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Motivated by an important recent experiment [Deng et al., Science 354, 1557 (2016)], we theoret-
ically consider the interplay between Andreev and Majorana bound states in disorder-free quantum
dot-nanowire semiconductor systems with proximity-induced superconductivity in the presence of
spin-orbit coupling and Zeeman spin splitting (induced by an external magnetic field). The quantum
dot induces Andreev bound states in the superconducting nanowire which show complex behavior
as a function of magnetic field and chemical potential, and the specific question is whether two
such Andreev bound states can come together forming a robust zero-energy topological Majorana
bound state. We find generically that the Andreev bound states indeed have a high probability of
coalescing together producing near-zero-energy midgap states as Zeeman splitting and/or chemical
potential are increased, but this mostly happens in the nontopological regime below the topological
quantum phase transition although there are situations where the Andreev bound states could in-
deed come together to form a zero-energy topological Majorana bound state. The two scenarios (two
Andreev bound states coming together to form a nontopological almost-zero-energy Andreev bound
state or to form a topological zero-energy Majorana bound state) are difficult to distinguish just
by tunneling conductance spectroscopy since they produce essentially the same tunneling transport
signatures. We find that the “sticking together” propensity of Andreev bound states to produce
an apparent stable zero-energy midgap state is generic in class D systems in the presence of super-
conductivity, spin-orbit coupling, and magnetic field, even in the absence of any disorder. We also
find that the conductance associated with the coalesced zero-energy nontopological Andreev bound
state is non-universal and could easily be 2e2/h mimicking the quantized topological Majorana zero-
bias conductance value. We suggest experimental techniques for distinguishing between trivial and
topological zero-bias conductance peaks arising from the coalescence of Andreev bound states.

I. INTRODUCTION

The great deal of current interest [1–7] in Majo-
rana zero modes (MZMs) or Majorana fermions fo-
cusing on semiconductor-superconductor hybrid struc-
tures [8–11] arises mainly from the significant experimen-
tal progress [12–20] made in the subject during the last
five years. In particular, proximity-induced superconduc-
tivity in spin-orbit-coupled semiconductor nanowires can
become topological with localized MZMs in the wire if the
system has a sufficiently large Zeeman spin splitting over-
coming the induced superconducting gap. Such MZMs,
being zero-energy midgap states, should produce quan-
tized zero-bias conductance peaks (ZBCPs) associated
with perfect Andreev reflection in tunneling measure-
ments [21–24]. Indeed, experimentally many groups have
observed such zero-bias conductance peaks in tunneling
measurements on nanowire-superconductor hybrid struc-
tures although the predicted precise and robust quanti-
zation (with a conductance value 2e2/h) has been elu-
sive. Many reasons have been provided to explain the
lack of precise ZBCP quantization [25–27], but alterna-
tive scenarios, not connected with MZMs, for the emer-
gence of the ZBCP have also been discussed in the lit-
erature [28–32]. Whether the experimentally observed
ZBCPs in semiconductor-superconductor hybrid struc-

tures arise from MZMs or not remains a central question
in spite of numerous publications and great experimen-
tal progress in the subject during the 2012-2017 five-year
period.

A key experimental paper by Deng et al. has recently
appeared in the context of ZBCPs in semiconductor-
superconductor hybrid systems [20], which forms the en-
tire motivation for the current theoretical work. In their
work, Deng et al. studied tunneling transport through
a hybrid system composed of a quantum dot-nanowire-
superconductor, where no superconductivity (SC) is in-
duced in the quantum dot (i.e., the superconductivity
is induced only in the nanowire). In Fig. 1, we provide
a schematic of the experimental system, where the dot
simply introduces a confining potential at one end of the
nanowire which is covered by the superconductor to in-
duce the proximity effect. Such a quantum dot may nat-
urally be expected to arise because of the Fermi energy
mismatch of the lead and the semiconductor much in the
way a Schottky barrier arises in semiconductors. Reduc-
ing the potential barrier at the lead-semiconductor in-
terface to produce a strong conductance signature likely
requires the creation of a quantum dot as shown in Fig. 1.
Thus a quantum dot might be rather generic in conduc-
tance measurements, i.e., one may not have to introduce
a real quantum dot in the system although such a dot did

http://science.sciencemag.org/content/354/6319/1557


2

exist in the set-up of Ref. [20]. The quantum dot may
introduce Andreev bound states (ABSs) in the nanowire,
and the specific issue studied in depth by Deng et al. is
to investigate how these Andreev bound states behave as
one tunes the Zeeman spin splitting and the chemical po-
tential in the nanowire by applying a magnetic field and
a gate potential respectively. It is also possible that the
ABSs in the Deng et al. experiment arise from some other
potential fluctuations in the nanowire itself which is akin
to having quantum dots inside the nanowire arising from
uncontrolled potential fluctuations associated with impu-
rities or inhomogeneities. (We consider both cases, the
dot being outside or inside the nanowire, in this work.)
The particular experimental discovery made by Deng et
al., which we theoretically examine in depth, is that An-
dreev bound states may sometimes come together with
increasing Zeeman splitting (i.e., with increasing mag-
netic field) to coalesce and form zero-energy states which
then remain zero-energy states over a large range of the
applied magnetic field, producing impressive ZBCPs with
relatively large conductance values ∼ 0.5e2/h. Deng et
al. speculate that the resulting ZBCP formed by the co-
alescing ABSs is a direct signature of MZMs, or in other
words, the ABSs are transmuting into MZMs as they co-
alesce and stick together at zero energy. It is interesting
and important to note that the sticking together property
of the ABSs at zero energy depends crucially on the gate
voltage in Deng et al. experiment, and for some gate
voltage, the ABSs repel away from each other without
coalescing at zero energy and at still other gate voltages,
the ABSs may come together at some specific magnetic
field, but then they separate out again with increasing
magnetic field producing a beating pattern in the con-
ductance around zero bias. Our goal in the current work
is to provide a detailed description of what may be tran-
spiring in the Deng et al. experiment within a minimal
model of the dot-nanowire-superconductor structure elu-
cidating the underlying physics of ABS versus MZM in
this system. In addition, we consider situations where
the quantum dot is, in fact, partially (or completely) in-
side the nanowire (i.e., the dot itself is totally or partially
superconducting due to proximity effect), which may be
distinct from the situation in Deng et al. experiment [20]
where the quantum dot is not likely to be proximitized
by the superconductor although any potential inhomo-
geneity inside the wire would act like a quantum dot in
general for our purpose. Specific details of how the ABSs
arise in the nanowire are not important for our theory as
most of the important new qualitative features we find
are generic as long as ABSs are present in the nanowire.

It may be important here to precisely state what we
mean by a “quantum dot” in the context of our theory
and calculations. The “quantum dot” for us is simply a
potential fluctuation somewhere in or near the wire which
produces Andreev bound states in the system. This
“quantum dot”, being strongly coupled to the nanowire
(perhaps even being completely inside the nanowire or
arising from the Schottky barrier at the tunnel junction),

FIG. 1. (color online). A schematic plot of the junction com-
posed of lead and quantum dot-nanowire-superconductor hy-
brid structure, which represents the actual system setup in
Deng et al. experiment [20]. A semiconductor (SM) nanowire
is mostly covered by a parent s-wave superconductor (SC).
One fraction of the nanowire is not covered by the supercon-
ductor and is subject to a confinement potential. This part
(encircled by the red dash line) between the lead and the su-
perconducting nanowire is called quantum dot (QD) in this
paper. Figs. 2-9 are results based on this configuration. Later
we also consider situations where a part or the whole of the
dot is covered by the superconductor making the whole hy-
brid structure superconducting. Note that the quantum dot
here is strongly coupled to the nanowire and may not exhibit
any Coulomb blockade behavior.

does not have to manifest any Coulomb blockade as or-
dinary isolated quantum dots do. In fact, our theory
does not include any Coulomb blockade effects because
the physics of ABS transmuting into MZM or not is in-
dependent of Coulomb blockade physics (although the
actual conductance values may very well depend on the
Coulomb energy of the dot). The situation of interest to
us is when the confined states in the dot extend into the
nanowire (or are entirely inside the nanowire) so that
they become Andreev bound states. In situations like
this, perhaps the expression “quantum dot” is slightly
misleading (since there may or may not be any Coulomb
blockade here), but we use this expression anyway since
it is convenient to describe the physics of Andreev bound
states being discussed in our work.

It may be useful to provide a succinct summary of our
main findings already in this introduction before provid-
ing the details of our theory and numerics. We show
our most important findings in Fig. 2 (all obtained by
assuming the dot leading to ABSs to be entirely outside
the nanowire), where we show our calculated differential
conductance in the dot-nanowire-superconductor system
as a function of Zeeman splitting energy (VZ) and the
source-drain voltage (V ) in the nanowire for a fixed chem-
ical potential in each panel (which, however, varies from
one panel to the next). The four panels indicate the
four distinct generic results which may arise depending
on the values of chemical potential and Zeeman split-
ting (with all other parameters, e.g., bulk superconduct-
ing gap, spin-orbit coupling, tunnel barrier, temperature,
dissipative broadening, etc. being fixed throughout the
four panels). We start by reminding that the topological
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FIG. 2. (color online). Differential conductance through four nanowire systems with the same dissipation Γ = 0.01 meV,
temperature T = 0.02 meV and tunnel barrier of height 10 meV and width 20 nm. (a): a simple nanowire without quantum
dot at chemical potential µ = 0 meV. A ZBCP from MZM forms after TQPT at VZ = 1.5 meV, since the SC pairing at
low bias is renormalized to 1.5 meV due to the self-energy term. (b): a hybrid structure with µ = 4.5 meV. Two ABSs
come together at VZ ∼ 1.5 meV and remain stuck at zero energy up to VZ = 2.5 meV (and beyond) although the system is
non-topological(VZ < µ). (c): a hybrid structure with µ = 3.8 meV. Two ABSs come together at VZ ∼ 1.5 meV then split at
a somewhat higher Zeeman field, but coming together again at VZ ∼ 3 meV. Again, this is all in the non-topological regime
since VZ < µ. (d): a hybrid structure with µ = 2.0 meV. Two ABSs first stick together at VZ ∼ 1.8 meV which is in the trivial
regime (i.e. VZ < µ), but then the ZBCP continues all the way to the topological regime (VZ > 2.5 meV, marked by the yellow
vertical line), with the ZBCP value remaining ∼ e2/h throughout. Note that nothing special happens to the ZBCP feature
across the yellow line indicating TQPT. Calculations here include self-energy renormalization by the parent superconductor
thus renormalizing the bare induced gap so that VZ = 1.5 meV is the TQPT point rather than 0.9 meV as it would be without
any renormalization. Panels (e)-(h) correspond respectively to panels (a)-(d) showing “waterfall” diagrams of the conductance
against bias voltage for various Zeeman splitting–each line corresponds to a 0.1 meV shift in VZ increasing vertically upward.
Similarly, panels (i)-(l) correspond respectively to panels (a)-(d) showing the calculated zero-bias conductance in each case as
a function of Zeeman splitting.

quantum critical point separating trivial and topologi-
cal phases in this system is given by the critical Zeeman

splitting VZc =
√
µ2 + ∆2, where µ and ∆ are respec-

tively the chemical potential and the proximity-induced
superconducting gap in the nanowire [8–10]–thus VZ < µ
automatically implies a trivial phase where no MZM can
exist. Fig. 2(a) shows the well-studied result of the ZBCP
arising from the MZM as the system enters the topologi-
cal superconducting phase with the topological quantum
phase transition point being at VZc = 1.5 meV with the
chemical potential being zero, µ = 0. (We note that
our calculations include the self-energy renormalization
effect by the parent superconductor which renormalizes
the superconducting gap, as discussed in Sec. III of the
manuscript.) This result is obtained without any quan-
tum dot (or ABS) being present, and is the generic well-
known theoretical result for the simple nanowire in the
presence of induced superconductivity, Zeeman splitting,

and spin-orbit coupling as predicted in Refs. [8–11]. We
provide this well-known purely nanowire (with no dot,
and consequently, no ABS) result only for the sake of
comparison with the other three panels of Fig. 2 where
ABS physics is present because of the presence of the
quantum dot. In Fig. 2(b), the chemical potential is in-
creased to µ = 4.5 meV with the nonsuperconducting
quantum dot being present at the end of the nanowire.
Here, the two ABSs come together around VZ = 1.5 meV
and remain stuck to zero energy up to VZ = 2.5 meV (and
beyond) although the system is nontopological through-
out the figure (as should be obvious from the fact that
VZ < µ throughout). Thus, ABSs coalescing and stick-
ing at zero energy for a finite range of magnetic field
is not necessarily connected with MZMs or topological
superconductivity. It should be noted that the ZBCP
value in 2(b) is close to 2e2/h, but this has nothing to
do with the MZM quantization, and we find that the
ZBCP arising from coalescing ABSs could have any non-



4

universal value. In Fig. 2(c), we change the chemical
potential to µ = 3.8 meV, resulting in the two ABSs
coming together at VZ ∼ 1.5 meV, and then splitting at
a somewhat higher magnetic field, but coming together
again at VZ ∼ 3.0 meV with the ZBCP value varying
from e2/h to 1.5e2/h. Again, this is all in the nontopo-
logical regime since VZ < µ throughout the figure. Fi-
nally, in Fig. 2(d) we show the result for µ = 2 meV,
where the two ABSs first stick together at VZ ∼ 1.8 meV
which is in the trivial regime (i.e. VZ < µ), but then the
ZBCP continues all the way to the topological regime
(VZ > 2.5 meV, marked by the yellow vertical line), with
the ZBCP value remaining > e2/h throughout. Inter-
estingly, although there is a topological quantum phase
transition (TQPT) in Fig. 2(d) at the yellow line, nothing
remarkable happens in the ZBCP–it behaves essentially
the same in the trivial and the topological regime! We
note that the specific value of the ZBCP in each panel
depends on parameters such as temperature and tunnel
barrier, and can be varied quite a bit, but their relative
values are meaningful and show that the ZBCP in the
trivial and the topological regime may have comparable
strength, and no significance can be attached (with re-
spect to the existence or not of MZMs in the system)
based just on the existence of zero-bias peaks and their
conductance values. Thus, stable zero-bias conductance
peak is necessary for MZMs, but the reverse is untrue–
the existence of stable ZBCP does not by itself imply the
existence of MZMs. Note that we are employing the sim-
plest possible model with no disorder at all, and as such
our findings are completely different from the disorder-
induced class D peak discussed in Refs. [29–31]. This is
consistent with the semiconductor nanowire in Ref. [20]
being ballistic or disorder-free, and hence the ABS-MZM
physics being discussed in our work has nothing whatso-
ever to do with the physics of ‘class D peaks’ discussed
in Refs. [29–31] where disorder plays the key role in pro-
ducing effectively an antilocalization zero bias peak.

