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We study the competition between Kondo screening and frustrated magnetism on the non-
symmorphic Shastry-Sutherland Kondo lattice at a filling of two conduction electrons per unit
cell. This model is known to host a set of gapless partially Kondo screened phases intermediate
between the Kondo-destroyed paramagnet and the heavy Fermi liquid. Based on crystal symme-
tries, we argue that (i) both the paramagnet and the heavy Fermi liquid are semimetals protected
by a glide symmetry; and (ii) partial Kondo screening breaks the symmetry, removing this protec-
tion and allowing the partially-Kondo-screened phase to be deformed into a Kondo insulator via
a Lifshitz transition. We confirm these results using large-N mean field theory and then use non-
perturbative arguments to derive a generalized Luttinger sum rule constraining the phase structure
of 2D non-symmorphic Kondo lattices beyond the mean-field limit.

Introduction.— The interplay between the Kondo effect
and magnetism in heavy fermion materials is a paradig-
matic setting for competing electronic order [1]. In these
rare-earth intermetallic compounds a lattice of local mo-
ments from strongly correlated d or f orbitals can hy-
bridize with itinerant conduction electrons to form a
heavy Fermi liquid (FL), with a ‘large’ Fermi surface
that incorporates both constituents. Intermoment ex-
change induced by the Ruderman-Kittel-Kasuya-Yosida
(RKKY) mechanism can suppress Kondo screening in fa-
vor of magnetic order, and much theoretical and exper-
imental effort has focused on studying the intervening
quantum critical point [2–8]. Magnetic frustration adds
complexity to this scenario [9, 10] by introducing quan-
tum fluctuations that favor local-moment singlet forma-
tion over magnetic order [11]. Several unconventional
phases result from this competition, including a metallic
valence bond solid (VBS) in YbAl3C3 [12], partial mag-
netic order in CePd1−xNixAl [13, 14], and quantum crit-
icality without tuning in CeRhSn [15]. Other proposed
possibilities, such as fractionalized quantum spin liquids
(QSLs) [16], remain experimentally elusive.

A classic instance of geometrical frustration due to
lattice structure is furnished by the Shastry-Sutherland
lattice [17] (SSL; Fig. 1) relevant to a class of heavy
fermion materials such as Yb2Pt2Pb, Ce2Pt2Pb, and
Ce2Ge2Mg [18]. Recently, the phase structure of the
Shastry-Sutherland Kondo lattice (SSKL) model was an-
alyzed using large-N techniques and mean field argu-
ments [19–21], revealing several distinct phases. For
weak Kondo coupling these include ordered antiferromag-
nets (at low frustration) and paramagnetic valence-bond
solids (at strong frustration), whereas a heavy Fermi liq-
uid (HFL) phase was identified at strong Kondo coupling,
for a range of fillings. Here, we show that these results
are intimately connected to constraints imposed on the
phase structure by lattice symmetry. We focus on a fill-

ing of half an electron per site; at this filling the four-site
SSL unit cell contains exactly two conduction electrons
(νc = 2) and — since there is a single local f -moment
on each site — four spins-1/2 (Ns = 4). In the fully
Kondo-screened phase, both of these must be included
the Luttinger count — the total number of electrons and
local moments per unit cell, modulo those which can be
incorporated into fully filled bands. This may be de-
rived via a periodic-lattice generalization of the Friedel
sum rule [22], or using topological arguments [23]. Since
ν ≡ νc+Ns = 6, the Fermi surface of the Kondo-screened
phase encloses zero net volume (VF = 0), as any even
charge may be accommodated in filled, hybridized bands
or in equal-volume electron and hole pockets. As we show
below, the SSKL at νc = 2 is gapless for large Kondo
coupling JK . A naive expectation based on Luttinger’s
theorem and the fact that VF = 0 is that the gapless-
ness is ‘accidental’ and can be removed via a symmetry-
preserving Lifshitz transition to a Kondo insulator (KI).

Contrary to this expectation, we demonstrate that this
gapless Kondo-screened phase is a filling-enforced [24]
Kondo semimetal (here and below, semimetal will denote
any gapless system with VF = 0), protected by a non-
symmorphic glide symmetry (reflection combined with
a half-lattice translation) of the SSL: it cannot become
insulating without breaking this symmetry, or trigger-
ing fractionalization. While similar results are known
for purely electronic systems [24–28], those are not di-
rectly applicable to the Kondo lattice. At intermediate
JK , glide symmetry is spontaneously broken, leading to a
partially Kondo screened insulator (PKSI) that alleviates
magnetic frustration [29, 30] by modulating hybridization
between local moments and conduction electrons while
preserving translational symmetry. The PKSI is thus dis-
tinct from conventional KIs that the SSL hosts at a fill-
ing of one electron per site, νc = 4 [21], that preserve all
symmetries. Previous work [20] found an intermediate-
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FIG. 1. SSL, mean-field parameters, and reduced Brillouin
zone. One of the glide planes is depicted, involving a reflection

(M̂x) followed by a half-lattice-translation (T̂
1/2
x ).

