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At low temperatures in ultraclean GaAs-AlGaAs heterojunctions, high Landau levels near half-
integral filling break rotational symmetry, leading to increasingly anisotropic transport properties
as temperature is lowered below ∼150mK. While the onset of transport anisotropy is well described
by an XY model of an electron nematic in the presence of a weak uniform symmetry-breaking
term, the low temperature behavior deviates significantly from this model. We find that inclusion
of interactions between the electron nematic and the underlying crystalline lattice in the form of a
4-fold symmetry breaking term is sufficient to describe the entire temperature dependence of the
transport anisotropy at ν = 9/2. This implies that this electron nematic is in the Ising universality
class. We propose new experimental tests that can distinguish whether any two-dimensional electron
nematic is in the XY or Ising universality class.

Strong electron correlations can drive systems into a
variety of novel electronic phases of matter. Electronic
liquid crystals1–3 form when electronic degrees of free-
dom partially break the symmetries of the host crys-
tal. Like their molecular counterparts, electron nematic
phases break rotational symmetry, while retaining liquid-
ity. Such oriented electronic liquids have been observed
in a variety of systems, including strontium ruthenates4,
iron superconductors5–7, cuprate superconductors8,9, the
(111) surface of bismuth10,11, and high fractional Landau
levels. The key signature in the quantum Hall regime is
a pronounced transport anisotropy that develops at low
temperature.12–16

At high fractional Landau levels, uniform quantum
Hall phases are unstable to the formation of stripe and
bubble phases, with the stripe phases being preferred
near high half-filling.17 Several stripe phases are pos-
sible, including (insulating) stripe crystals, as well as
(compressible) electronic liquid crystal phases like ne-
matic or smectic.2 In ultraclean GaAs-AlGaAs hetero-
junctions near high half-integral fillings ν ≥ 9/213,14, lon-
gitudinal transport anisotropy spontaneously develops at
low temperature. This state has been identified as a ne-
matic quantum Hall metal (NQHM), an oriented, com-
pressible stripe phase of interleaved integer quantum Hall
states.18,19 Fradkin et al.18 developed an order parame-
ter theory of the nematic to describe the temperature
evolution of the resistivity anisotropy as it develops. Us-
ing symmetry to map the resistivity anisotropy to the
nematic order parameter, they showed that the tempera-
ture evolution of the resistivity anisotropy in the ν = 9/2
state is well described by a classical 2D XY model, with a
weak uniform symmetry-breaking term, through the on-
set of the resistivity anisotropy as temperature is lowered
below ∼150mK, with deviations from the theory begin-
ning below ∼55mK. This model places the transition in
the BKT universality class20,21.

One difficulty with this identification is that a true
BKT transition does not break symmetry, and in fact in
that model long-range order of a nematic is forbidden at
finite temperature. However, as stressed in Ref. 18, the
nematic susceptibility is sufficiently strong in the BKT

phase that net nematicity can develop anyway in the
presence of even a weak uniform orienting field. Note
that without the development of net nematicity, the re-
sistivity anisotropy would be zero.
Here, we propose an order parameter model of the

NQHM which solves both the problem of the deviation
of the low temperature resistivity anisotropy data from
the order parameter theory, as well as the issue of long-
range order. The nematic order parameter is a headless
vector, which depends on overall orientation but not the
direction. (That is, it is symmetric with respect to a
180o rotation.) If the interaction between the electron
nematic and the host crystal is sufficiently weak, the ne-
matic is free to form in any direction, and an XY model of
the development of nematicity is appropriate.18 We first
consider this case, but in the presence of lattice effects
which ultimately at low temperature lock the nematic to
a crystalline axis:

H =− J
∑
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∑
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where J represents the tendency of neighboring regions
to align their stripe orientation due to Coulomb inter-
actions. The orienting field h can arise from intrinsic
orienting effects such as an interaction with the sample
boundaries, or from an external field tuned via, e.g., an
applied orienting field such as an in-plane magnetic field
or strain, among other things.22,23 The interaction of the
electrons with a four-fold symmetric bandstructure gives
rise to the V term, where the continuous U(1) symmetry
is broken by the C4 symmetry of the lattice.24