For the sake of completeness, we also show in Fig. 2
panels (e)-(l) as the details of the calculated results with
Figs. 2(e)-(h) and Figs. 2(i)-(l) corresponding respec-
tively to those in Figs. 2(a)-(d). Figs. 2(e)-(h) show the
“waterfalls” cuts of the actual conductance in Figs. 2(a)-
(d) with each line corresponding to a different magnetic
field (increasing vertically). Figs. 2(i)-(l) show the cal-
culated zero-bias conductance, corresponding to panels 2
(a)-(d) respectively, as a function of Zeeman splitting.
The main message of Figs. 2 (e)-(l) is the same as in
Figs. 2 (a)-(d), i.e., ZBCPs arising from the zero-sticking
of trivial ABSs look very similar to those arising from
topological MZMs. In particular, Figs. 2 (a)/(b) as well
as Figs. 2 (e)/(f) and Figs. 2(i)/(j) look qualitatively
identical although one set of these results belongs to topo-
logical MZM (Figs. 2(a), (e) and (i)) and the other set
(Figs. 2 (b), (f), and (j)) to trivial ABS. Similarly, the
TQPT in Figs. 2(d), (h), and (l) does not manifest itself
in any striking way for it to be discerned without al-
ready knowing its existence a priori. We emphasize that

Figs. 2(e) and (f) look essentially identical qualitatively
although the ZBCP in Fig. 2(e) arises from the MZM and
in Fig. 2(f) from coalesced ABSs. Similarly, the depen-
dence of the zero-bias conductance on VZ could be quite
similar in these two cases too (Figs. 2(i) and (j)).

We note that the results of Fig. 2 are produced for a
nominal temperature ∼ 200 mK which is higher than the
fridge temperature (∼ 40 mK) where typical experiments
are done. The main reason for this is that finite tempera-
ture smoothens fine structures in the calculated conduc-
tance spectra arising from energy levels in the nanowire
which are typically not seen experimentally. Having a
finite temperature does not in any way affect the exis-
tence or not of the zero mode or any of our conclusions.
We add that the electron temperature in semiconduc-
tor nanowires is typically much larger (> 100 mK) than
the fridge temperature, and T = 0.02 meV may not be
completely inappropriate even for the realistic system al-
though our reason for including this finite T is purely
theoretical.

The importance of our results as summarized in Fig. 2
is obvious. In particular, the coalescing of ABSs and their
sticking together near zero energy with a fairly strong
ZBCP is generic (as we will explain in the Sec. III) in
the trivial regime of the magnetic field and chemical po-
tential, and equally importantly, there is no special fea-
ture in the ZBCP itself for one to discern whether such
a coalesced ZBCP is in the topological or trivial regime
just based on tunneling conductance measurements. The
generic occurrence of almost-zero-energy modes has pre-
viously been attributed as a property of quantum dots in
symmetry class D [33] in the presence of random dis-
order whereas our theory by contrast is manifestly in
the clean disorder-free limit. In fact, as our Fig. 2(d)
indicates, the ZBCP may very well form in the triv-
ial regime and continue unchanged into the topological
regime with nothing remarkable happening to it as the
magnetic field sweeps through the topological quantum
phase transition! Experimental tunneling spectroscopy,
by itself, might find it difficult to distinguish MZMs from
accidental zero-energy ABSs just based on the observa-
tion of the ZBCP (even when the ZBCP conductance
∼ 2e2/h) since experimentally one simply does not know
where the topological quantum phase transition point is
in the realistic nanowires. The good thing is that our
results indicate that it is possible that some of the Deng
et al. ZBCPs [20] may be topological, but it is also possi-
ble that all of them are trivial ZBCPs. We simply do not
know based just on tunneling conductance measurements
that have been performed so far.

We mention that there have been earlier indications
that ABSs (or in general, low energy fermionic subgap
states) may manifest ZBCP features indistinguishable
from MZM-induced zero-bias peak behavior [32–37]. In
particular, it was shown by a number of authors that
the presence of a smooth varying potential background
in the nanowire could produce multiple MZMs along the
wire (and not just the two pristine MZMs localized at the
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wire ends), which could lead in some situations to triv-
ial ZBCPs in tunneling measurements mimicking MZM-
induced ZBCPs [34–36]. The fact that small quantum
dot systems could have ABS-induced ZBCPs was exper-
imentally established by Lee et al. [32]. Our work, how-
ever, specifically addresses the quantum dot-nanowire-
superconductor system, showing that the recent obser-
vation by Deng et al. of ABSs coalescing together near
zero energy and then remaining stuck at zero energy for
a finite range of magnetic field by itself cannot be con-
strued as evidence for ABSs combining to form MZMs–
the ZBCP in such situations may very well arise from
accidental coalesced ABSs which happen to beat or stay
near zero energy. Clearly, more work is necessary in dis-
tinguishing ABS-induced trivial zero modes from MZMs
in nanowire-superconductor hybrid structures. There has
been other recent theoretical work [38–41] on trying to
understand the Deng et al. experimental work of Ref. [20]
using alternative approaches assuming that the experi-
mental ZBCPs form in the topological regime (i.e., lying
above the TQPT point in the magnetic field).

We emphasize that although our initial goal motivating
this work was to understand the experiment of Ref. [20]
where transmutation of ABS into MZM is claimed in
disorder-free ballistic nanowires, we have stumbled upon
a generic result of substantial importance in the current
search for topological Majorana modes in nanowires (and
perhaps in other solid state systems too, where ABSs
may arise). This generic result is that the combined ef-
fect of spin-orbit coupling and spin splitting could lead to
subgap Andreev bound states generically sticking around
midgap in a superconductor, and these nontopological
‘alomost-zero’ energy modes are virtually indistinguish-
able from topological Majorana zero modes using tun-
neling spectroscopy. Our result implies that consider-
able caution is now necessary in searching for MZMs in
nanowires since the mere observation of ZBCPs even in
clean systems is insufficient evidence for the existence of
MZMs.

The paper is organized as follows: In Sec. II we give the
minimal theory describing the quantum dot-nanowire-
superconductor hybrid structures. In Sec. III, we intro-
duce the numerical method and calculate the tunneling
differential conductance in simple and hybrid structure
systems. In Sec. IV, analytical low-energy spectra of hy-
brid structures are calculated to provide insightful infor-
mation about the corresponding zero-bias conductance
behavior. In Sec. V, we consider the effect of strongly
changing dot confinement on the zero-bias behavior of
the ABS, contrasting it with that of MZM, providing
one possible experimental avenue for distinguishing be-
tween trivial and topological ZBCPs. In Sec. VI, we cal-
culate the differential conductance for hybrid structures
where the quantum dot has partial or complete induced
superconductivity(i.e., it is a strongly coupled part of the
nanowire itself). In Sec. VII we discuss how our quantum
dot-induced ABS results connect with the corresponding
results in the case of smooth confinement at the wire ends

and can be understood using the reflection matrix the-
ory. Sec. VIII concludes our work with a summary and
open questions. A number of appendices provide com-
plementary detailed technical results not covered in the
main text of the paper.

II. MINIMAL THEORY

We calculate the differential tunnel conductance G =
dI/dV through a junction of a normal lead and the
quantum dot-nanowire-superconductor hybrid structure,
as shown in the schematic Fig. 1. We use the fol-
lowing Bogoliubov-de Gennes (BdG) Hamiltonian as
the non-interacting low-energy effective theory for the
nanowire [8–10]

Ĥ =
1

2

∫
dxΨ̂†(x)HNW Ψ̂(x),

HNW =

(
− ~2

2m∗
∂2
x − iαR∂xσy − µ

)
τz + VZσx + ∆0τx,

(1)

where Ψ̂ =
(
ψ̂↑, ψ̂↓, ψ̂

†
↓,−ψ̂

†
↑

)T
, and σµ(τµ) are Pauli ma-

trices in spin (particle-hole) space, m∗ is the effective
mass, αR spin-orbit coupling, VZ the Zeeman spin split-
ting energy, ∆0 the induced superconducting gap. In
some discussions and calculated results we also replace
the superconducting pairing term by a more complex self-
energy term to mimic renormalization effects by the par-
ent superconductor [42], which will be elaborated later.
The normal lead by definition does not have induced SC,
thus the lead Hamiltonian is

Hlead =

(
− ~2

2m∗
∂2
x − iαR∂xσy − µ+ Elead

)
τz + VZσx,

(2)

where an additional on-site energy Elead is added repre-
senting a gate voltage. The quantum dot Hamiltonian
is

HQD =

(
− ~2

2m∗
∂2
x − iαR∂xσy + V (x)− µ

)
τz + VZσx,

(3)

where V (x) = VD cos( 3πx
2l ) is the confinement poten-

tial. (We have ensured that other models for confine-
ment potential defining the dot do not modify our re-
sults qualitatively.) The quantum dot size l is only a
fraction of the total nanowire length L. The quantum
dot is non-SC at this stage although later (in Sec. III D
and Sec. VI) we consider situations where the dot could
have partial or complete induced superconductivity sim-
ilar to the nanowire. Whether the quantum dot exists or
not, there is always a barrier potential between the lead
and the hybrid nanowire system. Multi-sub-band effects
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are introduced by constructing a second nanowire with
different chemical potential. An infinitesimal amount of
dissipation iΓ is also added into the nanowire Hamilto-
nian Eq. (1) for the sake of smoothening the conduc-
tance profile without affecting any other aspects of the
results [26, 27]. We emphasize that there is no disorder
in our model distinguishing it qualitatively from earlier
work [29–31] where class D zero bias peaks in this con-
text arise from disorder effects. Given this quantum dot-
nanowire model, our goal is to calculate the low lying en-
ergy spectrum and the differential conductance of the sys-
tem varying the chemical potential and the Zeeman split-
ting in order to see how any dot-induced ABSs behave.
The specific goal is to see if we can qualitatively repro-
duce the key features of the Deng et al. experiment in a
generic manner without fine-tuning parameters. Our goal
is not to demand a quantitative agreement with the ex-
perimental data since too many experimental parameters
are unknown(confinement potential, chemical potential,
tunnel barrier, superconductor-semiconductor coupling,
spin-orbit coupling, effective mass, Lande g-factor, etc.),
but we do want to see whether ABSs coalesce generically
and whether such coalescence around zero energy auto-
matically implies a transmutation of ABSs into MZMs.