JK ‘partially Kondo screened’ gapless phase with sim-
ilar broken symmetries at νc = 2; unlike the large JK
Kondo semimetal, this is connected to the PKSI via a
symmetry-preserving Lifshitz transition. We substanti-
ate these claims within a large-N mean-field study of the
phase diagram of the SSKL, and discuss transitions be-
tween the PKSI and its proximate semimetals. We unify
these results by identifying a generalized ‘Luttinger in-
variant’ for Kondo lattice models at even integer filling,
and discuss its possible extensions.

Model and SU(N) Mean-Field Theory.— The SSKL is
described by the Kondo-Heisenberg Hamiltonian,

H =
∑

(i,j),σ

tijc
†
iσcjσ +

∑
(i,j)

JijSi ·Sj + JK
∑
i

si ·Si. (1)

This describes conduction electrons (ciσ) with hopping
amplitude tij , and spin-1/2 moments (Si), coupled by an
on-site antiferromagnetic Kondo coupling JK > 0. si =
c†iα(σαβ/2)ciβ is the conduction electron spin density and
the sum on (i, j) ranges over nearest (NN; t1, J1) and
next-nearest (NNN; t2, J2) neighbors on the SSL.

As a first step, we rewrite (1) in terms of fermionic

spinons Si = f†iα(σαβ/2)fiβ , subject to the constraint∑
σ f
†
iσfiσ = 1. We then solve the problem via a large-

N mean-field approach, generalizing the spin symme-
try from SU(2) to SU(N), so that saddle-point results
become exact for N → ∞. Decoupling the interac-
tions via Hubbard-Stratonovich transformations that in-
troduce fields bi and Qij respectively and allowing these
to condense (i.e., acquire a non-zero saddle-point value),
we arrive at the mean-field Hamiltonian [11, 16, 20]

HMF = E −
∑

(i,j),σ

(Q∗ijf
†
iσfjσ + h.c.) +

∑
i,σ

λif
†
iσfiσ (2)

+
∑

(i,j),σ

tij(c
†
iσcjσ + h.c.)−

∑
i,σ

(b∗i c
†
iσfiσ + h.c.).

where E/N =
∑
i

(
|bi|2/JK − λi/2

)
+
∑

(i,j) |Qij |2/Jij .
Self-consistency requires that

bi =
JK
N

∑
σ

〈c†iσfiσ〉 and Qij =
Jij
N

∑
σ

〈f†iσfjσ〉, (3)

and we take bi to be real. We restrict ourselves to
translationally-invariant mean-field solutions but do not

enforce any symmetry within the unit cell. This permits
us to access states that break lattice point-group sym-
metries but preserve translations. Such solutions may
be parametrized in terms of 18 independent complex pa-
rameters: for each of the four sites in the unit cell λi
enforces the constraint

∑
σ〈f
†
iσfiσ〉 = 1, while bi mea-

sures the hybridization on the site, and on each of the
ten inequivalent bonds Qij measures the strength of the
singlet order (Fig. 1). Previous work [20, 21] has exclu-
sively studied the regime 2t1 > t2; here we consider the
opposite regime with 2t1 < t2 (we fix t2/t1 = 2.5 with-
out loss of generality). As noted, we restrict ourselves
to a filling of half an electron per site (νc = 2) and fix
J2/J1 = 1.6 so that the Heisenberg part of the Hamilto-
nian is in the VBS phase within the mean field approach
we have used here [20]. We numerically solve (3) and
track the solution as a function of JK ; the results, shown
in Figs. 2 and 3, are as follows.

