(ω) = −

1

π
lim

η→0+
ImGd(ω + iη). (8)

The impurity Green function Gd(ω+iη) is obtained from
DMFT+DMRG scheme:

Gd(ω + iη) = 〈0|d̂σ
1

ω + iη + E0 − Ĥ
d̂†σ|0〉+

〈0|d̂†σ
1

ω + iη − E0 + Ĥ
d̂σ|0〉, (9)

where E0 stands for the ground state energy and η is
the small broadening parameter (see Appendix E for de-
tails). Figure 2 shows the spectral density for the major-
ity (minority) spin-down (spin-up) electrons for various
magnetic field h by setting interaction strength U = D
and U = 1.5D. We can see that, by increasing magnetic
field h, the more and more spectral weight of spin-up
(spin-down) component is shifted to higher (lower) en-
ergy regime. When magnetic field reaches a threshold
h ≥ hc, the spectral density is completely spin polarized
(chemical potential setting as half-filling), indicting the
system becomes a polarized band insulator.
Next we discuss the behavior of Kondo resonance peak.

It is found that the Kondo resonance peak survives in
weak magnetic field. Importantly, we observe that the
Kondo resonance peak of spin-up (or spin-down) is not
pinned at zero frequency, since the electron-hole sym-
metry is broken due to the magnetic field. The Kondo
peak in the spin-up (spin-down) spectral density shifts to-
wards low (high) frequency regime, with increasing mag-
netic field. Interestingly, the total spectral density (green
solid curve in Fig. 2) forms a resonance peak centered at
zero frequency before entering the fully polarized regime
(see below). In high magnetic field, the Kondo resonance
peak disappears, instead we observe a dip at Fermi level.

B. Magnetization

Figure 3 shows the occupation density at the impu-
rity site as a function of magnetic field strength h. With
increasing h, occupancy n↑ decreases while n↓ increases
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(note the definition of exchange field in Eq. (1)), which
effectively reduces the double occupancy. To be specific,
it is found that the occupation density n↑(↓) monotoni-
cally decreases (increases) with h. In the relatively high
magnetic field, the system is close to the fully polarized.
Further increasing h will drive a metal-insulator transi-
tion near hc, which is determined by the kink in magne-
tization curve.

To understand the physics in the regime of weak cor-
relations, the Stoner approximation provides a good de-
scription for the field dependent magnetization m(h).3,4

According to the Hartee-Fock decoupling of the interac-
tion,

Uni,↑ni,↓ = U(〈ni,↑〉+ δni,↑)(〈ni,↓〉+ δni,↓)

≈ U〈ni,↑〉ni,↓ + U〈ni,↓〉ni,↑ − U〈ni,↑〉〈ni,↓〉 .

Thus the Hamiltonian becomes

H = −t
∑

〈i,j〉,σ

c†i,σcj,σ +
∑

i

(h+ U〈ni,↓〉 − U/2)ni,↑

+
∑

i

(−h+ U〈ni,↑〉 − U/2)ni,↓ . (10)

0

2

0

2

0

2

4

0

2

-6 -4 -2 0 2 4 6
0

2

h=1.0

D
D

h=0.0

h=0.8

h=0.6

h=0.4

D

 spin down
 spin up

D
D

0

2

0

2

0

2

0

2

4

-6 -4 -2 0 2 4 6
0

2

D
D

D

h=0.0

h=0.5

h=0.4

h=0.3

h=0.2

D

 spin down
 spin up

 

D

FIG. 2: Spin-dependent spectral density of Bethe lattice for
various values of magnetic field strength h: spin-down ρ↓(ω)
(red dashed line), spin-up ρ↑(ω) (blue dashed line) and to-
tal density ρ(ω) = ρ↓(ω) + ρ↑(ω) (green solid line). The left
column corresponds to the interaction strength U = D = 2.0
and the right column to U = 1.5D = 3.0. As to the DMFT
impurity solver, we use a chain enclosing L = 80 fermionic
sites, which is solved by DMRG algorithm by keeping 128
states. The DMRG projection error in each variational step
is less than 10−8. DMFT iterations is stopped by the condi-
tion ∆ρ(ω) = ρi+1(ω) − ρi(ω) < 0.01 for every ω (∆ρ(ω)
is the spectral density difference between two consecutive
DMFT iterations). Before the use of deconvolution scheme,
the smearing energy in calculating the Green’s function is set
by η = 0.2D.

The corresponding self-consistent equation is

〈ni,↑〉 =

∫ 0

−∞

dωρ(ω − h− U〈ni,↓〉+ U/2) ,

〈ni,↓〉 =

∫ 0

−∞

dωρ(ω + h− U〈ni,↑〉+ U/2) .

Using the fact that 〈ni,↑〉+ 〈ni,↓〉 = 1, the self-consistent
equation reduces to 〈mi〉 = 〈ni,↑〉 − 〈ni,↓〉 = 〈m〉:

〈m〉 = (

∫ −h+U〈m〉/2

−∞

dω −

∫ h−U〈m〉/2

−∞

dω)ρ(ω) . (11)

The obtained magnetization curve from the mean-field
calculation (red line) is shown in inset of Fig. 3. It is
found that, in the weakly interacting regime U < D,
the calculated magnetization curve agrees well with the
Stoner prediction. The magnetization exhibits an ap-
proximately linear behavior, when the magnetic field
strength is weak (h ≤ hc), indicating a nearly constant
low-field magnetization susceptibility χ(h < hc) = m/h.
In the relatively high magnetic field h > hc, the magneti-
zation is almost flat by increasing magnetic field, thus the
related high-field magnetization susceptibility χ(h > hc)
becomes much smaller.