III. NUMERICAL RESULTS FOR TUNNEL
CONDUCTANCE

The goal of our current work is to understand the
interplay between Andreev and Majorana bound states
in quantum dot-nanowire-superconductor hybrid struc-
tures, and to answer the specific question whether two
Andreev bound states can coalesce forming a zero-energy
bound state leading to a stable ZBCP in the tunnel con-
ductance (as observed in Ref. [20]). This motivates all
the calculations in this section. In Sec. III A, we calculate
the differential conductance of a set of nanowires with-
out any quantum dot for the sake of making comparison
with the situation where ABS physics is dominant due to
the presence of the quantum dot.(We emphasize, as men-
tioned already in Sec. I, that our “quantum dot” is sim-
ply a prescription for introducing ABS into the physics of
the hybrid structure, and is not connected with Coulomb
blockade or any other physics one associates with isolated
quantum dots.) In Sec. III B, the differential conductance
of quantum dot-nanowire-superconductor hybrid struc-
tures is calculated as a function of Zeeman field or chem-
ical potential for various parameter regimes. Near-zero-
bias peaks similar to the Deng et al. experimental data
are obtained, and the topology and quantization proper-
ties of these peaks are carefully studied. In Sec. III C,
topological visibility [26, 27] is calculated for both An-
dreev and Majorana-induced ZBCPs as a theoretical tool
discerning the two cases, i.e., to explicitly check whether
a zero-energy state is trivial or topological. Of course,
in our simulations, we explicitly know the location of the
TQPT and can read off the topological or trivial nature

of a particular ZBCP simply by knowing the Zeeman
field, the chemical potential, and the induced gap. The
topological visibility calculation provides an additional
check, which simply verifies that a ZBCP arising below
(above) the TQPT is trivial ABS (topological MZM), as
expected.

For clarification we first provide definitions of two
frequently used terms in the rest of this paper: sim-
ple nanowire and hybrid structure. A simple nanowire,
which by definition does not have any ABS, is defined
as a semiconductor nanowire without quantum dot ( i.e.,
the usual system already extensively studied in the lit-
erature [25–27]). A hybrid structure, the opposite of a
simple nanowire, may have ABS in it, and is defined as a
quantum dot-nanowire-superconductor system. The hy-
brid structure qualitatively mimics the Deng et al. sys-
tem of Ref. [20] (see Fig. 1). For results presented in this
section the chemical potential and the on-site energy are
uniform throughout the nanowire since the quantum dot
is explicitly outside the nanowire with the dot being non-
SC whereas the nanowire being SC (due to proximity ef-
fect). Note that although the dot is considered outside
the nanowire, any bound state wavefunction in the dot
may extend well inside the nanowire (thus making it an
ABS) depending on system parameters.

Differential conductance is calculated using the S ma-
trix method, which is a universal method in meso-
scopic physics. Numerical implementation of the S
matrix method is carried out in this section through
KWANT [43], which is a Python package for calculat-
ing the S matrix of scattering regions in tight-binding
models. The model defined in Sec. II is particularly
well-suited to the KWANT methodology of calculating
the S matrix. We discretize Eqs. (1)-(3) into a one-
dimensional lattice chain and extract the differential con-
ductance from the corresponding S matrix [44, 45]. Since
the calculational technique is well-established, here we
focus on presenting and discussing our results, referring
the reader to the literature for the details [26, 27, 43–45].
The new aspect of our work is to introduce the quantum
dot (see Fig. 1) in the problem and calculate the S matrix
exactly for the combined dot-nanowire system.

For the results presented in this section we choose the
following representative parameter values for the quan-
tum dot-nanowire system. Effective mass is chosen to be
m∗ = 0.015me, along with induced superconducting gap
∆0 = 0.9 meV (we present some results for a smaller SC
gap later), nanowire length L ' 1.3 µm, Zeeman energy
VZ [meV] = 1.2B[T] where B in Tesla is the applied mag-
netic field and spin-orbit coupling αR = 0.5 eVÅ [27].
(Note that this induced bare gap will be renormalized
by self-energy corrections.) The gate voltage in the
lead is Elead = −25 meV. The confinement potential
in the quantum dot has a strength VD = 4 meV and
length l = 0.3 µm. (We have varied the dot parame-
ters to ensure that our qualitative results are generic,
i.e., the qualitative physics discussed in our work does
not arise from some special choice of the dot confine-
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ment details.) The default value of the barrier between
lead and nanowire has height Ebarrier = 10 meV and
width lbarrier = 20 nm. Note that there is nothing spe-
cial about these numbers and no attempt is made to get
any quantitative agreement with any experimental data
since the applicable parameters (even quantities as basic
as the effective mass and the g-factor) for the realistic
experimental systems are unknown. Our goal here is a
thorough qualitative understanding and not quantitative
numerical agreement with experimental data. We also
leave out disorder and/or soft gap effects since these are
not central to our study of ABS versus MZM physics in
hybrid systems. Introducing these effects is straightfor-
ward, but the results become much less transparent.

A. Simple nanowire

We first focus on simple nanowires without any quan-
tum dots. There are no ABSs in this case by construc-
tion, and any ZBCP can only arise from MZMs in our
model. The corresponding conductance has been well
studied [25–27]. However, we still present our numeri-
cal simulations for such simple nanowire systems for two
reasons. First, we will compare Andreev and Majorana-
induced conductances later in this paper, and therefore
it is important to have the pure MZM results in simple
nanowires (i.e., without any ABS) for our specific param-
eter values. Second, the proximity effect (with or with-
out self-energy effects) discussed in the simple model is
generic and is applicable to the situation with quantum
dot. The conductance of three simple nanowire systems
is shown in Fig. 3. All of them use a one-band model with
chemical potential µ = 0 meV. The difference lies in the
way of introducing the proximity SC effect. In the first
case (Fig. 3(a)), a phenomenological constant s-wave SC
pairing is introduced and thus its Hamiltonian is exactly
the minimal model defined by Eq. (1). In the other two
cases (Figs. 3(b) and (c)), degrees of freedom in the SC
are microscopically integrated out, giving rise to a self-
energy term in the semiconductor nanowire [42, 46, 47]

Σ(ω) = −λωτ0 + ∆0τx√
∆2

0 − ω2
, (4)

where λ has the dimension of energy and is propor-
tional to the tunnel coupling between the parent super-
conductor and the semiconductor nanowire. We choose
λ = 1.5 meV throughout this work. In the low energy
limit ω → 0, the self-energy term goes to the simple form
of s-wave SC pairing but with a renormalized SC pairing
amplitude −λτx. Therefore in both cases, the Hamilto-
nian becomes energy-dependent including the substrate-
induced self-energy term

H(ω) =

(
− ~2

2m∗
∂2
x − iαR∂xσy − µ

)
τz + VZσx + Σ(ω).

(5)

In the third case (Fig. 3(c)), not only is a self-energy term
introduced, the bulk SC gap also has VZ-dependence, i.e.,
∆0 in Eq. (4) is replaced by

∆(VZ) = ∆0

√
1− (VZ/VZc)2, (6)

where VZc represents the critical magnetic field beyond
which the bulk superconductivity is destroyed. (We in-
troduce such a field-dependent SC gap since this appears
to be case often in the nanowire experiments.) Then the
Hamiltonian becomes

H(ω) =

(
− ~2

2m∗
∂2
x − iαR∂xσy − µ

)
τz + VZσx + Σ(ω, VZ).

(7)

Our reason for introducing a self-energy in the problem
is to include the renormalization effects by the parent su-
perconductor to some degree [48]. This is not essential
for studying the ABS-MZM story in itself, but the calcu-
lated transport properties agree better with experiment
in the presence of the self-energy corrections. In spite
of the three different ways of introducing proximity SC
effect, the calculated differential conductance at low ener-
gies (small bias voltage) shows universal behavior for the
simple nanowire–a ZBCP forms right after gap closing,
indicating the TQPT. This ZBCP is obviously associated
with the MZMs at the ends of the nanowire. The ZBCP
is quantized at 2e2/h because of the nanowire being in a
topological superconducting phase and is robust against
variations in the tunnel barrier, chemical potential and
other parameters at zero temperature. Here in our simu-
lation, however, the peak value is slightly below the quan-
tized value 2e2/h because a small amount of dissipation
(Γ = 0.01 meV) has been added for data smoothening.
Although the three results are universal and identical
in Fig. 3 for the low energy regime near the ZBCP, in
the high energy regime (large bias voltage) conductance
shows qualitative differences with or without self-energy.
In addition, the TQPT point may shift due to self-energy
corrections as the induced SC gap is renormalized by the
tunnel coupling λ in Eq. (4). The calculated conduc-
tance in Fig. 3(a) has clear patterns at large bias voltage,
while in Fig. 3(b) and (c), the calculated conductance
at eV > ∆ is smooth and featureless. This featureless
conductance can be understood by the smearing of the
spectral function due to nanowire electrons tunneling into
the quasiparticle continuum in the parent superconduc-
tor. Thus, the continuum (i.e., electron-hole) behavior
above the SC gap is different in Fig. 3 with and without
self-energy although the below-gap behavior near zero en-
ergy is essentially the same in all three approximations
(except for a shift of TQPT to a higher critical VZ due to
the self-energy renormalization). We note, however, that
in Fig. 3(a) there is some evidence for the MZM-overlap
induced ZBCP oscillations [49, 50] at the highest mag-
netic field values (VZ > 2.5 meV) which is more obvious
in Fig. 3(g) at the highest VZ values. The edge of the
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FIG. 3. (color online). Differential conductance through three simple nanowires (no quantum dot) with chemical potential
µ = 0 meV and length L ' 1.3 µm at zero temperature. The three nanowires are different in the way of introducing proximity
superconducting effect. (a): constant s-wave SC pairing; (b): self-energy with constant parent SC pairing potential; (c):
self-energy with the parent SC pairing decreasing with Zeeman field. Note that in panels (b) and (c) the self-energy effect
renormalizes the induced gap to the tunnel coupling value λ = 1.5 meV so that TQPT is at VZ = 1.5 meV (and not the bare
gap value 0.9 meV). In panel (a), by contrast, there is no self-energy correction, and hence the TQPT is at VZ = 0.9 meV.
In panels (d)-(f) we show the “waterfalls” corresponding to panels (a)-(c), respectively. In panels (g)-(i) we plot the zero-bias
conductance as a function of VZ corresponding to panels (a)-(c) respectively. We note that although we only show µ = 0 results
here for the simple nanowire, the corresponding results for all finite µ look identical to the results shown here except for the
TQPT point shifting to larger values of VZ consistent with the well-known theory (i.e., TQPT being given by

√
∆2 + µ2).

quasiparticle continuum in Fig. 3(b) stays at a fixed bias
voltage due to constant ∆0, while the edge shrinks in
Fig. 3(c) due to a decrease of the field-dependent SC gap
∆(VZ) as a function of Zeeman field. In the Deng et al.
experimental data [20], we clearly see the quasiparticle
continuum edge shrinking with Zeeman field and the con-
ductance is featureless outside the SC gap, which leads
us to believe that a self-energy term for describing prox-
imity superconducting effect and a VZ-dependent bulk
SC gap ∆(VZ) are necessary physical ingredients for cor-
rectly describing the higher energy features. Thus in all
the calculations in the rest of the main paper, the prox-
imity effect will be introduced by a self-energy term and
the SC bulk gap will be ∆(VZ), unless explicitly stated
otherwise. Here for the simple nanowire case, we only
show the conductance of one-band models, while relegat-

ing the corresponding conductance of two-sub-band mod-
els in the Appendix A for completeness. We note that
both the self-energy effect and the two-sub-band effect
are necessary only for the qualitative agreement between
our conductance calculations and the experimental data
away from the midgap zero-energy regime. If we are only
interested in the zero-energy behavior of ABS and MZM,
the minimal model of Eq. (1) without any self energy or
two-sub-band effect is perfectly adequate.

B. Quantum dot-nanowire-superconductor hybrid
structures

In nanowire tunneling experiments quantum dot
physics is quite generic, and it may appear at the in-
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terface between the nanowire and the lead due to Schot-
tky barrier effects as mentioned in Sec. I, since all that is
needed is a small potential confinement region in between
the lead and the wire which is non-SC. In our model, the
only role played by the quantum dot potential is to intro-
duce ABSs in the nanowire, and hence, if an experiment
observes in-gap ABS in the superconducting nanowire,
we model that by a “quantum dot” strongly coupled to
the nanowire. In this subsection, we calculate the differ-
ential conductance of generic hybrid structures, for which
the Hamiltonian is a combination of quantum dot Eq. (3)
and nanowire Eq. (7). Only one-band model with the
self-energy is presented in the main text, while two-sub-
band models and constant s-wave proximity pairing cases
are discussed in Appendix B. We also present the energy
spectra of hybrid structures with or without Zeeman spin
splitting and spin-orbit coupling in Appendix C. In the
main text of this section, we mainly show our calculated
tunneling conductance results.