(1) The JK = 0 phase is stable for a finite range
of JK . 1.5t1. In this case the only nonzero Qij are
Qx+y = Qx−y so that spinon bands remain flat; mean-
while, the hybridization bi = 0 on all sites, so we can
treat the spinon and conduction electron bands as de-
coupled. Since Ns = 4, the lower pair of the four spinon
bands are fully filled. For νc = 2, the chemical poten-
tial intersects the lower pair of the four total conduc-
tion electron bands. The spin-degenerate bands ‘stick’
in pairs due to glide symmetry [24–28] across the X-M
face of the Brillouin zone (BZ; labeled as in Fig. 1) and
cannot be detached without breaking symmetry, though
additional perturbations may reduce the sticking along
X-M to nodes [31]. The resulting Fermi surface has an
electron pocket centered at X and hole pockets centered
at Γ, M, that enclose zero net charge: it is a semimetal.
As the singlet bonds are identical to those of the pure
Heisenberg model [17], we label this the VBS phase; this
preserves all symmetries of the SSL, including the glide
symmetry responsible for the band sticking. As the VBS
phase is an exact spin-gapped JK = 0 ground state [17],
we expect it is stable for JK > 0 even beyond mean-field.

(2) For large JK & 2.1t1, we find a symmetry-
preserving Kondo-screened phase with λi = λ and bi =
b 6= 0 on all sites of the unit cell, and Qxi = Qyi also
nonzero and distinct from Qx+y = Qx−y. The spinon and
conduction electron bands are hybridized; as glide sym-
metry remains unbroken, the spin-degenerate hybridized
bands again stick in pairs along the X-M face, as in the
VBS phase. The bands near the Fermi energy split lin-
early at X and quadratically at M (Fig. 3), leading to
hole and electron pockets centered at these points in the
BZ. For filling νc + Ns = 6 the chemical potential in-
tersects the second-lowest pair of bands, again leading
to a semimetal whose electron and hole pockets enclose
zero net volume. We dub this VF = 0 phase a Kondo
semimetal (KSM), since although a finite density of states
at the Fermi energy (as here) cannot be ruled out, sym-
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FIG. 2. Evolution of mean-field solutions with Kondo cou-
pling JK at low temperature T = t1/100, with t2/t1 = 2.5
and J2/J1 = 1.6. A VBS phase, where unscreened conduction
electrons form a semimetal, exists for JK . 1.5t1. The Kondo
semimetal (KSM) found for JK & 2.1t1 cannot be trivially
gapped while preserving glide symmetry. At intermediate JK

glide is spontaneously broken, leading to a partially-Kondo-
screened insulator (PKSI).

metry guarantees that point or line nodes connect the
pair of bands that intersect the Fermi energy. In contrast,
the HFL has VF 6= 0, and is hence a distinct phase.

(3) At intermediate Kondo coupling, the mean-field
solution no longer preserves glide symmetry: for in-
stance, the hybridization is modulated within the unit
cell, bA 6= bB = bC 6= bD, and so is not invariant un-
der the pairwise exchange A ↔ B, C ↔ D generated
by acting with the glide. Similarly, the singlet pattern
breaks the glide symmetry reducing the symmetry from
Qxi = Qyi to Qx1 = Qy1, Qx3 = Qy2, Qx2 = Qy3, and
Qx4 = Qy4. As a consequence of the broken symme-
try the pairwise sticking of hybridized bands is no longer
guaranteed. Accordingly, at filling νc + Ns = 6 we see
that the Fermi surface lies in a gap (Fig. 3). As the
system screens unequally on different sublattices and is
gapped, we identify this non-magnetic ground state as a
partially Kondo screened insulator (PKSI). This is, to our
knowledge, the first example of a Kondo insulator where
screening spontaneously breaks lattice symmetry; absent
symmetry breaking the only other route to opening a gap
is to trigger topological order, a case we do not consider
here. It may be possible to probe glide symmetry break-
ing via scattering experiments, where it is signaled by the
reappearance of spectral weight at Bragg peaks ‘system-
atically extinguished’ by the glide symmetry. Although
inaccessible in large-N , ordered phases that descend from
PKSI (but only in a distinct J2/J1 regime than that stud-
ied here) will likely also break this symmetry. Previous
studies of this regime [20] with 2t1 > t2 found partially-
Kondo-screened gapless phases for 0 < νc < 4. For
νc = 2, this is now identified as an ‘accidental’ semimetal
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KSM/VBS phases are inset, with electron (hole) pockets in
red (blue). Right: band structures in the three T = 0 phases.
(only spin-degenerate bands nearest Fermi energy shown).

with broken glide symmetry and electron and hole pock-
ets with VF = 0. This is obtained from PKSI through a
Lifshitz transition where its bands intersect the Fermi en-
ergy. We show below how glide symmetry can distinguish
accidental semimetals from the filling-enforced KSM and
VBS semimetals via a generalized Luttinger sum rule.