The “nematicity” (order parameter of the nematic) in
this model is N =

〈

e2iθ
〉

.18 Because the (normalized)
macroscopic transport anisotropy ρa transforms under
rotations in the same way as the nematicity, the two
are related as ρa ≡

[

(r + 1)/(r − 1)
](

ρxx − ρyy
)

/
(

ρxx +

ρyy
)

= f(N ) where f(N ) is an odd function of N , and
r ≡ ρxx(N → 1)/ρyy(N → 1) is what the ratio of macro-
scopic resistivities would be in a fully oriented state. For
small N , f(N ) = N .18,25
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(a) XY model with moderate 4-fold symmetry breaking term
V, Eqn. 1

(b) Ising Model, Eqn. 2

FIG. 1. Monte Carlo simulations (purple dot) on a lattice of
100x100 sites, compared to experimental data (green line) of

resistivity anisotropy
ρxx−ρyy

ρxx+ρyy
from Lilly et al.13. The theo-

retical comparison is to: (a) an XY model with a moderate
four-fold symmetry breaking field V and uniform orienting
field h, and (b) an Ising model with uniform orienting field
h. Note that within an XY description, a moderate 4-fold
symmetry breaking term V 6= 0 is required to capture the low
temperature dependence of the resistivity anisotropy, which
changes the universality class of the electron nematic from
XY to Ising. The resistivity anisotropy

ρxx−ρyy

ρxx+ρyy
is from the

experimental data of Lilly et al.13.

FIG. 2. Monte Carlo simulations on a lattice of 100x100 sites
of an XY model with 4-fold symmetry breaking term, for vari-
ous angles φ of the orienting field h. This shows the increasing
steepness of the nematic-to-isotropic transition when φ goes
from 0o → 15o → 30o → 45o. All of these simulation are done
with h = 0.05J and V = 1.0J .

Results for the model of Eqn. 1 are shown in Fig. 1(a).
As shown in Fig. 2 of Ref. 18, the experimental data of
Ref. 13 can be matched reasonably well for T >

∼ 55mK in
the presence of a weak uniform orienting field h and V =
0, but with significant deviation below 55mK. We find
that the entire temperature evolution can be captured in
the presence of both nonzero h and nonzero V , as shown
in Fig. 1(a). In the Figure, we use uniform orientational
field h = .15J along with four-fold symmetry breaking
term V = 6J , and J = 35.3mK. Smaller values of V have
too steep of a slope at low temperature. For larger values
of V , the higher temperature behavior (100−150mK) can
no longer be captured. For the parameters of Fig. 1(a),
the absolute strength of the interaction J is about half
that of Ref. 18. Because the value of V that we use is
not small with respect to J , the universality class of the
transition is now Ising, not XY. For a pure XY model
with h = 0 and V = 0, the transition temperature is
TKT = .89J .21, but in Fig. 1(a) the onset of nematicity is
happening closer to the (2D) Ising transition temperature
of Tc = 2.27J , consistent with this shift of universality
class. (See Supplemental Material26 for results with other
values of parameters.)
The effect of rotating the uniform orienting field h away

from a crystalline axis is explored in Fig. 2, where the an-
gle φ between h and the crystalline axes is varied. Note
that up until φ ≈ 30o the impact on the temperature evo-
lution is negligible. However, at the high symmetry point
φ = 45o, there is a true symmetry breaking transition,
and the temperature onset is quite sudden.26

We have found that within an XY description (Eqn. 1),
moderate values of V/J are required to capture the en-
tire temperature dependence of the resistivity anisotropy
in the NQHM at ν = 9/2. This naturally leads to the
question of how well a simple Ising model can account
for the data:

H = −J
∑

〈i,j〉

σiσj − h
∑

j

σi . (2)