1. Scan of Zeeman field

The calculated differential conductance through the
dot-nanowire hybrid structure as a function of Zee-
man field at various fixed chemical potentials(µ =
3.0, 3.8, 4.5 meV) is shown in Fig. 4. Finite temperature
T = 0.02 meV is introduced by a convolution between
zero-temperature conductance and derivative of Fermi-
Dirac distribution: GT (V ) = −

∫
dEG0(E)f

′

T (E − V ).
In each panel of Fig. 4, a pair of ABS-induced conduc-
tance peaks at positive and negative bias voltage tend
to come close to each other when the Zeeman field is
turned on. At finite Zeeman field (∼ 1.5 meV), these two
ABS peaks either cross zero bias and beat (Figs. 4(a) and
(b)) or stick with each other near zero energy(Fig. 4(c)),
all of which are similar to the observations in the Deng
et al. experiment [20]. However these near-zero-energy
peaks, especially the ZBCP formed by sticking of two
ABSs, are all topologically trivial ABS peaks in Fig. 4

because VZ <
√
µ2 + ∆2 with the Zeeman splitting ex-

plicitly being less than the critical value necessary for
the TQPT. We emphasize that experimentally the TQPT
critical field is unknown whereas in our theory we know
it by definition. If we did not know the TQPT point,
there was no way to discern (just by looking at these con-
ductance plots) whether the ZBCP in Fig. 4 arises from
trivial or topological physics! The generic beating or ac-
cidental sticking behavior from the coalesced ABS pair
is the consequence of the renormalization of the bound
states in the quantum dot in proximity with nanowire
in the presence of Zeeman splitting and spin-orbit cou-
pling, which has little to do with topology and Majorana.
More detailed discussion of this point will be presented in
Sec. IV. All we emphasize here is that coalescence of ABS
pairs into a ZBCP (as in Fig. 4(c)) cannot be construed
as ABSs merging into MZMs without additional support-
ing evidence. In Figs. 4(d)-(f) we provide further details

by showing “waterfalls” patterns of conductance for in-
creasing VZ corresponding to the results in Figs. 4(a)-(c),
respectively, whereas in Figs. 4(g)-(i) we show the calcu-
lated zero-bias conductance as a function of VZ for results
in Figs. 4(a)-(c), respectively.

2. Scan of chemical potential

Calculated differential tunnel conductance through the
dot-nanowire hybrid structure as a function of chemical
potential at various Zeeman fields at T = 0.02 meV is
shown in Fig. 5. In Fig. 5(a) and (b), the ABS-induced
conductance peaks repel away from each other without
coalescing at zero energy. In Fig. 5(c) the ABS peaks
come together at some specific magnetic field, and beat
with increasing chemical potential. In Fig. 5(d) ABS
peaks beat and stick with each other. All these features
are similar to observations in the Deng et al. although
the relevant variable in the experiment is a gate voltage
whose direct relationship to the chemical potential in the
wire (our variable in Fig. 5) is unknown, precluding any
kind of direct comparison with experiment [20]. But all
of these near-zero-energy peaks are topologically trivial

in our results of Fig. 5 because VZ <
√
µ2 + ∆2 every-

where. We show in Figs. 5(d)-(f) the calculated zero-bias
conductance corresponding to Figs. 5(a)-(c) respectively.
Again, sticking together of ABSs at zero energy produc-
ing impressive ZBCP peaks are not sufficient to conclude
that topological MZMs have formed. In Fig. 5, all the
results are nontopological!

We note that the ABSs sticking to almost zero energy
and producing trivial ZBCPs generically happen only for
larger values of chemical potential (as should be obvious
from Figs. 4 and 5) with the ABSs tending to repel away
from each other or not quite stick to zero (e.g., Figs. 5(a)
and (b)) for µ < ∆. We find this to be a general trend.
Unfortunately, the chemical potential is not known in the
experimental samples.

3. Generic near-zero-bias conductance features independent
of the choice of parameters

In the previous subsections, we show how topologically
trivial ABSs could induce near-zero-bias conductance
peaks that are quite similar to MZM-induced ZBCPs.
The most important results among them are also sum-
marized in the introduction (Fig. 2). In order to show
that all these results are generic, not dependent on the
particular choice of parameters, we here present another
sets of differential conductance plots (Fig. 6) with dif-
ferent choice of parent superconducting bulk gap ∆0

and the coupling λ between the semiconductor nanowire
and the proximitizing superconductor. In the previous
discussions, the default values are ∆0 = 0.9 meV and
λ = 1.5 meV. Here in Fig. 6, the upper panels use
∆0 = 0.4 meV and λ = 1.5 meV, while the lower panels
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FIG. 4. (color online). The calculated differential conductance through the dot-nanowire hybrid structure as a function of
Zeeman field at various fixed chemical potentials (µ = 3.0, 3.8, 4.5 meV) at T = 0.02 meV. In all three panels (a)-(c), a pair
of ABS conductance peaks at positive and negative bias voltage tend to come close to each other when the Zeeman field is
turned on. At finite Zeeman field (∼ 1.5 meV), in (a) and (b), these two ABS peaks cross zero bias and beat, while in (c) they
stick with each other. However these near-zero-energy peaks, especially the ZBCP formed by sticking of two ABSs in (c), are

all topologically trivial ABS peaks because VZ <
√
µ2 + ∆2 with the Zeeman splitting explicitly being less than the critical

value necessary for the TQPT. In panels (d)-(f) we show “waterfall” plots of conductance line cuts for different VZ (increasing
vertically upward by 0.1 meV for each line) corresponding to panels (a)-(c) respectively, whereas in panels (g)-(i) we show
the calculated zero-bias conductance in each case corresponding to panels (a)-(c) respectively. Note that these results include
self-energy renormalization correction for the proximity effect.

use ∆0 = 0.2 meV and λ = 1.0 meV. Apart from these
different parameters, all other ingredients are kept ex-
actly the same as those in Fig. 2 so as to make direct com-
parison. If we compare Fig. 2(a)-(d) with Fig. 6(a)-(d),
we find that the edge of the quasiparticle continuum is de-
termined by the value of ∆0, while the near-zero-bias con-
ductance behavior looks exactly the same, independent
of ∆0, because the low-energy induced gap is the coupling
λ, not the bare bulk gap ∆0, as discussed below Eq. (4).
Thus in Fig. 6(e)-(h), the low-energy conductance behav-
ior is changed by a difference choice of λ (e.g., the critical
Zeeman field for the formation of MZM-induced ZBCP
in Fig. 6(e) is smaller than that in Fig. 6(a) ). However,
this kind of variation for the near-zero-bias ABS-induced
conductance peaks due to the change of ∆0 and λ is per-
turbative, as shown in Fig. 6(f)-(h) with respect to either

Fig. 6(b)-(d) or Fig. 2(b)-(d). The way to understand
this observation is that ABSs are bound states localized
in the quantum dot, with some wavefunction leakage into
the proximitized nanowire, and thus the effect of super-
conducting gap on the ABSs is only perturbative. Thus,
ABS-induced ZBCP physics is independent of the SC gap
size as long as the gap is not so small as to be comparable
with the energy resolution in the experiment (or numer-
ics). We expect this physics to arise whenever there are
ABSs in the system in the presence of spin-orbit-coupling
and Zeeman splitting independent of the SC gap size and
other details (except that the chemical potential should
not be too small). More detailed discussion on this per-
turbative effect will be presented in Sec. IV.
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FIG. 5. (color online). Calculated differential conductance through the hybrid structure as a function of chemical potential
at various Zeeman fields at T = 0.02 meV. In (a) and (b), the ABS conductance peaks repel away from each other without
coalescing at zero energy. In (c) the ABS peaks come together at some specific magnetic field, and beat with increasing chemical
potential. In (d) ABS peaks beat and stick with each other. However, all of these near-zero-energy peaks are topologically

trivial because VZ <
√
µ2 + ∆2. In panels (e)-(h) we show the calculated zero-bias conductance corresponding respectively to

panels (a)-(d) as a function of chemical potential at fixed VZ . Note that the TQPT happens here at low VZ < 2.0 meV (not
shown).

FIG. 6. (color online). Differential conductance for simple nanowires and hybrid structures with different SC gap parameters.
In the upper panels, (a)-(d), the parent superconducting gap is ∆0 = 0.4 meV, and the coupling between the nanowire and the
parent superconductor is λ = 1.5 meV. In the lower panels, (e)-(h), ∆0 = 0.2 meV, and λ = 1.0 meV. These plots should be
directly compared with Fig. 2, which shows that all the ABS-induced near-zero-bias conductance features are generic. (In the
other figures in this paper, ∆0 = 0.9 meV and λ = 1.5 meV.)

4. Continuous crossover from ABS to MZM-induced ZBCP

As already mentioned in the introduction, a topo-
logically trivial ABS-induced near-zero-bias conductance
peak can continue all the way to the topologically
nontrivial MZM-induced zero-bias conductance peak,
with nothing remarkable happening at the TQPT point
(Fig. 2(d)). The ABS to MZM transition is in fact a
smooth crossover, not that different from what would
happen to the MZM itself if one starts from a very
short wire with strongly overlapping end-MZMs and then
crosses over to exponentially protected well-separated

MZMs in the long wire limit simply by increasing the
wire length. Here we provide a zoom-in plot of Fig. 2(d)
focusing on the vicinity of TQPT, in order to see ex-
plicitly how ABSs and MZMs interact with each around
around the TQPT. As shown in Fig. 7, it is the con-
ductance for a hybrid structure with chemical potential
µ = 2 meV as a function of Zeeman field and bias voltage.
The critical Zeeman field is VZc = 2.5 meV, as indicated
by the vertical yellow line, to the left (right) of which,
the hybrid structure is in topologically trivial (nontrivial)
regime. When VZ < 2.5 meV, there is ABS near zero-
bias, while when VZ > 2.5 meV, the MZM-induced ZBCP



12

FIG. 7. (color online). Zoom-in of Fig. 2(d), the conductance
for a hybrid structure with µ = 2 meV as a function of Zeeman
field, where the critical Zeeman field is VZc = 2.5 meV, as
shown by the vertical yellow line.

forms and stays over a large range of Zeeman field. We
want to emphasize that the ABS-induced peaks and the
MZM-induced peaks are uncorrelated with each other,
they do not transmute into each other by any means.
This statement is supported by the observation that the
near-zero-energy ABS below the formation of the MZM-
induced ZBCP in Fig. 7 still exists at finite energy in the
topological regime, and it affects the MZMs by squeez-
ing the width of the ZBCP and lowering its peak value
when the their energy separation is small (∼ 2.7 meV).
Put in another way, those ABSs forming the near-zero-
bias conductance peaks never transmute into the MZMs,
they exist on their own and may affect the MZMs at some
point. All that happens in Fig. 7 is that the ABS is near
zero energy below the TQPT, and once the MZM forms
above the TQPT, the ABS moves away from zero energy
producing some level repulsion physics with the MZM
above the TQPT. We emphasize that there is neither an
ABS-MZM transition nor an ABS-MZM transmutation.
We note, however, that the level repulsion pushing the
ABS away from zero energy in Fig. 7 actually happens
a finite field above the TQPT reflecting crossover nature
of the ABS-MZM ‘transition’.

5. Effect of tunnel barrier

It has been well established that a zero-temperature
ZBCP from MZM has a robust quantized peak value
2e2/h against the variation of tunnel barrier. For peaks
from ABSs, however, such robustness is absent, and there
is no generic value for the height of ABS peaks - they
range from 0 to 4e2/h [21]. We have checked explicitly
that we can get any conductance value associated with
the ABS-associated ZBCP by tuning various parameters.
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FIG. 8. (color online). (a) Calculated topological visibility of
a simple nanowire and a hybrid structure, whose correspond-
ing conductance is in Fig. 3(c) with µ = 0 meV and 4(c) with
µ = 4.5 meV. At small Zeeman field, TV in both cases are
close to 1, indicating trivial phases. At large Zeeman field,
the TV of the simple nanowire goes down to negative values
approaching −1 while that of the hybrid structure also goes
down but still remains around zero. (b) Calculated TV cor-
responding to Fig. 2(d) of hybrid structure with µ = 2.0 meV
sweeping through the TQPT point at VZc = 2.5 meV (the
vertical yellow line separating the trivial ZBCP from the topo-
logical ZBCP).

In particular, a ZBCP conductance around 2e2/h is quite
common from the non-topological ZBCP arising from co-
alesced ABSs through fine-tuned barrier strength. This
dependence of ABS-induced ZBCP on the tunnel barrier
strength can be used to check the robustness of any ex-
perimentally observed ZBCP. If the ZBCP height is im-
mune to variations in the tunnel barrier, the likelihood
is high that the corresponding ZBCPs are induced by
topological MZMs.