Finite-Temperature Phase Diagram.— Usually, Kondo
screening onsets via a crossover, as no broken symmetry
distinguishes the T → 0 HFL from the high-temperature
paramagnet (PM). A similar argument applies to the
VBS state, since the valence bond pattern preserves sym-
metry (magnetic order would require a true phase tran-
sition). Accordingly, we identify the PM-VBS and PM-
KSM lines as crossovers, although they appear as transi-
tions within mean-field theory (Fig. 3). The intermediate
PKSI phase, however, breaks a discrete glide symmetry,
and hence can form via a finite-temperature transition
in d = 2. Note that the transition temperature Tc is an
order of magnitude lower than the screening scale TK ;
hence, the relevant degrees of freedom are hybridized
fermions rather than bare electrons (typically, TK ∼ 10K
so Tc is experimentally accessible). At mean-field level,
the PKSI-VBS transition appears first order, though this
may be an artifact of the large-N approach. The T = 0
PKSI-KSM transition appears continuous within mean-
field theory, and is worthy of further study [32].

Generalized Luttinger Invariant.— The SSKL illus-
trates general symmetry constraints for non-symmorphic
Kondo lattices in d = 2, that we now derive . Let us con-
sider a lattice of Lx×Ly unit cells with periodic boundary
conditions (i.e. a torus) described by a non-symmorphic
space group G. G includes at least one glide reflection Ĝx,
involving a mirror reflection M̂x about the x axis followed
by a translation through a half-lattice vector in the mir-

ror plane: Ĝx = T̂
1/2
x M̂x : (x, y)→ (x+1/2,−y). We re-

strict ourselves to Hamiltonians with SO(3) spin rotation
symmetry so that we can separately couple to “up” and
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“down” spins relative to a fixed magnetization axis and
take reflections to act trivially on spin. A single quantum
Φ0 of Aharonov-Bohm flux that couples only to one spin
species is threaded through one of the non-contractible
loops of the torus, e.g by adiabatically increasing a uni-
form time-dependent vector potential from Ax = 0 to
Ax = 2π

Lx
(we take ~ = e = 1 so Φ0 = 2π). Under this pro-

cess, the ground state |Ψ0〉 evolves into a (possibly dis-
tinct) state |Ψ′0〉; since the Hamiltonian with the vector
potential Ax commutes with the glide symmetry operator
at all times, both states share the same glide eigenvalue,
Ĝx|Ψ0〉 = eig|Ψ0〉, Ĝx|Ψ′0〉 = eig|Ψ′0〉. However, |Ψ′0〉 is
an eigenstate of a Hamiltonian H(Φ0) with an inserted
flux; we may return to H(0) by implementing a large
gauge transformation, so that |Ψ′0〉 → |Ψ̃0〉 = Uσ|Ψ′0〉
(σ = ± denotes spin, and we define n̂cjσ = c†jσcjσ), with

Û± = exp

[
2πi

Lx

∑
~r

x(n̂c~r,± ± Ŝz,~r)
]
, (4)

where Ŝz~r keeps the Kondo coupling invariant. Then,

Û−1± T̂xÛ± = T̂xe
2πi
Lx
{N̂tot

c±±Ŝtot
z +Ns

2 LxLy} where Ns
2 is a

boundary term and N̂ tot
cσ , Ŝ

tot
z are the total number of

spin-σ electrons and total magnetization [23]. Since

Ĝx = T̂
1/2
x M̂x and [M̂x, N̂

tot
cσ ] = [M̂x, Ŝ

tot
z ] = 0,

Û−1± ĜxÛ± = Ĝx exp πi
Lx
{N̂ tot

c± ± Ŝtot
z + Ns

2 LxLy}. From
this, we find

Ĝx|Ψ̃0〉 = eig̃|Ψ̃0〉 with ei(g̃−g) = eiπ[ν
σ
c +Ns(

1
2±m)]Ly ,(5)

where we used charge conservation and U(1) spin sym-
metry to set N̂ tot

cσ = νσc LxLy, Ŝ
tot
z = NsLxLym where m

is the average magnetization per spin. Now, assume that
the system is described by Fermi liquid theory. Flux in-
sertion corresponds to shifting every quasiparticle state
via kx → kx + 2π/Lx, exciting quasiparticles/quasiholes
on opposite sides of the Fermi surface. This is equivalent
(e.g., by applying Stoke’s theorem in the BZ) to a shift of
all filled states by 2π/Lx, and therefore the momentum

change is ∆Px = 2π
Lx
N

(L)
F,σ , where N

(L)
F,σ is the total num-

ber of filled spin-σ states in the finite system. Since the
glide involves a half-translation but does not mix spin
projections, the change in the glide quantum number is

ei(g̃−g) = ei
π
Lx
N

(L)
F,σ . (6)