Here, we make the assumption that the electron nematic,
once it develops, tends to lock to a favorable lattice di-
rection. In a crystal with 4-fold rotational symmetry,
because the director of the nematic is a headless vector,
the order parameter of the nematic is explicitly in the
Ising universality class with the two possible orientations
of the nematic being mapped to σ = ±1. A uniform ori-
enting field (whether intrinsic or applied) is modeled by
h.
The nematic order parameter in this case is N =

(1/N)
∑

i σi. As in the case of an XY model of an elec-
tron nematic, the (normalized) macroscopic resistivity
anisotropy ρa maps to the macroscopic order parame-
ter in the Ising description as ρa = g(N ) where g(N ) is
an odd function of N and to first order in N , g = f .
Note that for h = 0, the magnetization for 2D-Ising

model is

M(T, h = 0) =

[

1− sinh−4

(

2J

T

)]
1

8

, T < Tc . (3)
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Unlike the XY model where the low temperature ne-
maticity can only develop for nonzero h and is linear in
temperature T , the Ising magnetization can develop even
with h = 0 and is flat at low temperatures. Our com-
parison of the experimental resistivity anisotropy to an
Ising model is shown in Fig.1(b). We find that the data
can be well described throughout the entire temperature
range within a simple Ising model, with J = 32.5mK and
h = 0.1J .

Remarkably, we find that the entire temperature range
of the resistivity anisotropy ρa can be captured quite well
within an Ising model in the presence of a weak uniform
orienting field. Within this context, the low temperature
saturation of

(

ρxx−ρyy
)

/
(

ρxx+ρyy
)

to a value≈ .818 6= 1

could have several origins:18,25 (i) Taken at face value,
the saturation implies that the bare “nematogens” repre-
sented by each Ising variable have an intrinsic resistivity
anisotropy which persists down to the lowest tempera-
tures, r = ρxx/ρyy ≈ 10. This could be attributable to
quantum fluctuations within a bare nematogen. (ii) Sim-
ilar saturation effects could also arise from even a small
amount of quenched disorder, since the critical (random
field type) disorder strength is zero in a two-dimensional
Ising model. (iii) Nonlinear terms in the function g(N )
can lead to g 6= 1 as N → 1 at low temperature.

Experimental test of universality class: We propose
that low temperature hysteresis measurements can dis-
tinguish whether any electron nematic (including the
NQHM at high fractional filling discussed here) is in the
Ising or XY universality class. Fig. 3 shows the equi-
librium phase diagram for both models, as a function of
temperature and total orienting field h. Note that be-
cause the nematic order parameter switches sign upon
rotating 90o, the orienting field is related to the applied
in-plane magnetic field by h ∝ B2

x−B2
y.

22 Other external
perturbations also contribute to an orienting field, such
as strain.22,27 In both models, a phase transition only
exists at zero orienting field, h = 0. In the Ising case,
the phase transition is into a low-temperature, long-range
ordered nematic phase which spontaneously breaks rota-
tional symmetry. For the 2D XY model, the phase transi-
tion is in the BKT universality class, and the low temper-
ature phase is critical throughout the temperature range,
with no long range order, and therefore no net nematicity
N , measurable by N ∝ (ρxx − ρyy)/(ρxx + ρyy). Upon
field cooling in any weak h, both models will develop a net
nematicity below a crossover temperature which is close
to the phase transition temperature, whether Tc = 2.27J
in the Ising case, or TKT = .89J in the XY case.

However, hysteresis can clearly distinguish between
these universality classes. The hysteresis protocol we
propose (shown in Fig. 3) is the following: Cool in an
orienting field h > 0 such as in-plane magnetic field (see
Ref. 22 and 23 for a list of orienting fields), and go to
low temperature, well within the nematic region. Then,
reduce h to zero, and sweep it to negative values h < 0.
Using, e.g., in-plane magnetic field as an orienting field,
this is equivalent to cooling with an in-plane field config-

