
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Effects of optical polarization on hybridization of radiative
and evanescent field modes

Andrii Iurov, Danhong Huang, Godfrey Gumbs, Wei Pan, and A. A. Maradudin
Phys. Rev. B 96, 081408 — Published 23 August 2017

DOI: 10.1103/PhysRevB.96.081408

http://dx.doi.org/10.1103/PhysRevB.96.081408


Effects of Optical Polarization on Hybridization of Radiative and Evanescent Field
Modes

Andrii Iurov1, Danhong Huang2, Godfrey Gumbs3, Wei Pan4 and A. A. Maradudin5

1Center for High Technology Materials, University of New Mexico,
1313 Goddard SE, Albuquerque, New Mexico, 87106, USA

2Air Force Research Laboratory, Space Vehicles Directorate,
Kirtland Air Force Base, New Mexico 87117, USA

3Department of Physics and Astronomy, Hunter College of the City University of New York,
695 Park Avenue New York, New York 10065, USA

4Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
5Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

(Dated: August 10, 2017)

Effects of induced optical polarization by Dirac electrons in graphene on the hybridization of
radiative and evanescent fields is found. Such effects result in a localized polarization field which
significantly modifies an incident surface-plasmon-polariton (SPP) field. This yields a high sensi-
tivity to local dielectric environments and provides an investigative tool for molecules or proteins
selectively bound with carbons. A scattering matrix is utilized with varied frequencies in the vicinity
of the surface-plasmon (SP) resonance for the increase, decrease and even a full suppression of the
polarization field, which enables accurate effective-medium theories to be constructed for Maxwell-
equation finite-difference time-domain methods. Moreover, double peaks in the absorption spectra
for hybrid SP and graphene-plasmon modes are significant only with a large conductor plasma fre-
quency, but are overshadowed by a round SPP peak at a small plasma frequency as the graphene is
placed close to conductor surface. These resonant absorptions facilitate the polariton-only excita-
tions, leading to polariton condensation for a threshold-free laser.

PACS numbers: 73.20.Mf; 42.25.-p; 78.67.Wj; 78.68.+m

Introduction: It is known that when light is incident on a semiconductor, its energetic photons can elevate electrons
from a valence band to a conduction band, leaving many electron-hole pairs in the system [1, 2]. Simultaneously,
its electric-field component will further move aside these negatively (positively) charged electrons (holes) in opposite
spatial directions. However, the remaining question is, whether excited electrons or the holes exert an action back
on the incident light? The answer to this lies in the induced optical-polarization field as a collection of local dipole
moments from many displaced electrons and holes [3, 4], which plays a role in scattering the electric-field component
of the incident light [5, 6]. Therefore, the quantum nature of Dirac electrons [7–11] is expected to be retained in the
effects of optical polarization on the incident light with a complex distribution of the Landau-damping regions in
comparison with that for two-dimensional electron gases in a quantum well [12].

For a hybrid structure illustrated in Fig.1a, we encounter radiative field modes, such as photons and polaritons [13–
17], as well as evanescent field modes, e.g., surface and graphene plasmons [18–20]. Research on optical responses of
graphene electrons has been reported previously [20, 21], but most of those efforts have been limited to the radiation
or grating-deflection field coupling. In contrast to a plane-wave-like external field, we explore the surface-plasmon-
polariton near-field [22–24] coupling to graphene electrons with a different dispersion relation from the usual linear
one, i.e., ω = qc, for free-space light. In our case, the graphene is brought very close to the surface of a conducting
substrate so that the hybridization of radiative and evanescent fields can occur [25]. Consequently, the non-dispersive
surface-plasmon mode is able to hybridize with radiative photon and polariton modes [13, 14], as well as with the
spatially-localized graphene plasmon mode [12], as shown schematically in Fig.1b.