C. Topological visibility

Based on our numerical simulations, we conclude that
it is difficult to differentiate between Majorana and
Andreev-induced ZBCPs by merely looking at differential
conductance, e.g., Fig. 3(c) and 4(c) both show ZBCPs
approaching 2e2/h at large Zeeman field. Whether the
ZBCPs are topological or not is determined by calculat-
ing whether VZ is larger or smaller than the critical value

for the TQPT, i.e., VZc =
√
µ2 + ∆2. We can also use

another complementary quantity called topological vis-
ibility [26] to measure the topology of ZBCPs, discern-
ing topological MZM-induced ZBCPs from trivial ABS-
induced ZBCPs. Topological visibility (TV) is defined as
the determinant of the reflection matrix:

TV = Det(r), (8)

where the reflection matrix r contains both the normal
and the Andreev reflections from the nanowire at zero-
bias voltage. Topological visibility is a generalization of
topological invariant (Q) defined by S matrix at zero-bias
voltage, which is Q = Det(r) = sgn(Det(r)). The topo-
logical invariant takes only binary values as ±1 due to
the assumption of particle-hole symmetry and unitarity
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of the reflection matrix [26, 51]. However, for a finite-
length nanowire, the topological invariant always takes
the trivial value, i.e., Q = +1 because of the Majorana
splitting from MZM overlapping making conductance at
zero bias always zero even when the topological criteria
is satisfied. When an infinitesimal amount of dissipation
is added into the nanowire leading to a finite value of
zero-bias conductance, Det(r) can take any real value
between −1 to +1 because the unitarity condition is no
longer satisfied. Thus TV= Det(r), as a generalization
of topological invariant, varies between -1 and +1. When
the value of TV is close to −1, the system is thought of
as topologically nontrivial, and otherwise, the system is
more topologically trivial. The TV of a simple nanowire
and a hybrid structure are shown in Fig. 8(a), whose
corresponding conductance is in Fig. 3(c) and 4(c) re-
spectively. At small Zeeman field, TVs in both cases
are close to 1, indicating trivial phases. At large Zee-
man field, the TV of the simple nanowire goes down to
negative values approaching −1 while that of the hybrid
structure also goes down but still remains around zero.
This fact indicates that although a pair of ABSs coalesce
forming a ZBCP, this peak is topologically trivial, while
Majorana-induced ZBCP is topological. Thus merely
getting a ZBCP with value close to 2e2/h does not neces-
sarily mean the system enters topological regime. Unfor-
tunately, there is no direct method to measure the topo-
logical visibility experimentally. In Fig. 8(b), we show
the calculated TV corresponding to Fig. 2(d) where the
TQPT is at VZc = 2.5 meV (the vertical yellow line).
We notice that TV starts to dive to be more negative
for VZ > 2.5 meV consistent with the TQPT separat-
ing a trivial ZBCP below and above VZ = 2.5 meV, but
the result is not absolutely definitive because of the pres-
ence of dissipation, finite temperature, gap closing, and
Majorana overlap. These problems may exist in the ex-
perimental systems too masking the TQPT and making
it difficult to distinguish trivial and topological regimes.

More details on the role of topological visibility in this
context can be found in Ref. [26], and we do not show
any more TV results in the current paper except to make
one remark. The calculated TV is approaching −1 (or
not) whenever the corresponding Zeeman energy for the
zero mode is above (below) the critical TQPT value VZc,
thus distinguishing (theoretically) the MZM and ABS
zero modes. For our purpose, any apparent zero mode
(or almost-zero mode) below (above) the TQPT point
(which is exactly known in our theory, but not in the
experiment) is considered to be an ABS (MZM) by defi-
nition.

We note in this context that the trivial ZBCP in
Fig. 4(b) and 4(c) may persist to large Zeeman split-
tings (as in Fig. 2(d)) going beyond the TQPT point
(VZ > 3.8, 4.5 meV in Fig. 4(b) and 4(c) respectively),
and then the coalesced ABSs have eventually become
MZMs at large enough magnetic field values (see, e.g.,
Fig. 2(d)). Unfortunately, there is no way to know about
such a trivial to topological crossover by looking simply

at the ZBCP (without knowing the precise TQPT point),
and hence experimentally, one cannot tell whether a coa-
lesced ZBCP is trivial or topological by studying only
the ZBCP. One way to distinguish is perhaps careful
experimentation varying many experimental parameters
(e.g., magnetic field, chemical potential, tunnel barrier,
SC gap) to test the stability of the absolute value of the
ZBCP against such perturbations. The MZM-induced
topological ZBCP should manifest the universal strength
of 2e2/h whereas the trivial ABS-induced ZBCP will have
non-universal behavior. Another issue which may be-
come important in the experimental context [20] is that
the bulk SC gap may collapse in the high magnetic field
regime where one expects the MZM to manifest itself.

D. Proximitized quantum dot

All the calculations in the previous subsections are
based on hybrid structures with the quantum dot outside
the nanowire, i.e., there is no induced superconductivity
in the quantum dot at all. In real experimental situa-
tions, however, it is possible that unintentional quantum
dots may appear inside the SC nanowire, or the parent
superconductor may partially or completely proximitize
the quantum dot. Another way of saying this is that
ABSs may arise in the nanowire from unknown origins
where no obvious quantum dots are present. (Such a
possibility can never be ruled out although whether it
actually happens in a particular experimental system or
not would depend on unknown and uncontrolled micro-
scopic details.) We now consider hybrid structures with
the quantum dot completely proximitized and calculate
the corresponding differential conductance. The calcu-
lated differential conductance is shown in Fig. 9. Both
Fig. 9(a) and 9(b) are differential conductance as a func-
tion of Zeeman splitting. In Fig. 9(a), the critical Zeeman

field is at VZc =
√

∆2 + µ2 = 2.5 meV (marked by a yel-
low vertical line), beyond which the system enters the
topological regime. By contrast in Fig. 9(b), the critical
Zeeman field is outside the range of VZ , thus the zero-
bias peak is trivial. But there is no way to differentiate
between the two situations by just looking at the ZBCPs.
Another intriguing phenomenon in Fig. 9(a) and (b) is
that the positions of the pair of ABSs at zero Zeeman
field are much closer to the induced SC gap than sit-
uations where the quantum dot is not proximitized, as
shown in Fig. 4. This is because the SC pairing for ABSs
in fully proximitized dot is larger than the renormalized
SC pairing in unproximitized dot. Thus the gap in the
former case is larger and closer to the induced SC gap in
the nanowire. Thus the position of ABS peaks at zero
Zeeman field can be regarded as a clue to the degree of
proximitization of the quantum dot. Such a feature is
also manifest in Fig. 9(c), where we show the conduc-
tance as a function of chemical potential at zero Zeeman
field. In contrast with Fig. 5(a), now the peaks from
ABSs are closer to the induced SC gap. Fig. 9(d)shows
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FIG. 9. (color online). Calculated differential conductance through four hybrid nanowire systems with the quantum dot
completely proximitized and with the same amount of dissipation Γ = 0.01 meV and temperature T = 0.02 meV. (a) and (b):
Differential conductance as a function of Zeeman splitting at fixed chemical potential. In (a), the critical Zeeman field is at

VZc =
√

∆2 + µ2 = 2.5 meV (marked by a yellow vertical line), beyond which the system enters the topological regime. Here
∆ = λ = 1.5 meV due to self-energy renormalizing the SC pairing. In (b), the critical Zeeman field is outside the range of
VZ , thus the zero-energy peak here is trivial. (c) and (d): Differential conductance as a function of chemical potential at fixed
Zeeman field VZ = 0 and VZ = 2.0 meV.

the differential conductance as a function of chemical
potential at a finite Zeeman field VZ = 2 meV, where
peaks from the two ABSs inside the SC gap are close
to zero-energy. We believe that in most experimental
situations the ABSs arise from strongly-coupled “effec-
tive” quantum dots within the nanowire (or from “dots”
present at the Schottky barrier between the semiconduc-
tor nanowire and the normal metallic lead). More de-
tailed results and discussion on hybrid structures with
proximitized quantum dot are provided in Sec. VI.

IV. SELF-ENERGY MODEL OF QUANTUM
DOT

So far we have numerically calculated differential con-
ductance through various nanowire systems, showing ei-
ther ZBCPs or near-zero-bias peaks. Some of these con-
ductance plots, e.g. Figs. 4 and 5, are quite similar (es-
sentially identical qualitatively) to those in the Deng et
al. experiment [20], but this is only suggestive as we
have no way of quantitatively simulating the experimen-
tal devices because of many unknown parameters (not
the least of which are the detailed quantum dot char-
acteristics). We have shown explicitly that ABSs could
come together and remain stuck at zero energy in the
quantum dot-nanowire hybrid system producing trivial
ZBCPs which perfectly mimic the topological ZBCPs as-
sociated with MZMs in simple nanowires. This tendency
seems to be quite generic at higher chemical potentials
whereas at lower chemical potentials the ABSs seem to
simply repel each other. This section is devoted to under-
standing the relevant physics leading to the conductance
patterns discussed above. We calculate analytically the
energy spectra of hybrid structures, especially focusing
on low-energy states, which can provide insightful infor-
mation about the corresponding zero-bias conductance
behavior. We mention that superconductivity, spin-orbit
coupling, and Zeeman splitting are all essential ingredi-
ents for the ABS physics being discussed here. Thus, the
zero-sticking property of trivial ABSs (as a function of

magnetic field) is a generic feature of class D supercon-
ductors, even without any disorder.

With no loss of generality, we focus on a single hybrid
structure with chemical potential µ = 3.0 meV using the
minimal model of a constant s-wave paring potential in
this section since the low-energy behavior is not affected
by the way proximity SC is introduced. The basic idea
here is to see how a self-energy theory of quantum dot
bound states, taking explicitly (but perturbatively) into
account the SC nanowire as well as Zeeman splitting and
spin-orbit coupling, leads naturally to ABS-sticking near
zero energy independent of trivial or topological regime
one is considering. In other words, the tendency of ABSs
coalescing near zero energy is a generic property of class
D superconductors and has nothing whatsoever to do
with MZMs or TQPT. This is consistent with a previ-
ous analysis [33] of so-called Y-shaped resonances that
were proposed to occur in generic quantum dots coupled
to SCs on the grounds of random matrix theory where
the system of interest was random (i.e., had disorder in
it in sharp contrast to our disorder-free consideration).
The focus of our work here is to expand on the likelihood
of this occurrence in a spin-orbit coupled nanowire sys-
tem in general even without any disorder. The resulting
ZBCP may arise from an MZM in the topological regime
or an ABS in the trivial regime controlled entirely by the
magnetic field where it happens (i.e. whether this field is
above or below the critical Zeeman field for the TQPT).
What we find is (and show in Sec. III in depth) that the
trivial ABSs could stick to zero energy for a large range
of magnetic field without being repelled away, thus mim-
icking the expected zero mode behavior of topological
MZMs.

A. Exact results from diagonalization

First, we look at the isolated quantum dot system
whose Hamiltonian is HQD as shown in Eq. (3). The
spectrum is shown in Fig. 10(a), where the blue curve de-
notes the bound state whose energy crosses Fermi level
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FIG. 10. (color online). The spectrum of the isolated quantum dot. The blue curve is the spectrum of the bound state whose
energy crosses Fermi level as a function of Zeeman field. The black curve is its particle-hole partner, which is redundant in this
case since there is no SC pairing in the isolated quantum dot. Green curves are spectra of other bound states that are always
well above or below Fermi level.

as a function of Zeeman field, the black curve denotes
its particle-hole partner, which is redundant in this case
since there is no SC pairing in the isolated quantum dot,
and the green curves are spectra of other bound states
that are always well above or below the Fermi level.
As Zeeman field increases, the bound state eigen-energy
crosses Fermi level, but it is then repelled by neighbor-
ing energy states due to spin-orbit coupling, which leads
to the beating shape in the spectrum. Note that the
theory explicitly must consider both Zeeman and spin-
orbit coupling effects. We provide more details on the
directly calculated energy spectra of the hybrid system
in Appendix C.

Second, we include the superconducting nanowire and
couple it with the quantum dot; they together consti-
tute the hybrid structure. The system is now class D
(but with no disorder)–it has superconductivity, Zeeman
splitting and spin-orbit coupling. The total Hamiltonian
is a combination of Eqs. (1) and (3)

Htot = HQD +HNW +Ht,

Ht = u+ u† = f̂†α(−tδαβ + iαRσ
y
αβ)ĉβ + h.c., (9)

where HQD is the isolated quantum dot, HNW is the su-
perconducting nanowire and Ht is the coupling between
them. ĉ annihilates an electron at the end of the nanowire
adjacent to the dot and f̂† creates an electron at the end
of the dot adjacent to the nanowire. By diagonalizing
the total Hamiltonian, we obtain the spectrum shown in
Fig. 10(b), where the blue curves are particle-hole pairs
that cross Fermi level, while the green curves are states
well above or below Fermi level. By focusing on the spec-
tra near Fermi level in Fig. 10(a) and (b), we see that the
effect of the nanowire on the bound states of the quan-
tum dot is that it shifts the spectrum and changes the
spectrum curvature. The strong similarity between the
spectrum of hybrid structure in Fig. 10(b) and the differ-
ential conductance in Fig. 4(a) indicates that the energy
spectrum provides a good perspective on understanding

the behavior of differential conductance, which is in gen-
eral true at low temperature since the low-temperature
transport is dominated by contributions from the low-
energy states..