FIG. 3. Equilibrium phase diagram for (a) two-dimensional
Ising model and (b) two-dimensional XY model. In both
cases, a low temperature phase transition occurs only for ori-
enting field h = 0. In the Ising case, the low temperature
phase has long-range nematic order, and in the XY case the
low temperature phase only has topological order but no long-
range nematic order. The experimental hysteresis test we
propose begins by (i) cooling (green arrow) with or without
applied field happ, followed by (ii) sweeping the orienting field
happ so as to move the system back and forth across the low
temperature phase (orange dotted line). Refer to Fig. 4 for
the experimental prediction of the response of the nematicity
N as a function of applied orienting field.

uration of ~Bin−plane = (Bx > 0, By = 0), then holding
the temperature fixed, decreasing Bx to zero, then im-
mediately increasing the field By from zero while holding
Bx = 0 so as to end with an in-plane field configura-

tion of ~Bin−plane = (Bx = 0, By > 0). Indeed, quantum
Hall stripes can be reoriented via application of in-plane
field.28 At low temperature in the Ising case, there is
hysteresis in the net nematicity N as the in-plane field is
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FIG. 4. Predicted result of hysteresis test for (a) an Ising
nematic and (b) an XY nematic. Cooling (green arrow) the
system below Tc (Ising) or TKT (XY) gives rise to a net ne-
maticity in the presence of any orienting field h, including
the case of no applied orienting field, since then h = hint 6= 0.
Subsequently sweeping the in-plane orienting field gives rise
to either hysteresis in the Ising case, or no hysteresis in the
XY case.

swept so as to take h from positive to negative and back
again, or vice versa. Therefore in the Ising case, the net
nematicity should remain in an oriented state, until the
coercive field strength hc 6= 0 is reached.

However, in the XY case, there should be no hysteresis.
This follows from the Mermin-Wagner-Hohenberg theo-
rem, since decreasing an applied field h so as to end on
the critical phase at h = 0 can leave no long range order,
N (h → 0) → 0 where N is the net nematicity. Because
h → 0 with T < TKT is critical, N ∝ h(1/δ) as field is

swept, where the critical exponent δ = (4/η) − 1 varies
from δ(TKT) = 15 to δ(T → 0) → ∞.29 This case is
shown in Fig. 4(b).
It should also be noted that the test is clearest in clean

samples, since addition of random field effects in the pres-
ence of a net orienting field h puts both models in the uni-
versality class of the random field Ising model,30 which
has hysteresis at low temperature. Whereas hysteresis
of a clean Ising model has a net macroscopic jump in
the nematicity, hysteresis of a random field Ising model
is smooth in two dimensions.31 At very weak but finite
random field strength, the model predicts avalanches in
the resistivity anisotropy around the hysteresis loop with
power law behavior set by critical exponents characteris-
tic of the 2D random field Ising model critical point.
Note that our simulations as well as those of Ref. 18

indicate the presence of a weak intrinsic orienting field,
hint in the sample, on the order of hint ≈ 3 − 5mK.26

This means that to achieve h = 0 requires that some ex-
trinsic orienting field, such as an in-plane magnetic field
or uniaxial strain,22,23 must be applied to compensate.
Assuming this could be achieved, then zero-field cooling
(ZFC) with h = hint + happ = 0 has stark differences
in the two models. In the Ising case, ZFC gives rise to
long-range order with net nematicity and macroscopic
resistivity anisotropy, with Ising critical behavior at the
onset of nematicity, and the direction of that nematicity
can randomly switch upon repeated cooling at h = 0. In
the XY case, ZFC can’t produce long-range order or net
nematicity, but the system would instead enter a topo-
logical phase with power-law nematic order, and accom-
panying critical phenomena.
In conclusion, we have shown that the entire tempera-

ture dependence of the observed resistivity anisotropy in
NQHM at ν = 9/2 can be well described by taking into
account the discrete rotational symmetry of the under-
lying crystal.32 Inclusion of such a symmetry-breaking
term shifts the universality class of the electron nematic
from the Kosterlitz-Thouless universality class of the two-
dimensional XY model to the two-dimensional Ising uni-
versality class. We furthermore propose an experimental
test for hysteresis that can clearly distinguish whether
any 2D electron nematic is in the Ising or XY (Kosterlitz-
Thouless) universality class.
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