When we tune up the Hubbard interaction strength,
the magnetization deviates from the Stoner prediction.
For example, in Fig. 3(c) for the magnetization curve
at U = 1.5D approaching the transition point hc, the
magnetization curve is non-linear and magnetic suscep-
tibility is field-dependent. To visualize this correlation
effect, we plot the magnetization for various values of
the interaction strength in Fig. 4. For a stronger in-
teraction, the magnetization is steeper near the phase
transition point. Importantly, a kink in magnetization
curve around h ≈ hc indicates the phase transition. If
we continuously tune the magnetic field from low-field
to high-field, the magnetization curve is always contin-
uous, without sudden jump which is also predicted by
the Gutzwiller method.5 However, by checking the hys-
teresis curve, we find a mismatch for increasing and de-
creasing fields, as shown in Fig. 4 (inset). The hystere-
sis curve indicates the field-induced transition is of the
first-order, consistent with the previous DMFT+ED cal-
culation.7 The hysteresis curve and related co-existence
regime partially support the metamagnetic-like transi-
tion in strong interaction regime. In the weakly inter-
acting regime U < 1.5D = 3.0, the hysteresis vanishes
thus the transition there is of the second-order or at least
weakly first order.

C. Magnetic susceptibility

Let us examine the magnetic properties further. Here
we calculate the local magnetic susceptibility χloc(ω) of
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FIG. 3: Impurity site spin-dependent occupation density nσ in a magnetic field for interaction strength U = 0.5D = 1.0 (left),
U = D = 2.0 (middle) and U = 1.5D = 3.0 (right), where the occupation density is defined by integrating the spectral density

up to Fermi level: nσ =
∫

0

−∞
dωρσ(ω). Inset: The magnetization m(h) = n↑ − n↓ as a function of magnetic field h (black

dotted line). The metal-to-insulator transition point is determined to be hc, determined by a kink in magnetization curve and
|m(h > hc)| > 0.9. The red dashed line shows the mean-field result.

the impurity site defined as

χloc(ω) = −〈0|Ŝz
d

1

ω + iη − (Ĥ − E0)
Ŝz
d |0〉

+〈0|Ŝz
d

1

ω + iη − (E0 − Ĥ)
Ŝz
d |0〉, (12)

where Ŝz
d = (nd,↑ − nd,↓)/2 is the z-component of spin

operator at the impurity site. Physically, the real part
of magnetic susceptibility reflects the slope of magnetiza-
tion curve, while the imaginary part of magnetic suscep-
tibility is the spin fluctuations, which is related to the
energy absorption or loss according to the fluctuation-
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FIG. 4: Magnetization as a function of the magnetic field h for
various values of the interaction strength U . In the strong in-
teraction regime, the insulator transition point is determined
by a kink in magnetization curve. Here the magnetization
curve is obtained by sweeping the magnetic field h upward.
Inset: Hysteresis curve (U = 1.5D = 3.0) by continuously
increasing h (black diamond) and by continuously decreasing
h (red cross).

dissipation theorem.

We show the calculated magnetic susceptibility χloc(ω)
in Fig. 5. For the real part of susceptibility, we find sev-
eral features signaling the phase transition. First, for a
given frequency ω, the absolute value of χloc(ω) mono-
tonically decreases with the increase of magnetic field.
Second, ℜχloc(ω = 0), the static susceptibility directly
relating to magnetization curve, shows a kink around hc
(Fig. 5(c)). In h > hc, the ground state is approximately
fully polarized, leading to a is vanishingly small magnetic
susceptibility. The kink around h ≈ hc provides a way to
define the phase boundary between metallic phase and
band insulating phase. Third, before entering insulating
phase h < hc, it is found that, the magnetic susceptibility
curve becomes steeper for increased Hubbard interaction
when approaching hc (Fig. 5(c)). This is against the
prediction of the Stoner description.7 Instead, the cur-
rent observation supports that phase transition follows
metamagnetic type of transition.7 Note that, although
the metamagnetic transition was first predicted by the
Gutzwiller approximation three decades ago,5 we do not
find the jump or discontinuity in the susceptibility. It
suggests that the Gutzwiller approximation would over-
estimate the ferromagnetism at the low field. We no-
tice a discrepancy between the magnetic susceptibility
ℜχloc(ω = 0) and the magnetization curve m(h). In
Fig. 4, the magnetization curves are directly obtained
from the spin-polarized electron density, where the slope
of m(h) is slightly increasing when approaching critical
field hc, while this behavior does not show up in the
magnetization susceptibility ℜχloc(ω = 0) in Fig. 5(c).
This discrepancy comes from the fact that, except in the
limit of h → 0, the two quantities ℜχloc(ω = 0) (a local
quantity) and ∂m/∂h (a uniform quantity) can rightfully
differ when h enters as a control parameter in the model
rather than as an infinitesimal probing field7.

For the imaginary part, it is clearly observed that
Imχloc(ω) always turns to zero in the limit of ω → 0,
which is guaranteed by the fact that Imχloc(ω) should
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be an odd function of frequency. Again, in the high-
field regime h > hc, it is found that the imaginary part
of susceptibility is vanishing small, indicating that the
spin fluctuation is strongly suppressed for a fully spin-
polarized state.