Such a distinctive dispersion relation of the hybrid quantum-plasmon modes should be experimentally observable
in optical spectra [26–29]. The effective scattering matrix [30, 31] from such a coupled system is found to differ
significantly from that for either the graphene or the conductor and it displays distinctive features from the retarded
longitudinal Coulomb interaction [6] between electrons in the graphene and conductor. This scattering matrix can be
employed for constructing an effective-medium theory [9, 32–35] and investigating the optical properties of inserted
biomolecules and metamaterials between the graphene sheets and the surface of the conductor. Therefore, a locally
environment-sensitive super-resolution near-field imaging can be developed for functionalized biomolecules bound to
metallic nanodots and nanorods or even carbon atoms of graphene [36].

Theory and Methods: The structure under investigation is illustrated in Fig.1a, and consists of a thick conductor
and a dielectric-embedded graphene above its surface. A surface-plasmon-polariton field (SPPF) can be excited by
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FIG. 1: (Color online) Schematic (a) for a thick conductor (z < 0) with dielectric function εc(ω) and a graphene layer at
z = z0 above its surface at z = 0 which is embedded within a semi-infinite material, extending from z = 0 to z = ∞, with
dielectric constant εd. The surface-plasmon-polariton field (SPPF) is excited by light incident on a grating. The propagating
SPPF excites Dirac electrons in graphene and the induced graphene polarization modifies the SPPF by resonant scattering.
Illustration (b) for energy dispersion of photons, polaritons, surface-plasmon polaritons (SPPs), graphene plasmons (G-Ps) and
surface plasmons (SPs), where three labeled circles indicate the mode hybridizations.

incident light on a surface grating. This surface-propagating SPPF couples to Dirac electrons in graphene, and the
induced polarization field from graphene acts back simultaneously on the SPPF as a resonant scatterer. The details
about the derivations of Eqs. (1)-(4) below can be found from Ref. [37].

Using the Green’s function approach, [5] we convert Maxwell’s equation for the electric field E(r, ω) into an integral
equation in the spatial (r) domain, including a nonlocal source term to scatter the incident SPPF E inc(r, ω), where ω
is the light frequency. After Fourier transforming this integral equation with respect to r‖, we obtain (µ, ν = 1, 2, 3)

Eµ(q‖, ω|x3) = E inc
µ (q‖, ω|x3) +

ω2

ε0c2

∑
ν

gµν(q‖, ω|x3, z0)Ps
ν(q‖, ω) , (1)

where r = {r‖, x3}, x3 = z0 denotes the graphene-sheet position, and gµν(q‖, ω|x3, z0) is the Fourier trans-
formed Green’s function matrix [6] which corresponds to a retarded coupling between graphene electrons to the
incident SPPF. Using linear response theory [38], we obtain the graphene polarization field in Eq.(1) Ps

ν(q‖, ω) =

ε0χ
(0)
s (q‖, ω) (1− δν3)Eν(q‖, ω|z0), where χ

(0)
s (q‖, ω) = e2 Π

(0)
s (q‖, ω)/[ε0(q2

‖ − εd ω
2/c2)] [39], and Π

(0)
s (q‖, ω) is the

density-density correlation function for graphene electrons [40–42]. The transverse and longitudinal electronic re-
sponses are associated with the magnetic and electric susceptibilities, respectively. The former is usually much weaker
than the latter if no magnetic impurities are present in the graphene layer. In this paper, we will concentrate on
the dominant scattering of the incident SPP electric field from the dielectric response of graphene while neglect
the graphene diamagnetic response at the same time. The properties of the graphene diamagnetic response have
been discussed before by using the lattice model. [43, 44] Setting x3 = z0 in Eq.(1), we obtain a self-consistent
equation for E(q‖, ω|z0). Furthermore, if E inc(q‖, ω|z0) = 0 is assumed in this self-consistent equation, we ob-
tain the dispersion equation for the hybrid plasmon modes, and the resulting dispersion relation ω = Ω(q‖|z0),

as illustrated in Fig.1b, is determined from the real part of the secular equation Det{C
↔