B. Approximate results from self-energy theory

The numerical results in the previous subsection show
graphically that coupling with the nanowire has a per-
turbative effect on the energy spectrum of the isolated
quantum dot. We now calculate the analytic form of
the perturbed spectrum in the quantum dot using an ef-
fective theory including perturbative corrections of the
quantum dot spectra arising from the superconducting
nanowire. The total Hamiltonian is still Eq. (9). We first
project HQD onto the subspace spanned by the bound
state crossing the Fermi level and its redundant hole part-
ner, thus obtaining

Heff
QD = Eeff

QDγz, (10)

where γ’s are Pauli matrices on the projected two-
dimensional subspace. Eeff

QD = EQD − ∆µ, with EQD
the bare energy of the bound state in the isolated quan-
tum dot crossing the Fermi level, and ∆µ represents the
renormalization of the chemical potential due to project-
ing out all the other states. Then we integrate out the
degrees of freedom in the nanowire, leading to an energy-
dependent self-energy term in the isolated quantum dot

Σ(ω) = u(ω −HNW )−1u†, (11)

where u, u† represent the hopping between nanowire and
quantum dot. Similarly, we project this self-energy term
onto the two-dimensional subspace in quantum dot and
get

F (ω) = P̂Σ(ω)P̂ , (12)
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where P̂ denotes the projection operator. Thus the ap-
proximate energy spectrum of the hybrid structure near
the Fermi level is given by the roots of

Det(ω −Heff
QD − F (ω)) = 0. (13)

The spectrum obtained from this effective theory is
shown in Fig. 10(c), where blue circles represent the ex-
act spectra from diagonalizing the total Hamiltonian in
the previous subsection, while the red line is the spec-
trum obtained from the projected effective theory with
the appropriate choice of ∆µ in Eq. (10). The excellent
agreement between the exact diagonalization results and
the effective theory results demonstrates that the prox-
imity effect from the SC nanowire onto the quantum dot
bound states is perturbative renormalization.

We can take one more step to get an analytic expres-
sion of the ABS spectra using the low energy assumption
ω → 0. In the nanowire, particle-hole symmetry con-
strains the form of projected self-energy term F (ω) to be
(Appendix D)

F (ω) = f0(ω)γ0 + fx(ω)γx + fz(ω)γz

' β0ωγ0 + βxωγx + αzγz, (14)

where f0,x are odd functions of ω, and fz is an even
function of ω. Here, f ’s are expanded up to their leading
order for small ω. Then the leading order solution is
given by the approximate root of Eq. (13):

ω '
Eeff
QD + αz√

(β0 − 1)2 − β2
x

. (15)

This result indicates that the proximity effect of the
nanowire is two-fold: it first shifts the projected spec-
trum of the isolated quantum dot, and it reduces the
curvature (i.e., enhances the effective mass if we focus on
the parabolic part) of the spectrum, since numerics show
β0 � 1, βx.

Our finding is that the near-zero conductance peaks in
hybrid structures are mainly contributed by the ABSs
related to the quantum dot. These ABSs can be re-
garded as bound states in the quantum dot perturba-
tively renormalized by the nanowire. ABS spectra show
parabolic shapes as a function of Zeeman field with renor-
malized effective mass and chemical potential. When the
parabolic spectrum crosses the Fermi level, the spectrum
together with its particle-hole partner manifests a beat-
ing pattern around midgap, and if this beating involves
small amplitude, the resulting ABS will appear to be
stuck at zero energy manifesting a generic ZBCP, which
has nothing to do with MZMs. It is simply a low energy
fermionic bound state in the SC gap. For the approxi-
mately zero-energy ABSs the renormalized effective mass
is accidentally huge and the renormalized chemical po-
tential shifts the ABS close enough to zero energy. How
close is “close enough” depends entirely on the energy res-
olution of the experiment–all these apparent zero-energy

trivial ABS modes are beating around midgap, it is only
when this beating happens to be smaller than the resolu-
tion, the mode appears stuck at zero energy. Especially
when broadening effects from finite temperature and/or
intrinsic dissipation are larger than the beating ampli-
tude, near-zero peaks seem to appear stuck at zero energy
since the energy resolution is not fine enough to resolve
the beating pattern. This makes it essentially impossible
to obtain a simple analytic form for the range of mag-
netic field (i.e., range of VZ) over which the trivial ABSs
will remain close to zero–this range is a multidimensional
complicated function determined determined by all the
parameters of the hybrid system even in our simple per-
turbative model (chemical potential, magnetic field, in-
duced gap, quantum dot confinement details, experimen-
tal resolution around zero bias, temperature, broadening,
etc.).

We emphasize that all the four ingredients are essen-
tial in the perturbative theory: quantum dot, supercon-
ducting nanowire, spin-orbit coupling, and Zeeman split-
ting. What is, however, not necessary is topological p-
wave superconductivity or Majorana modes. Generically,
the ABSs in class D superconducting nanowires may be
attracted to the midgap, and once they coalesce there,
they will have a tendency to stick to zero energy. The
fact that class D superconductors generically allow trivial
zero-energy states can also be seen from the known level
statistics whose probability distribution has no repulsion
from zero energy [52] in contrast to the other class super-
conductors. What we show in our analysis here is that
this tendency of D-class peaks to stick to zero energy
can happen for simple ABSs arising from single quantum
dots, there is no need to invoke disorder as leading to
such class D peaks [29–31, 53], and such zero-bias stick-
ing could survive over a large range of magnetic field
variation. The disorder-free nature of our theory distin-
guishes it from earlier work on class D zero-bias peaks
which are caused by disorder induced quantum interfer-
ence [29–31, 53].

Specifically, the ingredients discussed in the previous
paragraph produce localized ABSs in the symmetry class
D with a large weight at the end. Superconductiv-
ity provides particle-hole symmetry and Zeeman split-
ting breaks time-reversal symmetry in order to place the
system in the symmetry class D. Spin-orbit coupling is
needed to break spin-conservation without which the sys-
tem would become two copies of a different symmetry
class. Class D is important to induce energy-level repul-
sion that pushes the lowest pair of ABSs towards zero
energy [54]. As seen from Eq. (14), the self-energy from
the superconducting nanowire that is in symmetry class
D generates the eigenstate repulsion which pushes the
ABSs towards zero energy. The tendency of ABSs to
stick as the Zeeman field is varied in class D is analo-
gous to the Y-type resonance discussed in the context of
superconducting quantum dots [33].

A definitive prediction of the arguments in the previ-
ous paragraph is that the combination of spin-orbit cou-
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pling and Zeeman splitting is required to create states
that stick to zero energy, which only occurs in symmetry
class D. This can be checked explicitly by obtaining the
corresponding low-energy spectra in the hybrid quantum
dot-nanowire system without Zeeman splitting or with-
out spin-orbit coupling respectively. We carry out these
direct numerical simulations and show the correspond-
ing results in Appendix C, where it can be clearly seen
that only the situations with superconductivity, spin-
orbit coupling, and Zeeman splitting all being finite al-
low for the possibility of zero-sticking (and beating) of
ABS. Thus, the same ingredients which lead to the ex-
istence of MZMs in nanowires (superconductivity, spin-
orbit coupling, and Zeeman splitting) also lead to An-
dreev bound states sometimes producing almost-zero-
energy midgap states. This is a most unfortunate sit-
uation indeed. This means that confirming the presence
of Majoranas through transport measurement might be
more complicated than simply observing a robust zero-
bias peak. While a ZBCP is indeed necessary, it is by no
means sufficient even if the ZBCP value agrees with the
expected quantized conductance of 2e2/h. It will also be
necessary to vary the tunneling through the quantum dot
to reduce it to a quantum point contact which can ex-
plicitly be verified to be carrying a single spin-polarized
channel in the normal state [55]. In addition, it must
be ensured that the ZBCP quantization is indeed robust
against variations in various system parameters such as
tunnel barrier, magnetic field, and chemical potential. In
particular, varying the quantum dot confinement through
tunable external gate voltage and checking for the sta-
bility of the ZBCP may be essential to ensure that the
relevant ZBCP indeed arises from MZMs and not ABSs.
This is considered in the next section.

V. DISTINGUISHING BETWEEN TRIVIAL
AND TOPOLOGICAL ZERO MODES

In the previous sections, we numerically show that dif-
ferential conductance from MZMs and near-zero-energy
ABSs may share strong similarities with each other, mak-
ing them hard to distinguish. Although theoretically one
can look at topological criteria or TV to distinguish be-
tween the two cases, quantities like chemical potential
and TV are hardly known in the real experimental setup.
So in order to distinguish ZBCPs arising from topological
and nontopological situations, we discuss an alternate ex-
perimentally (in principle) accessible method, i.e., to see
how the zero modes are affected by the change of the
depth of the quantum dot confinement potential. We
mentioned before that the phenomenon of the generic
existence of trivial ABS-induced zero modes is qualita-
tively independent of the quantum dot confinement de-
tails, but now we are asking a different question. We
focus on a fixed hybrid structure with ABS- (or MZM-)
induced zero modes, and ask how this specific zero mode
and the near-zero-bias differential conductance (compar-

ing the ABS and the MZM cases) react to the change in
the depth VD of the quantum dot confinement potential
keeping everything else exactly the same.

A. Energy spectra for hybrid structures with ABS
and MZM-induced zero modes

We show our numerical results in Fig. 11. Fig. 11(a)
is the calculated spectrum as a function of chemical po-
tential at fixed VZ = 2.0 meV for VD = 4 meV with
topological MZM-(or trivial ABS-) induced zero modes
at small (large) chemical potential regimes. Now, we ask
how this spectrum evolves if we only vary VD keeping
everything else exactly the same. Fig. 11(b) presents the
MZM spectrum (i.e., at small chemical potential) as a
function of dot depth, showing that it is robust against
change of dot depth. By contrast, Fig. 11(c) shows the
ABS spectrum (i.e., large chemical potential) as a func-
tion of the dot potential depth, clearly showing that the
ABS “zero mode” is not stable and oscillates (or splits) as
a function of the dot potential. Put in another way, the
fact that we see near-zero-energy ABSs is quite accidental
for any particular values of Zeeman splitting and chemi-
cal potential, which only happens when the dot depth is
fine-tuned to be some value, e.g., VD = 4 meV so that
the energy splitting of the ABS zero mode happens to
be smaller than the resolution. So varying the dot depth
(e.g., by experimentally changing gate potential) will be
a stability test distinguishing topological MZMs and non-
topological ABSs. Note that it is possible (even likely)
that the original ABS-induced ZBCP will split as the dot
potential changes whereas a new trivial zero mode could
appear, but the stability (or not) of specific ZBCPs to
gate potentials could be a powerful experimental tech-
nique for distinguishing trivial and topological ZBCPs.
Of course, experimentally tuning the dot potential by an
external gate may turn out to be difficult in realistic situ-
ations, but modes which are unstable to variations in gate
potentials are likely to be trivial ABS-induced ZBCPs.

B. Conductance for hybrid structures with ABS
and MZM-induced zero modes

We also show the calculated differential conductance
through the hybrid structures as a function of the depth
of the quantum dot and bias voltage, as shown in Fig. 12.
The conductance color plots in the upper panels (a)-
(c) are for topological nanowires, i.e., VZ > VZc =√
µ2 + ∆2, and thus all the zero-bias or near-zero-bias

conductance peaks are MZM-induced. Such ZBCPs are
stable against the variation of the depth of the quan-
tum dot. With the increase of the Zeeman field, ZBCPs
will be split and form Majorana oscillations as a func-
tion of the dot depth. By contrast, the conductance color
plots in the lower panels (d)-(f) are for topologically triv-
ial nanowires (VZ < µ), and thus all the near-zero-bias
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FIG. 11. (color online).(a) Calculated energy spectrum of a hybrid structure as a function of chemical potential µ with fixed

Zeeman splitting VZ = 2.0 meV, dot depth VD = 4.0 meV. Critical chemical potential is at µc =
√
V 2
Z −∆2 ' 1.8 meV with

red (green) lines indicating topological (trivial) zero modes. (b) Fixed chemical potential in the topological regime µ = 0.5 meV
< µc, to see how MZMs vary with the depth of the quantum dot. (c) Fixed chemical potential in the non-topological regime
µ = 4.5 meV > µc, to see how near-zero-energy ABSs vary with the depth of the quantum dot. We see that MZMs are
robust against the change of the dot depth, while ABSs oscillate or split with the change of the dot depth. So varying the
dot depth(experimentally changing the gate potential) could be a stability test distinguishing between topological MZMs and
non-topological ABSs.

FIG. 12. (color online). Differential conductance as a function of the dot depth for hybrid structures at various but fixed
chemical potential and Zeeman field. In the upper panel (a)-(c), all the hybrid structures are in the topological regime, i.e., all
the zero-bias or near-zero-bias conductance peaks are MZM-induced. In the lower panels (d)-(f), all the hybrid structures are
topologically trivial, i.e., the zero-bias or near-zero-bias conductance peaks are ABS-induced.

conductance peaks are ABS-induced. These nontopolog-
ical near-zero-bias peaks also show beating patterns as
a function of the dot depth, which is quite similar to
the patterns for Majorana oscillations, although the ori-
gin is nontopological. But the crucial difference between
the two situations is that ABS-induced oscillations are

not guaranteed to cross zero bias for a variation of the
parameter choice, e.g., increasing chemical potential as
shown in (e) and (f), while for MBS-induced oscillations,
although the amplitude of oscillation will increase with
parameters in the nanowire (e.g., Zeeman field), the os-
cillation itself is sure to pass through zero-bias voltage.
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The difference between the two situations rises from the
crucial fact that ABS induced ZBCPS are almost zero
modes involving (always) some level repulsion whereas
the MZM induced ZBCP oscillations arise from the split-
ting of a true zero mode in the infinite wire limit.