D. Quantum phase transition from entanglement

characterization

Next we discuss the quantum phase transition driven
by magnetic field. As shown in Fig. 2, spectral density
clearly shows that the high magnetic field drives the sys-
tem from a metallic phase to a band insulator. To lo-
cate the phase transition point, usually one can use the
magnetization curve as shown in Fig. 3, where the kink
of magnetic susceptibility separates the low-field regime
from the high-field regime and indicates the phase bound-
ary. Here, we utilize a state-of-the-art method to de-
termine the phase boundary of quantum phase transi-
tion, taking advantage of the benefit of DMRG calcula-
tions. Currently, there is growing interest on character-
izing quantum phase transitions through the quantum
entanglement information.44,45 Despite several attempts
of applying these quantum entanglement diagnosis on im-
purity problems,46,47 to the best of our knowledge, the
implementation of such kind of entanglement measure-
ments in DMFT calculation is still lacking. Here, for
the first time, we provide an example of phase transition
determined by quantum entanglement measurements in
DMFT calculations.
In the DMRG method, the system is divided into two

parts, thus the wave function is generally represented
as |ψ〉 =

∑

i

∑

j ψi,j |i〉L ⊗ |j〉R, where |i〉L and |j〉R
indicate the bases of the left and right blocks, respec-
tively. The reduced density matrix ρ̂L for the left block
is (ρ̂L)i,i′ =

∑

j ψi,jψ
∗
i′,j and the eigenvalue of ρ̂L is de-

noted as ξk. The eigenvalues should satisfy the sum rule:
∑

k ξk = 1. Here we introduce two entanglement mea-
surements related to ξk. One is von Neumann entangle-
ment entropy defined as S = −

∑

k ξk ln ξk, and the other
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FIG. 5: Local magnetic susceptibility at the impurity site
calculated for various magnetic field h by setting U = D =
2.0: (a) Real part ℜχloc(ω) and (b) Imaginary part ℑχloc(ω).
(c) ℜχloc(ω = 0) as a function of h. Dotted line is the best fit
to guide for eyes. The phase transition point is determined
by the kink around hc.

one is entanglement spectrum as − ln ξk.
44 Next we con-

sider the left block enclosing impurity site only (as shown
in Fig. 1(a)) and right block enclosing electron bath.
Figure 6(a-b) shows the magnetic field dependence of

the entanglement entropy, and its derivative with respect
to the magnetic field, respectively. The main feature is
that the entropy curve exhibits a step-like drop around
critical field hc, which is a direct evidence for a signifi-
cant change around the phase boundary in the degree of
the quantum entanglement between the impurity site and
electron bath. Physically, in the band insulating phase,
high magnetic field suppresses the effect of interaction
and the fluctuation of the spin, thus the correlation effect
in the fully polarized state is effectively avoided. There-
fore, it is expected that entropy reduces significantly from
the metallic phase to the insulating phase by tuning the
magnetic field.
Moreover, we observe some more evidence of quan-

tum phase transition from the entanglement spectrum,
as shown in Fig. 6(c). In particular, in the vicinity of
the phase boundary, the two largest eigenvalues of the
reduced density matrix cross with each other when the
magnetic field is increased. The corresponding “entan-
glement gap” closes (δ1 = 0) just before entering the
insulating phase, and then reopens. In the high mag-
netic field regime, most of the weight of the reduced den-
sity matrix is carried by only one eigenvalue (the largest
eigenvalue max{ξk} > 0.9), suggesting that the fully po-
larized state is actually close to the direct product state
with small entanglement correlations. Finally, we point
out that the phase boundaries obtained from different
methods agree very well with each other. For example,
for U = 1.5D = 3.0 the critical field hc ≈ 0.4 obtained
from the entropy jump (in Fig. 6(a)), is very close to
hc ≈ 0.42 obtained from the magnetic susceptibility (in
Fig. 5). Therefore, we conclude confidently that the en-
tropy change and corresponding level-crossing in the en-
tanglement spectrum directly reveal the quantum phase
transition.

E. Quantum phase diagram

Our systematic analyses presented above enable us to
present a quantum phase diagram for the Hamiltonian
Eq. (1), as functions of interaction strength U and mag-
netic field h in Fig. 7. We find two different phases: a
metallic phase and a band insulator phase. (At h = 0, we
identify a coexistence regime (marked by shadow) start-
ing from Uc ≈ 4.5, which is consistent with the estimation
of Uc(h = 0) ≈ 4.76 in Refs. 12 and 48) When both h
and U are small, the ground state is metallic but with
finite magnetization m 6= 0. By increasing h, the mag-
netic field drives the system into a band insulator phase
with spin being fully polarized. The phase boundary is
determined by the kink of magnetization curve. We find
this boundary is very close to the one determined by
the entanglement entropy, so we do not distinguish these
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FIG. 6: Quantum phase transition determined by the evolu-
tion of entropy and entanglement spectrum for U = 1.5D =
3.0. (a) Entanglement entropy (black dotted line) for the
ground state of the single-impurity Anderson model versus
magnetic field h. (b) Derivative of entropy (orange dot-
ted line), where the dip indicates the phase boundary. (c)
Low-lying entanglement spectrum for the ground state of the
single-impurity Anderson model versus magnetic field h. We
denote δ1 as the “entanglement gap” between the largest
eigenvalue and the second largest eigenvalue of the reduced
density matrix. The red circle marks the entanglement gap
closing δ1 = 0. The dashed line is the guide for eyes. For
the entanglement cut, we separate the whole chain into two
blocks: left block enclosing the impurity site and one bath
site, and the right block enclosing electron bath (see Fig.1(a)).

two phase boundaries. The dashed line in Fig. 7 is the
classical phase boundary U + 2h − 2D = 0. Overall,
in Fig. 7, we find that the stronger the Hubbard inter-
action, the weaker the critical magnetic field is for the
quantum phase transition. Physically, stronger interac-
tion tends to quench the kinetic degrees of freedom so
that a weaker magnetic field is sufficient to split spin-
up and spin-down bands. By comparing the classical
and quantum phase boundaries, it is found that clas-
sical method overestimates the phase boundary for the
weak interaction (U < 3.2), while the quantum critical
field hc is higher than classical estimation in the regime
3.2 < U < 4.4.