(q‖, ω|z0)} = 0, where

C
↔

(q‖, ω|z0) = δµν − (ω/c)2gµν(q‖, ω|z0, z0) (1− δν3)χ
(0)
s (q‖, ω) is the complex coefficient matrix. After calculating

the inverse of C
↔

, E(r‖, ω|x3) can be expressed explicitly as
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Eµ(r‖, ω|x3) = E inc
µ (r‖, ω|x3) +

ω2

c2

∫
d2q‖

(2π)2
eiq‖·r‖ χ(0)

s (q‖, ω)

×
∑
ν

gµν(q‖, ω|x3, z0) (1− δν3)

∑
µ′

C−1
νµ′(q‖, ω|z0) E inc

µ′ (q‖, ω|z0)

 . (2)

From Eq.(2), the Fourier transformed scattering matrix [30] is readily determined to be given as

αeff
µν(q‖, ω|x3) =

ω2

c2
χ(0)

s (q‖, ω)
∑
ν′

gµν′(q‖, ω|x3, z0) (1− δν′3) C−1
ν′ν(q‖, ω|z0) . (3)

Additionally, by using the calculated E(r‖, ω|z0) in Eq.(2), the absorption coefficient βabs(ω|z0) for the SPPF can be
calculated [22, 45] based on the Lorentz function αL(ω|z0) given by

αL(ω|z0) =
c

ω

∣∣∣∣∣∑
µ,ν

êµ C−1
µν (k0, ω|z0)

[
ik̂νβ3(ω)− x̂νk0(ω)

]
e−β3(ω)z0

∣∣∣∣∣
×
(

2πe2

ε0εrk0

)√
1− εdω2

k2
0c

2

{
Π(0)

s (k0, ω) + [Π(0)
s (k0,−ω)]∗

}
, (4)

where εr is the effective dielectric constant of the host material above the conductor surface in which the graphene layer
is embedded and is approximately taken as the cladding-layer dielectric constant εd, ê and k̂ are the unit polarization
and wave vectors of the SPPF, x̂ = (0, 0, 1) is the spatial unit vector, k0 ≡ Re[k0(ω)]k̂, β3(ω) =

√
k2

0(ω)− ω2/c2,

k0(ω) = (ω/c)
√
εdεc(ω)/[εd + εc(ω)], εd is the cladding-layer dielectric constant, εc(ω) = εs −Ω2

p/[ω(ω + i0+)] for the
conductor, and Re[k0(ω)] ≥ 0 as well as Re[β3(ω)] ≥ 0 are assumed in treating the multi-value square roots. [37]

Results and Discussions: In our numerical calculations, we use the Fermi wave vector kF =
√
πn0 as the scale for

wave numbers, 1/kF for lengths, and EF = ~vFkF for energies. The direction of SPPF propagation is chosen as

k̂ = (1, 0, 0) for simplicity, and we also set εs = 13.3, εd = εr = 2.4, vF = 1 × 108 cm/s, and n0 = 5 × 1011 cm−2 for
the doping density in graphene. Moreover, the half gap ∆ = 0 is assumed unless it is stated in figure captions, and
the resonant frequency Ωr = Ωp/

√
εs + εd will be given directly in figure captions.

For a retarded interaction between light and graphene electrons, both radiative and evanescent modes must be
considered for the hybrid structure. The radiative modes include photons and polaritons, while the evanescent modes
appear as surface-plasmon polaritons (SPPs), graphene plasmons (G-Ps), and surface plasmons (SPs). Figure 2

presents the real part of D−1(qx, ω|z0) ≡ 1/Det[C
↔

(qx, ω|z0)] for four chosen qx ranges. It is clear from Fig.2a that
in addition to the SPP mode, the hybridizations of both radiative photon and polariton modes with localized SPs
(labeled as q1 and q2 in Fig.1b) appear in this very small qx range. As the qx range is slightly expanded in Fig.2b, the
SPP mode in Fig.2a becomes fully developed, which is accompanied by a G-P mode at low energies. As the qx range
is further increased in Figs.2c and 2d, the G-P energy exceeds that of the SP. Consequently, the anticrossing of G-Ps
with SPPs (labeled by q3 in Fig. 1b) is observed.