VI. QUANTUM DOTS AS SHORT-RANGE
INHOMOGENEITY

So far, our theoretical analysis (except for Sec. III D
and Fig. 9) has focused on quantum dots explicitly cre-
ated at the end of a nanowire (see Fig. 1). In this case
the quantum dot is normal (i.e. non-superconducting),
while the rest of the wire is proximity-coupled to the
parent superconductor. However, in general the quan-
tum dot could be unintentional, i.e. the experimentalist
may be unaware of its presence near the wire end, and
it could be partially or completely covered by the super-
conductor. For example, such a situation may arise if
a potential well with a depth of a few meV forms near
the end of the proximitized segment of the wire. Simi-
lar phenomenology emerges in the presence of a low (but
wide enough) potential barrier. After all, there is no easy
way to rule out shallow potential wells (and low poten-
tial barriers) inside the nanowire or near its ends. In
this context, we emphasize that a better understanding
of the profile of the effective potential along the wire rep-
resents a critical outstanding problem. It turns out that
all our results obtained so far still apply qualitatively
even if the quantum dot is partially or completely inside
the nanowire. In these cases we obtain exactly the same
type of low-energy ABSs that have a tendency of sticking
together near zero energy, thus producing ZBCPs that
mimic MZM-induced ZBCPs. We present these results in
detail below. We are providing these results here in order
to go all the way from an isolated non-superconducting
dot at the wire end (as in the previous sections of this pa-
per) to a situation where the dot is inside the wire and is
completely superconducting. We explicitly establish that
the main results of the previous sections can be obtained
everywhere within this range, i.e. from isolated dots to
dots completely inside the nanowire. In fact, this behav-
ior is rather generic in non-homogeneous semiconductor
nanowires [36]. Finally, in this section we pay special at-
tention to the profile of the ZBCPs associated with the
almost-zero-energy ABSs. The key question that we want
to address is whether or not a quantized ZBCP (i.e., a
ZBCP with a peak height of 2e2/h) can be used as a hall-
mark for the Majorana zero modes expected to emerge
beyond a certain critical field.

In Fig. 13, we represent schematically the hybrid struc-
ture [panel (a)] and the effective potential [panel (b)] cor-
responding to three different situations that we consider
explicitly in this section using exactly the same model pa-
rameters: dot entirely outside the proximitized segment
of the nanowire, dot completely inside the nanowire (i.e.,
the whole dot is superconducting), and dot partially cov-
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FIG. 13. (color online). (a) Schematic representation of hy-
brid structure. (b) Effective potential as a function of position
for a wire with a quantum dot near its left end. In the calcu-
lations the length of the quantum dot region is 250 nm, while
the rest of the wire is 1 µm long. Note that the length par-
ent superconductor (SC) can be varied, so that the quantum
dot region can be uncovered, partially covered, or completely
covered by the SC. (c) Smooth non-homogeneous effective po-
tential. The peak at the left end of the wire represents the
tunnel barrier.

ered by the parent superconductor. The depth of the po-
tential well in the quantum dot region is about 1 meV and
its length is 250 nm. The coupling between the quantum
dot and the rest of the wire is controlled by the height of
the corresponding potential barrier [see panel (b) in Fig.
13]. In addition, the coupling depends on how much of
the dot is covered by the superconductor. The parame-
ters used in our calculations correspond to intermediate
and strong coupling regimes. We note that replacing the
potential well from Fig. 13 (b) with potential barrier of
a height several times larger than the induced gap ∆ind

leads to low-energy features similar to those described
below for the potential well. Finally, for comparison we
also consider a nanowire with a smoothly varying non-
homogeneous potential [panel (c) in Fig. 13].

In Fig. 14 we show the calculated low lying energy
spectra for three cases: (a) normal dot (i.e. uncovered by
the SC), (b) half-covered dot, and (c) fully-covered dot.
The system is characterized by an induced gap ∆ind =
0.25 meV and a chemical potential µ = −2.83∆ind. The
corresponding critical field associated with the topolog-
ical quantum phase transition, VZc ≈ 3∆ind = 0.75
meV, is signaled by a minimum of the quasiparticle gap,
as expected in a finite length system. First, we note
that all three situations illustrated in Fig. 14 clearly
show trivial almost-zero-energy ABSs in a certain range
of Zeeman field (lower than the critical field). However,
the Zeeman field V ∗Z associated with the first zero-energy
crossing is significantly lower in the case of an uncovered
dot [panel (a)] as compared to the partially-covered dot
[panel (b)] and especially the fully covered dot [panel (c)].
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FIG. 14. (color online). Dependence of the low-energy spec-
trum on the applied Zeeman field for a nanowire with a quan-
tum dot near the left end (see Fig. 13). (a) Quantum dot
outside the superconducting region. (b) Quantum dot half-
covered by the parent superconductor. (c) Completely cov-
ered quantum dot. The induced gap is ∆ind = 0.25 meV
and the chemical potential µ = −2.83∆ind, which corre-
sponds to a critical Zeeman field of about 0.75 meV. The zero-
temperature conductance along various constant field cuts
marked “1”, “2”, and “3” are shown in Fig. 15.

Consequently, the range of Zeeman field corresponding
to almost-zero-energy ABSs gets reduced with increasing
the coverage of the quantum dot by the SC. Another key
feature is the dependence of the energy of the ABS at
VZ = 0 on the dot coverage. For the fully covered dot
[panel (c)], this energy is practically ∆ind. In fact, by
proximity effect, all the states that “reside” entirely un-
der the parent superconductor have energies (at VZ = 0)
equal or larger than the induced gap for the correspond-
ing band. By contrast, the zero-field energy of the ABSs
in the half-covered [panel (b)] and uncovered [panel (a)]
dots is significantly lower that induced gap. To obtain
such a state it is required that a significant fraction of
the corresponding wave function be localized outside the
proximitized segment of the wire. We find that, quite
generically, strongly coupled dots that are uncovered or
partially covered (when the uncovered fraction is signifi-

cant) can support ABSs that i) have energies at VZ = 0
much smaller than the induced gap and ii) are character-
ized by “merging fields” V ∗Z significantly lower than the
critical value VZc. Consequently, in hybrid systems hav-
ing strongly coupled dots at the end it is rather straight-
forward to obtain low-energy Andreev bound states that
merge toward zero and generate MZM-like zero-bias con-
ductance peaks in the topologically-trivial regime, way
before the topological quantum phase transition. In a
real system it is possible that superconductivity be sup-
pressed by the magnetic field before reaching the critical
value VZc. In such a scenario, a robust ZBCP that sticks
to zero energy over a significant field range is entirely
caused by (topologically trivial) merging ABSs, rather
than (non-Abelian) MZMs. We speculate that the the
rigid zero-energy state shown in Fig. S6 of Ref. [20] is an
example of such a trivial (nearly) zero-energy state.

Next, we address the following question: can one
discriminate between a MZM-induced zero-bias conduc-
tance peak and a trivial, ABS-induced ZBCP based on
the height of the peak at zero temperature? More specifi-
cally, does the observation of a quantized peak guarantee
its MZM nature? In short, the answer is no. However,
observing a quantized ZBCP that is robust against small
variations of parameters such as the Zeeman field, the
chemical potential, and external gate potentials provides
strong indication that the peak is probably not generated
by merging ABSs partially localized outside the proxim-
itized segment of the wire, i.e. scenarios (a) and (b) in
Fig. 14. The results that support this conclusion are
shown in Fig. 15. Each panel in Fig. 15 shows the
(low-energy) differential conductance at T = 0 for three
different values of the Zeeman field marked “1”, “2”, and
“3” in the corresponding panel of Fig. 14. Generally, the
largest value of the ZBCP obtains for Zeeman fields cor-
responding to the first zero-energy crossing, V ∗Z , marked
“1” in Fig. 14. In this case, the maximum height ex-
ceeds 2e2/h. However, for the fully covered dot (bottom
panel) the excess conductance consists of a very narrow
secondary peak that would be practically unobservable
at finite temperature. In fact, we find that in the case
of a fully covered dot, at low-temperature, the conduc-
tance peak height is practically quantized in both the
trivial regime (field cuts “1” and “2”) and the topological
regime (field cut “3”), regardless of whether the ZBCP is
split or not. By contrast, for the uncovered and the half-
covered dots (top and middle panels, respectively) the
peak height can have any value between 0 and 4e2/h in
the trivial regime and becomes quantized in topological
regime. Of course, a quantized ZBCP can be obtained
even in the trivial regime at certain specific values of the
Zeeman field, but its quantization is not robust against
small variations of the control parameters (e.g., Zeeman
splitting, chemical potential, SC gap).

A key requirement for the realization of topolog-
ical superconductivity and Majorana zero modes in
semiconductor-superconductor hybrid structures is that
the applied magnetic field be perpendicular to the effec-
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FIG. 15. (color online). Differential conductance as function
of the bias voltage for a quantum dot not covered by the su-
perconductor (top panel), a half-covered dot (middle panel),
and a fully-covered quantum dot (bottom panel). Each panel
shows low-energy conductance peaks for three different values
of the Zeeman field marked “1”, “2”, and “3” in the corre-
sponding panel of Fig. 14.

tive Rashba spin-orbit (SO) field. More specifically, the
MZMs are robust against rotations of the applied field in
the plane perpendicular to the SO field, but become un-
stable as the angle between the applied and the SO fields
(which corresponds to π/2 − θ in the inset of Fig. 16)
is reduced. The natural question is whether the nearly-
zero ABS modes induced by a quantum dot (or other type
of inhomogeneity) show a similar behavior. We find that
the coalescing ABSs (and, more generally, the low-energy
spectrum) are insensitive to rotations of the applied field
in the plane perpendicular to the effective SO field (i.e.
the x-z plane in Fig. 16). This property is illustrated by
the spectrum shown in the top panel of Fig. 16 corre-
sponding to a field oriented along the z-axis. Note that
this spectrum is identical to Fig. 14 (b), which corre-
sponds to a field oriented along the x-axis. By contrast,
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FIG. 16. (color online). Dependence of the low-energy spec-
trum from Fig. 14 (b) on the orientation of the applied mag-
netic field. Top: Magnetic field oriented along the z axis (i.e.
perpendicular to the wire and the effective SO field, see inset).
The spectrum is identical to panel (b) from Fig. 14. Middle
and bottom: Rotating the field in the x-y plane destroys the
property of the ABSs to coalesce into stable nearly zero en-
ergy modes. In addition, the spectrum becomes gapless above
a certain (angle-dependent) value of the Zeeman splitting.

when the field is rotated in the x-y plane, the nearly-zero
ABS mode becomes unstable (see the middle and bot-
tom panels in 16). In addition, the spectrum becomes
gapless above a certain (angle-dependent) value of the
Zeeman splitting. We conclude that the coalescing ABSs
behave qualitatively similar to the MZMs with respect to
rotations of the field orientation. To further support this
conclusion, we calculate the low-energy spectra of the
wire-dot system in the Majorana regime for two different
orientations of the applied magnetic field. The results
are shown in Fig. 17. We note that rotating the field
in the x-z plane (i.e. the plane perpendicular to the SO
field) does not affect the spectrum. By contrast, rotating
the field in the x-y plane changes the low-energy features
in a manner similar to that discussed in the context of
coalescing ABSs.