In addition, in the vicinity of the Mott insulator phase
(U > 4.4), we identify a band insulator phase by tuning

FIG. 7: Quantum phase diagram versus interaction strength
U and magnetic field h. The red line represents the phase
boundary determined by DMFT+DMRG calculations. The
black dashed line represents the classical phase boundary:
2D − 2h − U = 0, where 2D = 4.0 is the bandwidth of the
Bethe lattice. The shaded marks the regime without stable
solution in current scheme.

magnetic field h > 0.2, however, we do not find a conver-
gent solution within DMFT scheme for small magnetic
field h < 0.2 (as shown in the shaded area near the right
corner at the bottom of the phase diagram). This can
be understood by the strong interaction limit of Hub-
bard model at half-filling. That is, the effective Hamil-
tonian reduces to the Heisenberg model with only spin
degree of freedom frozen on each local site, which reads
H =

∑

<ij> JijSi · Sj with Jij = J ∼ 4t2/U . Therefore,
in the absence of a magnetic field, the system intrinsi-
cally favors an antiferromagnetic state, which is beyond
the single-site DMFT study without breaking the origi-
nal lattice translational invariance.8 Note that, in Fig. 7,
the metal-to-insulator phase boundary is determined by
sweeping the magnetic field h upward. We caution here
that the phase boundary shown here is the up-limit of the
metallic phase. Although we identify a hysteresis curve
near U ≈ 3.0 (as shown inset of Fig. 4), the coexistence
region is tiny and we do not show it in Fig. 7.

IV. CONCLUDING REMARKS

We have studied the magnetic field driven metal-to-
insulator transition in a half-filled Hubbard model on
the Bethe lattice (or in the limit of infinite dimen-
sions). To do so, we have developed a scheme within
the DMFT by solving the impurity model by means of
DMRG. First, the high-resolution field-dependent spec-
tral density shows that the Kondo resonance peak splits
in the weak magnetic field; while in high magnetic field,
the spin-up and spin-down bands move away from the
Fermi level and finally form a spin polarized band in-
sulator. Second, in weak interaction regime, we have
identified a smooth crossover from paramagnetic metal
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to the fully polarized band insulator, with magnetization
continuously increasing to unity. In the strong interac-
tion regime, hysteresis curve indicates a metamagnetic-
like phase transition despite the coexistence regime being
very small. Third, the phase boundary has been deter-
mined by two different methods. One is the kink in mag-
netic susceptibility, which separates the low-field regime
from the high-field regime. The other one is the step-like
jump of the entanglement entropy and corresponding en-
tanglement gap closing, which reveal distinct quantum
entanglements between impurity site and electron bath
in two different phases.
Experimentally, the liquid 3He, which is regarded

as a canonical Landau Fermi liquid, is believed to be
a testbed for the field-driven metal-to-insulator transi-
tion. However, earlier study10 found a smooth vari-
ation of the magnetization with the applied field, in-
stead of a metamagnetic-like transition, which is more
compatible with the Stoner’s description.3,4 Our study
has shown that the metamagnetic-like transition only
occurs in the strong interaction regime. The magne-
tization is always continuous when one increases mag-
netic field upward. One reasonable explanation for pre-
vious 3He experiment10 is that the effective interac-
tion strength is less than the estimate made in ear-
lier work.5 To settle down this controversy, we sug-
gest a hysteresis curve measurement in liquid 3He. Be-

sides the liquid 3He, many attempts have been made to
search for metamagnetism in different systems, including
for example, quasi-two-dimensional organic conductor κ-
(BEDT-TTF)2Cu[N(CN)2]Cl.

49 To sum up, our present
work suggests to look for experimental systems, which
can be reasonably modeled by the single-band Hubbard
model, with its effective interaction strength tunable
from weak to strong regimes. Considering the recent
rapid-development in optical lattice, we expect that the
cold-atom systems would serve as an ideal playground to
realize the Stoner-like and metamagentic-like transition
in laboratory.
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Appendix A: DMFT self-consistent condition for the Bethe lattice

In this Appendix, we briefly discuss the self-consistent condition, hybridization function for the Bethe lattice, with
or without magnetic field. The Bethe lattice is interesting due to its specific form of density of states (DOS), which
can simplify the DMFT self-consistent condition. It enables us not to use any other feature from the Bethe lattice
other than the DOS form.

1. Zero magnetic field

On the Bethe lattice, the single-particle DOS (in the absence of interaction term) takes a semi-elliptic form:

ρ0(ω) = −
1

π
ImG0(ω) =

2

πD2

√

D2 − ω2, (A1)

where 2D stands for the band width of system and the bare lattice Green’s function G0(ω) takes a particularly simple
continued fraction representation with constant coefficients

G0(ω) =
1

ω −
D2

4

ω −
D2

4

ω − · · ·

. (A2)

With the help of the Dyson equation, the full lattice Green’s function G(ω) can be expressed to be

1

G(ω)
=

1

G0(ω − Σ(ω))
= ω − Σ(ω)−

D2

4

ω − Σ−
D2

4

ω − Σ−
D2

4

ω − Σ · · ·

= ω − Σ(ω)−

(

D2

4

)