The z0 dependence in the secular equation highlights the nature of the distinctive evanescent coupling between
SPPs and G-Ps. Here, the factor gµν(qx, ω|z0, z0) plays the role of a retarded SPP coupling to a spatially-separated

G-P, while χ
(0)
s (qx, ω) corresponds to the G-P optical response. Therefore, their product represents the hybrid Dirac-

SPP modes. By moving the graphene a bit further from the conductor surface, the anticrossing gap shrinks due to
decreased retarded coupling. Simultaneously, the strengths of all the plasmon, polariton and photon modes increase
by more than one order of magnitude due to loss suppression of these modes to the conductor.

The incident SPPF suffers not only Ohmic loss during its propagation along the conductor surface, but also
absorption loss by its coupling to G-Ps. Figure 3 presents the absorption spectra βabs(ω|z0) for various ∆ in (a)
and chosen z0 in (b). From Fig.3a we find three absorption peaks for ∆ = 0, where two sharp ones correspond to G-Ps
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FIG. 2: (Color online) Density plots for the real part of D−1(qx, ω|z0) ≡ 1/Det{C
↔

(qx, ω|z0)} in four different qx ranges growing
from 0.03 to 7 with hybrid-plasmon dispersions indicated by jumps between positive (red) and negative (blue) peaks. Here,
kF z0 = 0.01, ~Ωr/EF = 1.78.
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FIG. 3: (Color online) Absorption spectra βabs(ω|z0) displayed in (a) with kF z0 = 0.01 for ∆/EF = 0, 0.1, 0.3, 0.8, where
~Ωr/EF = 1.78 and 0.25 in its inset. In (b), βabs(ω|z0) with ~Ωr/EF = 1.78, ∆/EF = 0 for kF z0 = 0, 200, 500, 800, and its z0

dependence in the inset for ω/Ωr = 0.4, 0.5, 0.6, 0.7.

(right) and SPs (left), as seen from Figs.2c and 2d, with a deep trough separating them for the opened anticrossing
gap labeled as q3 in Fig. 1b. The lowest rounded peak is for SPP modes, as shown in Figs.2a and 2b, which is separated
from the SP peak by a shallow dip labeled by q2 in Fig.1b. The absorption peak from the indistinguishable SPP and
SP modes increases greatly in the inset of Fig.3a for a lower SP resonance ~Ωr/EF = 0.25 since the SPPF decay
is largely eased at a much smaller qx. The enhancement of the SPP absorption peak is also observed in Fig.3b for
small z0 due to reduced SPPF decay. Moreover, we find from the inset of Fig. 3b that the decrease of βabs(ω|z0) with
increasing z0 becomes much more dramatic as ω approaches Ωr with increased SPPF localization.

In addition to the SPPF optical absorption by G-Ps, resonant scattering of the SPPF from G-Ps also takes place, as
described by Eq.(3). Figure 4 presents 3D plots for [Re{αeff

11 (qx, ω|x3)}]1/5 with four values for ω, where the graphene
is positioned relatively close to the surface. Here, the scattering matrix is αeff

µν ≡ δ(Eµ − E inc
µ )/δE inc

ν , and its signs
correspond to enhanced (+) or weakened (−) SPPF after light scattering with G-Ps. The left (right) and lower (upper)
regions correspond to small (large) qx and x3, respectively. If both qx and x3 are large, such scattering is significantly
suppressed, leaving only a sizable and flat basin in the upper-right-hand corners of Figs.4a-4d. If qx is very small, the
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FIG. 4: (Color online) 3D plots for [Re{αeff
11 (qx, ω|x3)}]1/5 with ω/Ωr = 0.7 (a), 0.8 (b), 0.9 (c), 1.0 (d), where kF z0 = 5,