Comparing Eqs. (5) and (6) and setting Lx = Ly = L,

we find that (χ
(L)
F,σ−νσ)L = 2p where p is an integer, and

we defined νσ ≡ νσc +Ns(
1
2 ±m) and χ

(L)
F,σ ≡ N

(L)
F,σ/L

2. A
consistent thermodynamic limit for L odd then requires

χσF ≡ νσ(mod 2) (7)

where χσF ≡ limL→∞ χ
(L)
F,σ is the new (spin filtered) Lut-

tinger invariant. A similar computation with T̂x replac-
ing Ĝx, can be used to constrain the Fermi volume, via

V σF
(2π)2 = νσ (mod 1) [23]. Let us now examine the behav-

ior of these invariants in the spin symmetric case, where
m = 0, ν↑c = ν↓c = νc

2 , VF = V ↑F = V ↓F , and χ↑F = χ↓F .
Consider a filling ν = 4p+ 2, where p is an integer (as in
the example above); then, νσ = ν

2 = 2p+ 1, and

V σF = 0 and χσF = 1, (8)

i.e., the Fermi volume vanishes, while the generalized
Luttinger invariant is non-zero. A complementary deriva-
tion, for the periodic Anderson model, is given in [31],
and extends our results to the mixed valence setting.

The non-zero Luttinger invariant indicates a nontrivial
spectral flow (reflected by the change in glide quantum
numbers) under flux insertion [33], which can be satis-
fied either by the presence of gapless excitations of the
ground state or by the existence of a fractionalized topo-
logical quasiparticle. A Kondo insulator — which is a
gapped, non-fractionalized phase — cannot respond to
the insertion of a flux by changing its glide quantum
number; hence, it cannot have a nonzero Luttinger in-
variant. However, the Fermi volume is zero [Eq.(8)]. As
we do not consider fractionalized phases, the only pos-
sibility consistent with these two requirements is for the
system to be a semimetal with band crossings protected
by glide symmetry. (For χσF = 1 bands must cross an
odd number of times along the glide-symmetric line.) As
long as glide symmetry is preserved, the electron and hole
Fermi pockets can be shrunk to point nodes but cannot
be completely removed — as in the symmetric phases
(VBS, KSM) identified in our study. Breaking glide sym-
metry allows χσF = 0 permitting a gapped phase (as in
PKSI). A modification of this argument was presented for
the Ns = 0 case in [33]. This generalized Luttinger sum
rule may be ‘topologically enriched’ by allowing for the
possibility of gapped, symmetry-preserving phases with
fractionalized quasiparticles [16, 32, 34, 35].
Concluding Remarks.— We have examined the role of

glide symmetries in determining the phase structure of a
canonical 2D non-symmorphic Kondo lattice, the SSKL,
and identified a filling-enforced Kondo semimetal. We
have also demonstrated that competition with frustrated
magnetism can lead to a broken-symmetry Kondo insu-
lator. While we use a large-N approximation, our re-
sults are consistent with a non-perturbative Luttinger
sum rule that applies well away from the mean-field limit.
Our symmetry analysis provides a unified perspective on
the Doniach diagram [36] of 2D nonsymmorphic Kondo
lattices. For fillings ν = 4p + 2, corresponding to van-
ishing Fermi volume, the nonzero Luttinger invariant
requires that any symmetry-preserving phase either re-
mains gapless or else has topological order. The former
possibility — a symmetric semimetal — is likely at large
and small JK , where either magnetism or Kondo screen-
ing dominates. At intermediate coupling, competition
leads to the opening of a gap; absent topological order,
such a gapped phase must necessarily break glide sym-
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metry, as in the PKSI we find here. For ν = 4p+ 4 [21],
both the Fermi volume and the generalized invariant
vanish and these constraints do not apply. Although
spin-orbit coupling (SOC) is challenging to treat using
flux insertion, if we apply existing results [24, 26, 27]
on filling-enforced semimetals to the hybridized bands
at these fillings our results remain unchanged if time-
reversal symmetry is present. There is then also the ad-
ditional interesting possibility that the PKSI may be a
topological Kondo insulator, as topological insulators can
emerge naturally from filling-enforced SOC semimetals
upon breaking glide symmetry [24, 27, 37]. As glide is
the only non-symmorphic symmetry in d = 2, this ex-
hausts possible non-fractionalized symmetric phases at
large- and small-JK for 2D Kondo lattices at commen-
surate filling (i.e., VF = 0). Our work suggests that
non-symmorphic lattices are natural hosts for strongly
correlated semimetals and descendant phases; in the fu-
ture, we hope to extend our analysis to all 157 non-
symmorphic 3D space groups [32].
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