G(ω), (A3)

where Σ(ω) is the self-energy function. Importantly, several remarks are in order. First, we have assumed that self-
energy function Σ(ω) is uniform in real-space thus it is independent of momentum quantum number, which is one key
assumption of DMFT. Due to this assumption, self-energy function behaves as a global energy shift to frequency ω.
Last but not least, the continued fraction does not change when it is evaluated at a deeper level because its coefficients
are constant.
On the other hand, we can write the bare Green’s function of the Anderson impurity model g0(ω) with the help of

the so-called hybridization function Γ(ω) as

g0(ω) =
1

ω − Γ(ω)
(A4)

where the continued fraction of Γ(ω) is

Γ(ω) =
V 2

ω − ε0 −
γ20

ω − ε1 −
γ21

ω − · · ·

. (A5)

For an infinite homogeneous system we have γi = D/2, εi = 0 and V = D/2. From the Dyson equation, the impurity
Green’s function of Anderson impurity model reads

1

g(ω)
=

1

g0(ω)
− Σ(ω) = ω − Σ(ω)− Γ(ω). (A6)

Based on the self-consistency condition (3), we set Eqs. (A3,A6) equal and obtain the simpler self-consistency
condition:

Γ(ω) =
D2

4
G(ω). (A7)

This equation is simple and it provides a direct way to compute the hybridization function Γ(ω) (Eq. (A5)) of the
next iteration of the Anderson impurity model from the lattice propagator G(ω).
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2. Nonzero magnetic field

We now discuss the case in the presence of magnetic field h (exchange field in spin space). In the non-interacting
limit U = 0, under the effect of magnetic field h, it is easy to see the form of single-particle spin resolved DOS
ρ0σ(ω) := − 1

πImG
0
σ(ω) as

ρ0↑(ω) =
2

πD2

√

D2 − (ω − h)2, ρ0↓(ω) =
2

πD2

√

D2 − (ω + h)2, (A8)

where the semi-elliptic DOS has the relation to Eq. (2) as ρ0σ(ω) = ρ0(ω+σh), and they host a symmetry relation as:

ρ0−σ(ω) = ρ0σ(−ω) (A9)

The related spin resolved Green’s function G0
σ with semi-elliptic ρ0σ(ω) can be represented, similar to Eq. (A2):

G0
σ(ω) =

1

ω + σh−
D2

4

ω + σh−
D2

4

ω + σh− · · ·

= G0(ω + σh). (A10)

Via the Dyson equation and introducing related self-energy function Σσ(ω), the full Green’s function the lattice can
be expressed to be

1

Gσ(ω)
=

1

G0
σ(ω − Σσ)

= ω + σh− Σσ −
D2

4

ω + σh− Σσ −
D2

4

ω + σh− Σσ −
D2

4

ω + σh− Σσ · · ·

= ω + σh− Σσ(ω)−

(

D2

4

)

Gσ(ω), (A11)

where we explicitly show that the continued fraction does not change when it is evaluated at a deeper level because
its coefficients are constant.
On the other hand, the bare Green’s function of the Anderson impurity model becomes

g0σ(ω) =
1

ω + σh− Γσ(ω)
=

1

ω + σh− Γ(ω + σh)
= g0(ω + σh) (A12)

where the spin resolved hybridization function Γσ(ω) as

Γσ(ω) = Γ(ω + σh) =
V 2

ω + σh−
γ20

ω + σh−
γ21

ω + σh− · · ·

. (A13)

Again, using Dyson equation, the full Green’s function of the Anderson impurity model reads

1

gσ(ω)
= ω + σh− Γσ(ω)− Σσ(ω). (A14)

Based on the self-consistency condition (3), we set Eqs. (A14,A11) equal and obtain the simpler self-consistency
condition

Γσ(ω) =
D2

4
Gσ(ω). (A15)

This was first derived by Ref. 7, and is similar to Eq. (A7), except that , the spin-up and spin-down part are not
equivalent due to the presence of external magnetic field. Note that the spin-dependent Green’s function satisfy the
following relation:

G−σ(ω) = Gσ(−ω) . (A16)
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Appendix B: DMRG solution for single impurity Anderson model without magnetic field

In this Appendix, to numerically verify the two-component mapping scheme, we apply the dynamical DMRG
technique to the single impurity Anderson model at half-filling, which provides a very good benchmark and testing
ground. The usual single impurity Anderson model is written as

H = U(nd,↑ − 1/2)(nd,↓ − 1/2) +
∑

σ

Vσ(d
†
σc1,σ + h.c.) +

L−1
∑

i=1,σ

εic
†
i,σci,σ +

∑

i,σ

γi(c
†
i,σci+1,σ + h.c.), (B1)

where the coefficient of bath electrons comes from the hybridization function Γ(ω) Eq. (A5) (or DOS ρ0(ω) given by
Eq. (2)) of the Bethe lattice: εi = 0, γi = D/2 and Vσ = D/2 (2D is band-width of Bethe lattice). The d electron
represents impurity that is correlated due to the repulsive interaction U > 0.
We are interested in the dynamical properties relating to the one-particle impurity Green function:

Gσ(ω) = lim
η→0+

〈0|d̂†σ
1

Ĥ − E0 + ω − iη
d̂σ|0〉+ 〈0|d̂σ

1

E0 − Ĥ + ω + iη
d̂†σ|0〉, (B2)

where |0〉 stands for the ground state and E0 is ground state energy. The spectral density is therefore obtained by
ρ(ω) = − 1

πℑG(ω).
Here we show the spectral density ρ(ω) and real part of Green function Gσ(ω) for Hamiltonian, Eq. (B1), in Fig. 8.