~Ωr/EF = 1.78.
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FIG. 5: (Color online) 3D plots for [Re{αeff
11 (qx, ω|x3)}]1/5 with ω/Ωr = 0.7 (a), 0.8 (b), 0.9 (c), 1.0 (d), where kF z0 = 25,

~Ωr/EF = 1.78.

photon and SPP radiative modes dominate, and then, Re{αeff
11 (qx, ω|x3)} remains negative and becomes independent

of x3. When qx is intermediate, the SPP evanescent modes start entering in with increasing ω up to Ωr. In this case,
the positive peak strength is reduced and the peak coverage is squeezed into a smaller x3 region where the localization
of SPPF is still insignificant. Even more, the positive peak is split into two islands at ω = 0.9 Ωr and it is eventually
switched to a negative peak followed by a negative edge at ω = Ωr. On the other hand, when qx becomes very large for
a strongly-localized SPPF, its scattering by G-P becomes negligible except for the region very close to the graphene
as shown by the sharp negative edges in the lower-right-hand corners of Figs.4a-4d.

By moving the graphene further away from the conductor surface, as shown in Fig.5, we expect the scattering
effects from G-Ps on the SPPF to be limited to a narrow area surrounding the graphene for large qx values. Indeed,
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when qx is large, we find Re{αeff
11 (qx, ω|x3)} = 0 for x3 far away from the graphene at z0 in the upper- and lower-right

corners of Figs.5a-5d. For small qx values, however, the positive peak appears, as in Fig.5, and its coverage crawls
out along x3 = z0 to a relative large qx region followed by a negative sharp edge, although its peak strength decreases
with increasing ω towards Ωr. This extended region becomes separated from the positive peak at ω = 0.9 Ωr in Fig.5c
to form an island, and both the positive peak and island disappear and are eventually replaced by negative sharp and
stepped edges at ω = Ωr in Fig.5d.

Summary: The effect of induced optical polarization on the hybridization of radiative and evanescent fields has been
demonstrated by using a retarded interaction, which is seen as the hybrid dispersions for both radiative (small qx
range) and evanescent (large qx range) field modes. Such an effect is rooted in the induced optical-polarization field
from the Dirac plasmons, which resonantly redistributes an incident surface-plasmon-polariton field by scattering. The
localization characteristics of such a retarded interaction ensure high sensitivity to dielectric environments surrounding
graphene, including variations in the conducting substrate, cladding layer, electronic properties of embedded graphene,
as well as the graphene distance from the conductor surface. This provides a unique advantage in wavelength-sensitive
optical investigation of chemically-active molecules or proteins bound to carbon atoms in graphene [5, 6].

The optical probing tools discussed in this paper include either scattering or optical absorption of an incident
electromagnetic field. For light scattering, we calculated the spatial-temporal dependence of a Fourier transformed
scattering matrix, which clearly exhibits the scattering enhancement, weakening and even suppression as functions of
both graphene separations (z0) from the conductor surface and wave numbers (qx) of the evanescent surface-plasmon-
polariton field at several frequencies close to the localized surface-plasmon resonance. This derived scattering matrix
lays the foundation for constructing an effective-medium theory commonly employed in finite-difference time-domain
methods [46] for solving Maxwell’s equations. For field absorption, the double peaks associated with hybrid surface
and graphene plasmon modes on the high energy side are shown to be dominant for high conductor plasma frequencies
and small graphene separations. However, the rounded peak on the low energy side plays the dominant role at low
plasma frequencies. Additionally, this rounded peak shows that SPP modes can be greatly enhanced when graphene
is moved close to the surface of the conductor. These unique features in resonant absorption enable the selective
excitation of radiative polariton modes for their condensation and a threshold-free laser afterwards.
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Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, Phys. Rev. Lett. 98, 126405 (2007).
[14] S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, Nature 453, 372 (2008).
[15] P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, Phys. Rev. Lett. 110, 206403 (2013).
[16] C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D.

Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, Nature 497, 348 (2013).
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