Without magnetic field (or any other mechanism breaking symmetry between spin-up and spin-down), the Green
function has no dependence on the spin index σ. For finite size calculation, we choose a chain with L = 80 fermionic
sites (after two-component mapping in Sec. II D, we actually work on a chain with L′ = 160 spinless fermion sites).
We conclude that our calculation can recover all features known for this model.11 First, in the absence of interaction
U = 0, the spectral density shows a semielliptic form, which almost repeat the result from continuous version of
the single impurity Anderson model. Second, it is found that spectral density is pinned to ρ(ω = 0) = 2

Dπ which

is requirement from Friedel sum rule.50 This fact serves as a convincing evidence for the reliability of our numerical
algorithm. Third, for the Kondo resonance peak around the Fermi surface, the half width of central Kondo resonance
peak is the rapidly narrowing by increasing the interaction strength U . This behavior is also consistent with the
expectation that the Kondo energy scale (Kondo temperature) monotonically decreases with interaction strength.
Fourth, when interaction strength is larger than band width U ≥ 2D, two symmetric non-coherent peaks (Hubburd
satellites) develop in the high frequency regime. The non-coherent peak structure proves the great advantage of
DMRG, compared to normal NRG calculations: Since the low-frequency and high-frequency regime are deal with
equivalently in DMRG, both Kondo resonance and non-coherent peaks can be fairly viewed. We also compared our
results with the recent publications using DMRG-based techniques, and the results are consistent with the publications
as well.12

Appendix C: DMFT+DMRG solution of single-orbital Hubbard model on the Bethe lattice without

magnetic field

In this Appendix, we solve a single-orbital Hubbard model on the Bethe lattice in the absence of magnetic field,
which is given by the Hamiltonian

H = U
∑

i

(

ni,↑ −
1

2

)(

ni,↓ −
1

2

)

− t
∑

〈i,j〉,σ

c†i,σcj,σ (C1)

where c†i,σ creates one electron with spin−σ at site i and ni,σ is occupation operator. The basic physics of the hubbard
model comes from the competition between the local repulsive interaction and kinetic term consisting of hopping from
one site to the other site. The interaction is diagonal in real space and hence tends to make the electrons local in real
space, while the kinetic energy is diagonal in momentum space and hence tends to make the electrons extended in real
space. So the interaction favors an insulating phase, whereas the kinetic energy favors a metallic phase, depending
on the relative strength of U/t.
Here we solve the Hamiltonian, Eq. (1), with DMFT scheme. The related key DMFT self-consistent condition

has been discussed in Sec. A. Fig. 9 shows our results for various interaction strength U in the metallic phase
(U < Uc ≈ 2.6D). Here we choose the one-dimensional impurity model enclosing L = 80 fermionic sites, which is
solved by DMRG algorithm by limiting each DMRG block with dimensionM = 128. The obtained projection error in
DMRG calculation are all negligible small (less than 10−10), indicating good convergence of DMRG output from core
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FIG. 8: Dynamical DMRG solution for one dimensional single-impurity Anderson model (by setting V = D/2, γi = γ = 1.0 in
Eq. A5) for different interaction strength U = 0, D, 2D: (Left) Spectral densities (imaginary part of Green function by scaling
a global constant πD) and (Right) Real part of Green functions as a function frequency ω. For DMRG simulation, we choose
a chain length L = 80 fermionic sites (after mapping into two-component spinless model, we have L′ = 160 lattice sites). We
kept 128 states in each DMRG block and the resulting projection error is less than 10−10. In the dynamical DMRG calculation,
we use a smearing energy η = 0.1D before deconvolution calculation.

impurity model. As to computational performance, by setting parameter U = 2D, the typical (physical) time cost is
63 minutes for each DMFT loop (on two 3.90GHz cores). Here we set the simulation parameter as the broadening
energy η = 0.1D and frequency scan step ∆ω = η (ω ∈ [−6.0, 6.0]), and use the mixed Bath discretization (see
Appendix D). For more details about computational performance, please see Appendix. G.

The obtained spectral densities faithfully recover the previous DMFT+DMRG calculations,12 with key features
including the pinning criterion ρ(ω = 0) = 2

πD for all interaction strength, and the side peaks at the inner edges of
Hubbard bands in strong interaction regime (U = 2D). Compared with previous numerical renormalization group
calculations, current DMFT+DMRG scheme deal with low frequency and high frequency with the equal weight, thus
we can get correct both Kondo resonance peak in the low frequency and Hubbard satellite bands (non-coherent peak)
in the high frequency. Compared with the Chebyshev-based simulations, current DMFT+DMRG reaches a better
convergence (In Ref. 41, the pinning criterion violates when interaction strength becomes strong or simulation system
size increases larger than L = 80. The authors argued that the linear prediction overestimates the height of the
central Kondo peak (see Appendix in Ref. 41). We didnot observe these drawbacks in our current DMFT+DMRG
realization). In a word, under DMFT+DMRG scheme, by using the two-component mapping, a better convergence
and computational performance is available.

Appendix D: Bath discretization scheme

Since the numerical calculations are performed on the lattice system, we have to discretize the continuous bath
band or continuous hybridization function and construct lattice model. Here we discuss different bath discretization
schemes for DMFT calculation: a linear discretization, a logarithmic discretization and a hybridization discretization.

When we have a continuous bath band (or DOS function ρ(ω)), it can be proved that the effective coupling between
a single impurity site and continuous bath is reproduced exactly by the following Hamiltonian:

Himp−bath =
∑

σ=↑,↓

∫

dωωc†ω,σcω,σ + V
∑

σ=↑,↓

∫

dω
√

ρ(ω)
(

d†σcω,σ +H.c.
)

, (D1)
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FIG. 9: Spectral densities of single-orbital Hubbard model on the Bethe lattice obtained by DMFT scheme. We choose the
impurity model enclosing L = 80 fermionic sites, which is solved by DMRG algorithm by limiting each DMRG block with
dimension M = 128. Before the deconvolution calculation, we select the broadening parameter as η = 0.1D.

where c†ω,σ (cω,σ) is the creation (annihilation) operator of a bath electron which represents the eigenstate with energy
ω and spin σ.
Next, we discretize the energy ω with three ways:

• Linear discretization.— {ωm} = ωmin +∆ωm, where ∆ = (ωmax − ωmin)/L is the energy step.

• Logarithmic discretization.— {ωm} = {ω+
m} ⊕ {ω−

m}, ω±
m = ±DΛ−m, where 2D is the band width, Λ (> 1) is

a parameter which sets a series of intervals in ω±
m’s with m = 0, 1, . . . ,M − 1, and we set ω±

M = 0. This is the
original scheme applied to numerical renormalization group introduced by Wilson.19

• Mixed discretization.— {ωm} = {ωI
m} ⊕ {ωO

m} , ωI
m = ±DΛ−m for |ωm| < ωhyb, {ωO

m} = ωmin + ∆ωm for
|ω| > ωhyb. This is actually a combination of linear and logarithmic discretization scheme.

Defining a representative fermion operator c†m,σ for each energy interval [ωm−1, ωm], the coupling between impurity
and bath can now be expressed as

Himp−bath =
∑

m

∑

σ=↑,↓

ξmc
†
m,σcm,σ +

∑

m

∑

σ=↑,↓

µmd
†
σcm,σ +H.c., (D2)

where

µm = V

[

∫ ωm

ωm−1

dωρ(ω)

]1/2

, ξm =

∫ ωm

ωm−1
dωρ(ω)ω

∫ ωm−1

ωm

dωρ(ω)
. (D3)

The last step is to to map the preceding Hamiltonian on a chain Hamiltonian with only nearest neighbor hoppings
(εi, γi in main text) by using the Lanczos algorithm. This step is the same with the one employed in the numerical
renormailzation group method.20

The logarithmic discretization scheme has much denser energy meshes in low frequency regime, but has much
less energy meshes for high frequency regime. Therefore, the logarithmic discretization scheme cannot capture the
properites in high-energy scales with a high accuracy. In contrast, the linear discretization scheme distributes the
energy meshes equally for all frequency scales and deal with all frequency scales with equal weight. Unfortunately,
linear discretization scheme usually takes much longer time to converge in DMFT calculation. One balanced way
is to use the mixed (hybridization) scheme. We use logarithmic discretization in low energy regime while the linear
discretization in high frequency regime, which gives reliable results in both low and high frequency regime. As shown
one example in Fig. 10 (left), for logarithmic discretization scheme, the spectral density shows unexpected fluctuation
in high frequency regime (or logarithmic discretization doesnot reach convergence within the same parameter setting).
However, for mixed discretization scheme (right), we can reach a smooth curve in all frequency regime. Here, we
conclude that mixed scheme shows better performance than the other two schemes, thus in this paper we used mixed
scheme throughout.
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FIG. 10: Comparison of different bath discretization scheme for spectral densities: (left) logarithmic discretization and (right)
mixed discretization. For logarithmic discreitization, we choose Λ = 1.2. For mixed scheme, we choose ωhyd = 0.45 and Λ = 1.4.
We choose single impurity of Anderson impurity model with chain length L = 80 fermionic sites, solving DMRG using kept
state M = 128. We select parameters as U = 3.0 and h = 0.2. Here we show spectral density for spin-up electrons.

Appendix E: Deconvolution scheme

In DMRG calculation, we have to introduce a broadening factor parameter η in the retarded Green’s function.
Physically, this broadening factor removes the singularity on real frequency axis. Numerically, this broadening factor
makes each single energy level is broadened by a Lorentzian peak with half-width η. To reach the intrinsic physics,
we need a scheme to extract the behavior at purely real frequencies or η → 0. That is, the Green’s function on real
frequency axis takes

GR(ω) = lim
η→0+

G(ω + iη),

where G(ω + iη) is calculated by dynamical DMRG introduced in Sec. II C. Thus the intrinsic spectral density is

ρ(ω) = −
1

π
ℑGR(ω) = lim

η→0+
ℑG(ω + iη)

Here, we use a generalized scheme, maximal entropy method,11,13 to extract the information on the spectral density
ρ(ω). Let us assume that, the spectral density gi from DMRG at given values of ω = ξi for finite values of η has the
relation with intrinsic spectral density ρ(ω):

gi = −
1

π
ℑG(ξi + iη) =

∫

Lη(ξi − ω)ρ(ω) =
1

π

∫

dω
η

(ξi − ω)2 + η2
ρ(ω) (E1)

Hence the necessary step for retrieving ρ(ω) is usually called deconvolution process.
Maximal entropy method is to obtain a continuous, non-negative spectral density ρ(ω), which is consistent with

the numerically determined values of the raw data {gi}. The advantage of maximal entropy method is completely
unbiased. That means it does not use any information other than the one provided by the raw data. The information
content of a density ρ(ω) is measured up to a constant by its negative entropy

−S =

∫ ∞

−∞

dωρ(ω) ln ρ(ω) . (E2)

The least biased ansatz is the one with the least information content which is still compatible with the raw data.
Hence we have to look for the density ρ(ω) which minimizes −S (maximizes S) under the conditions Eq. (E1) given
by the raw data {gi}. To find this least biased ansatz is a straightforward task. Using the Lagrange multipliers λi for
the p conditions set by the raw data {gi} the least biased ansatz is characterized by δS = 0

min{−S +
∑

i

λi(

∫

Lη(ξi − ω)ρ(ω)− gi)} ⇒ 0 = −1− ln ρ(ω) +

p
∑

i=1

λiLη(ω − ξi) .

This equation implies that the least biased ansatz reads

ρ(ω) = exp[−1 +

p
∑

i=1

λiLη(ω − ξi)] . (E3)
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FIG. 11: Spectral densities of single-orbital Hubbard model on the Bethe lattice obtained by DMFT+DMRG scheme. We
choose the impurity model enclosing L = 80 fermionic sites (black), L = 120 fermionic sites (red) and L = 160 fermionic sites
(green).

The Lagrange multipliers are determined by the non-linear equations Eq. (E1):

gj =

Nmesh
∑

n=1

η/π

(ξj − ωn)2 + η2
exp[−1 +

p
∑

i=1

λi
η/π

(ξi − ωn)2 + η2
] . (E4)

They can be solved by non-linear equations solver package (for example, MINIPACK52). Via the ansatz Eq. (E3),
the p Lagrange multipliers determine the most unbiased spectral density ρ(ω) which is still compatible with the
numerically measured information on ρ(ω).

Appendix F: Finite-size analysis

In this paper, the main results are based on the Anderson impurity model enclosing L = 80 fermion sites. One
natural question is whether or not the physical results depends on system sizes. Here we briefly compare the spectral
densities obtained from different system sizes. As shown in Fig. 11, the obtained spectral densities from system
size for L = 80, L = 120 and L = 160 completely merge together, which shows the system size does not influence
the calculations here. We also partly checked other parameters and confirmed that, there is no significant difference
between solution from L = 80 to L = 160. Thus, we conclude that a system size of L = 80 sites is already sufficient
to quantitatively capture the features of the spectral properties for the current problem.

Appendix G: Computational performance of two-component spinless model

In this Appendix, we compare the computational performance of the spinful Hubbard model and two-component
spinless model using DMRG calculation. We set all of physical and simulation parameters the same for two different
models. The convergence of DMRG calculations is shown for the finite size L = 40 for spinful Hubbard model
(equivalent two-component spinless modle enclosing 80 fermion sites) by keeping the number of states M = 128 or
256 kept in the reduced basis set, respectively. Figure 12 shows the comparison between the two models for each
DMFT loop. It is found that the two-component spinless model is faster than the spinful model by an approximate
factor of 2.0. Furthermore, we point out that the two-component spinless model is not only faster, but also provides
a better converged resolution. In our extensive test, DMRG kept state M = 128 is sufficient for two-component
spinless model to reach converged results for most of cases. However, for the intermediate interaction regime, the
spinful Hubbard model has not even converged using DMRG kept state up to M = 256, despite having used a large
amount of CPU time and iterations. The key reason is that, adding a single spinless site instead of a spinful site in
each DMRG step leads to a much smaller truncation error or higher resolution (see Sec. II D for discussion).
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FIG. 12: CPU times for a DMRG run performed with spinful Hubbard model and two-component spinless model. We set all
parameters in single impurity Anderson impurity model are the same. The time unit is the time cost of each DMFT loop for
spinful Hubbard model by solving DMRG using kept state M = 256.

Appendix H: Self-energy function

In the main text, we have shown the spectral density which directly relates to the full local Green function Gσ(ω).
Here we show the related self-energy function Σ(ω). Generally, the self-energy can be obtained by the Dyson equation
through Σ(ω) = G−1

0 (ω)−G−1(ω). Here we choose an alternative way to calculate self-energy function, which was first
proposed by Bulla.51 This method of calculating self-energy turns out to be considerably more reliable and accurate
than via Dyson equation alone.
Following Bulla,51 we can calculate the quantity F (ω) first:

Fσ(ω) = 〈0|d̂σ(n−σ − 1/2)
1

ω + iη + E0 − Ĥ
d̂†σ|0〉+ 〈0|d̂†σ

1

ω + iη − E0 + Ĥ
d̂σ(n−σ − 1/2)|0〉. (H1)

and then the self-energy function is obtained by

Σσ(ω) = U
Fσ(ω)

Gσ(ω)
. (H2)

We show the obtained self-energy function of spin-up electrons at impurity site in Fig. 13. Since the magnetic
field breaks particle-hole symmetry, the self-energy is not symmetric. And the imaginary part of self-energy shows
a asymmetric two-peak structure. With increasing magnetic field, the peak in the hole regime becomes more visible
and the other peak in the electron regime tends to diminish. That means, after phase transition, interaction only
modifies the filled band electrons.
While imaginary part of self-energy relates to quasiparticle lifetime, the real part of self-energy reflects the quasi-

particle weight or effective mass. Here we define the quasiparticle weight Zσ, which describe how good the single
particle picture works:

Zσ = [1−
∂ℜΣσ(ω)

∂ω
|ω=0]

−1. (H3)

Interestingly, the inverse of the quasiparticle weight Z−1
σ corresponds to the enhancement of the effective mass me

σ(h)
by

me
σ/m

e
0 = Z−1

σ . (H4)

The inverse of quasiparticle weight, shown in Fig. 14, shows a sharp rise before entering the insulator phase. This
signals the enhancement of quasiparticle weight around the quantum phase transition. This behavior provides another
evidence of metamagnetic phase transition in this system. When the ground state is fully polarized, quasiparticle
weight should approach Z−1

σ ≈ 1.0, corresponding to the band insulator discussed in the main text.
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FIG. 13: Self-energy function of single-orbital Hubbard model on the Bethe lattice obtained by DMFT scheme. Interaction
strength is set to be U = 3.0. We choose the impurity model enclosing L = 80 fermionic sites, which is solved by DMRG
algorithm by limiting each DMRG block with dimension M = 128.
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FIG. 14: Inverse of quasi-particle weight as a function of magnetic field h, by setting U = 3.0.