Before concluding this section, we compare a hybrid
system having a (strongly coupled) quantum dot near one
end with an inhomogeneous system with a smooth effec-
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q=p/3
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FIG. 17. (color online). Dependence of the low-energy spec-
trum on the field orientation for a wire-dot system in the
Majorana regime. The model parameters are the same as in
Fig. 14 (b), except the chemical potential, which is set to
µ = −0.25∆ind. The top panel corresponds to a field ori-
ented along the wire (or any other direction in the x-z plane),
while the bottom panel corresponds to an angle θ = π/3 in
the x-y plane (see inset of Fig. 16). Note the similarity with
the bottom panel from Fig. 16.

tive potential as shown in Fig. 13 (c). In the language
of Ref. [36], this would correspond to a long-range inho-
mogeneity, in contrast to the quantum dots which can be
viewed as short-range inhomogeneities. The low-energy
spectrum of the non-homogeneous system is shown in
Fig. 18. At zero field, the energy of the ABS is lower
than the induced gap as a result of the nanowire be-
ing only partially covered (about 90%) by the parent
superconductor, as discussed above. Note the striking
absence of a minimum of the quasiparticle gap, which
would signal the topological quantum phase transition
in a homogeneous system. The merging ABSs form a
very robust nearly-zero mode, which, according the anal-
ysis in Ref. [36], consists of partially overlapping Majo-
rana bound states. The low-energy differential conduc-
tance corresponding to the nearly-zero mode in Fig. 18
is shown in Fig. 19 (as function of the Zeeman field for
three different values of the bias voltage) and Fig. 20
(as function of the bias voltage for three different Zee-
man fields marked “1”, “2”, and “3” in Fig. 18). The
low-bias differential conductance traces shown in Fig. 19
have values between 0 and (almost) 4e2/h. In particular,
the differential conductance exceeds 2e2/h in the vicin-
ity of the first zero-energy crossing, VZ ≈ 0.3 meV (see
Fig. 18). However, in practice it would be extremely
difficult to observe a ZBCP larger than 2e2/h at finite
temperature. This is due to the fact that the contribu-

1 2 3

FIG. 18. (color online). Low-energy spectrum as function
of the applied Zeeman field for a system with smooth non-
homogeneous effective potential [see Fig. 13, panel (c)]. The
length of the parent SC is the same as in the case of half-
covered quantum dot (i.e. a segment of the wire of about 125
nm is not covered). Note the robust (nearly) zero-mode and
the absence of a well defined minimum of the quasiparticle
gap corresponding to the crossover between the trivial and
the “topological” regimes.

tion exceeding the quantized value forms a very narrow
secondary peak (see Fig. 20, left panel), similar to the
completely covered dot shown in Fig. 15. We interpret
the double-peak structure of the ZBCP as resulting from
the partially-overlapping Majorana bound state (MBS)
that form the ABS. The broad peak is generated by the
MBS localized closer to the wire end (which is strongly
coupled to the metallic lead), while the narrow additional
peak is due to the MBS localized further away from the
end (which is weakly coupled to the lead). Finally, we
note that the low conductance values in Fig. 19 are due to
the splitting of the ZBCP. However, the maximum value
of the ZBCP is practically quantized at very low (but
finite) temperature, as evident from the results shown in
Fig. 20.

In summary, the results presented in this section lead
us to the following conclusions. First, semiconductor-
superconductor hybrid systems having strongly-coupled
quantum dots at the end of the wire, which can be viewed
as systems with short-range potential inhomogeneities,
generate ABSs that, quite generically, tend to merge at
zero energy with increasing Zeeman field, but still within
the topologically-trivial regime. Second, ABSs with en-
ergies at VZ = 0 significantly lower than the induced
gap and low values of the merging field V ∗Z are likely to
generate extremely robust topologically-trivial ZBCPs.
Third, measuring a quantized ( to 2e2/h) ZBCP does
not provide definitive evidence for Majorana zero modes
(although finding ZBCP quantization which is robust
over variations in many parameters, e.g., magnetic field,
chemical potential, tunnel barrier, carrier density, would
be very strong evidence for the existence of MZMsas em-
phasized already in this paper). However, trivial con-
ductance peaks generated by merging ABSs having wave
functions partially localized outside the superconducting
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FIG. 19. (color online). Dependence of the low-energy dif-
ferential conductance on the Zeeman splitting for the non-
homogeneous wire with the spectrum shown in Fig. 18. The
black, orange (light gray), and red (gray) lines correspond to
a bias voltage Vbias = 0.05, 0.15, and 0.75 µV, respectively.

region are generally expected to produce ZBCPs with
heights between 0 and 4e2/h. In this regime, an acci-
dental quantized peak will not be robust against small
variations of the control parameters. By contrast, if the
wave function is entirely inside the proximitized region,
the ZBCP is (practically) quantized and cannot be dis-
tinguished from a MZM-induced conduction peak by a
local tunneling measurement. In this case, a minimal
requirement for the Majorana scenario is to be able to
reproduce the (robust) ZBCP by performing a tunneling
measurement at the opposite end of the wire, in the spirit
of Ref. [50]. Finally, our fourth conclusion is that very
similar phenomenologies can be generated using rather
different effective potentials(i.e., the effective ’quantum
dot’ leading to the ABS could arise from many differ-
ent physical origins and could lie inside or outside the
nanowire). A better understanding of the profile of the
effective potential along the wire (which can be obtained,
for example, by performing detailed Poisson-Schrodinger
calculations) represents a critical task in this field.

VII. UNDERSTANDING NEAR-ZERO-ENERGY
ANDREEV BOUND STATES FROM
REFLECTION MATRIX THEORY

The absence of level repulsion in symmetry class D en-
hances the likelihood of a pair of levels sticking together
at zero energy as some parameter such as the Zeeman
splitting or the chemical potential is varied as discussed
throughout this manuscript. Despite this generic fact as-
sociated with symmetry class D that describes systems
containing Zeeman splitting, spin-orbit coupling and su-
perconductivity, the range of Zeeman splitting over which
the spectrum sticks is not guaranteed to be large. In fact,
the range of Zeeman field is typically not large for most
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FIG. 20. (color online). Zero temperature differential conduc-
tance as function of the bias voltage for three different values
of the Zeeman field marked “1”, “2”, and “3” in Fig. 18.

disordered Hamiltonian [29]. In the experiment [20] and
in our simulations (with quantum dots, but no disorder),
however, the zero-sticking propensity of trivial ABSs ex-
tends over a large range of Zeeman splitting (VZ).

A more specific mechanism that provides a relatively
robust (compared to the usual disordered class D) near-
zero-energy states within symmetry class D involves the
so-called smooth confinement [34, 36]. The essential idea
is that large Zeeman splitting (VZ) compared to SC pair-
ing (∆) suppresses conventional s-wave pairing compared
to p-wave pairing leading to a tendency for the formation
of Majorana states at the end of the system for each spin-
polarized channel in the nanowire. However, the end po-
tential typically scatters between the different channels
and gaps the Majorana fermions out, i.e., an MZM split-
ting develops. If the inter-channel scattering between
different channels is weak then this Majorana splitting
is small and there is a near-zero-energy state in such a
potential. This near-zero-energy mode is, however, non-
topological as it is arising from split Majorana modes at
the wire end. Thus, the ABS producing the ZBCP is a
composite of two MZMs, only one of which contributes
to tunneling, leading to a robust almost-zero mode in the
trivial regime.

In subsection VII A, we will first show the energy spec-
tra for the quantum dot-proximitized nanowire hybrid
structure using various parameters (e.g., chemical poten-
tial µ, nanowire length L, dot length l, etc.) in order
to show the trend of zero-energy sticking in the parame-
ter regime. Second in subsection VII B, we use reflection
matrix theory to explain why such zero-sticking bound
states exist in the relevant parameter regime.
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FIG. 21. (color online). Energy spectra for hybrid structures
with various parameters. (a): µ = 4.5 meV, nanowire length
L = 1.0 µm, dot length l = 0.3 µm. (b): µ = 12.0 meV,
L = 1.0 µm, l = 0.3 µm. (c): µ = 12.0 meV, L = 4.0 µm,
l = 0.3 µm. (d): µ = 12.0 meV, L = 4.0 µm, l = 1.0 µm.

A. Energy spectra for hybrid structures with
various parameters

We show the energy spectra for various hybrid struc-
tures in Fig. 21. The few relevant parameters we fo-
cus on and thus vary between panels are chemical poten-
tial µ, length of the nanowire L, length of the quantum
dot l, while all other parameters, e.g. pairing potential
∆0 = 0.9 meV and etc., are kept the same as the default
values introduced in the previous sections. Fig. 21(a)
shows the energy spectrum of a typical hybrid structure
discussed in the previous sections, with the parameters
conforming to the known values in the realistic experi-
mental setup. There is a finite range of Zeeman splitting
over which the energy of the topologically trivial ABSs
stick around zero. Through Fig. 21(b) to (d), we step
by step increase the chemical potential µ, the length of
the semiconductor-superconductor nanowire L, and the
length of the quantum dot l. Finally with all the three
parameters µ,L, l large in Fig. 21(d), the energy of the
trivial ABS is even closer to zero energy, and even more
strikingly, the range of Zeeman splitting for such near-
zero-energy ABSs becomes extremely large, starting from
a few times the pairing potential up to the chemical po-
tential. The trend of decreasing ABS energy and increas-
ing range of zero-energy sticking shown by Fig. 21(a) to
(d) indicates that Fig. 21(a) and Fig. 21(d) are essentially
adiabatically connected. In the following subsection, we
will discuss why there exist such near-zero-energy ABSs
over such a large range of Zeeman field in large µ,L, l
limit using reflection matrix theory. Since realistic situa-
tion is adiabatically connected to this large µ,L, l limit,
our understanding will also apply to most of the hybrid

structures discussed in previous sections. Note that this
discussion also explains why the zero-sticking of ABSs
mostly arises in the large chemical potential regime.

B. Understanding zero-energy sticking from
reflection matrix theory

In the previous subsection, numerical simulations show
strong evidence that the energy of the ABSs approaches
zero energy and the range of such near-zero-energy stick-
ing increases with increasing chemical potential, increas-
ing nanowire length, and increasing quantum dot length.
Thus, here we try to understand this phenomenon us-
ing reflection matrix theory. The setup is shown in
Fig. 22. Although the NS junction setup is exactly the
same as that shown in Fig. 1, an imaginary piece of semi-
conductor is added between the quantum dot and the
semiconductor-superconductor nanowire for the discus-
sion of the reflection matrix theory. This imaginary semi-
conductor can also be regarded as a part of the quantum
dot but with nearly homogeneous potential. The total
reflection matrix from the hybrid structure is

r = rb + t′ (rSC + rSCrQDrSC + ...) t

= rb + t′ (1− rSCrQD)
−1
rSCt, (16)

where rb is the reflection matrix for the incoming modes
in the lead reflected by the barrier, t is the transmission
matrix for the lead modes transmitting to the semicon-
ductor, rSC is the reflection matrix for the semiconductor
modes reflected by the proximitized nanowire, rQD is the
reflection matrix for the semiconductor modes reflected
by the quantum dot, and t′ is the is the transmission
matrix for the semiconductor modes transmitted to the
lead. The near-zero-energy differential conductance is

G =
e2

h
Tr
(

1̂− r†eeree + r†herhe
)

=
2e2

h
Tr
(
r†herhe

)
,

(17)

where rhe is the Andreev reflection matrix from the hy-
brid structure. The last step holds due to the unitarity
of the total reflection matrix when bias voltage is below
the superconducting gap. The Andreev reflection is con-
tained in the second term of Eq. (16), and the pole of

(1− rSCrQD)
−1

corresponds to the peak of the differen-
tial conductance. On the other hand, the pole of the
reflection matrix is also the condition for the formation
of a bound state, i.e., a bound state forms when

Det (1− rSCrQD) = 0 (18)

is satisfied.

In the large Zeeman field limit, i.e., VZ � ∆, αR, the
spin-orbit-coupled nanowire can be thought of as two
spin-polarized bands with a large difference in chemical
potential and Fermi momenta. When considering the
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FIG. 22. (color online). A schematic for the NS junc-
tion setup. Although the setup is exactly the same as
that shown in Fig. 1, an imaginary piece of semiconductor
is added between the quantum dot and the semiconductor-
superconductor nanowire for the discussion of reflection ma-
trix theory.

scattering process between the effectively spin-polarized
semiconductor and the semi-infinite superconductor, the
momentum must be conserved in the limit of Andreev
approximation ∆ � µ. The constraint of momentum
conservation prohibits the normal reflection between ei-
ther the same or the other spinful channel due to the
large difference in Fermi momenta between two channels.
Thus the scattering process between semiconductor and
the superconductor can be thought of as effectively two
independent perfect Andreev reflection processes among
each spin-polarized channel. So the reflection matrix for
each channel can be written as

rSC =

(
0 eiα

e−iα 0

)
. (19)

For the scattering process between the semiconductor
and the quantum dot, when the dot potential is smooth,
the normal reflection only connects the Fermi level within
the same spinful channel, and thus again the two spin-
polarized bands of the semiconductor can be thought of
as independent of each other. So the reflection matrix
for each band can be written as

rQD =

(
eiβ 0
0 e−iβ

)
. (20)

The numerical evidence for the form of rSC and rQD
are shown in Fig. 23, which is consistent with our ar-
gument in the large Zeeman field and Andreev approx-
imation limit. It is easy to see that such zero-bias re-
flection matrices satisfy the condition for the formation
of a bound state, i.e., Eq. (18). It indicates that in the
large Zeeman field and Andreev approximation limit, the
semiconductor-superconductor nanowire can be seen as
consisting of two nearly spin-polarized p-wave supercon-
ductors, and each of them holds a MZM at the wire end.
Since the interchannel coupling between the two p-wave
superconductors is weak in the presence of a smooth dot
potential at the wire end, the two MZMs from two chan-
nels do not gap out each other, they form a near-zero-
energy ABS.

Although the above discussion assumes large chemical
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FIG. 23. (color online). Matrix elements for the reflection
matrices from the semiconductor-superconductor nanowire
and the quantum dot, with chemical potential µ = 12 meV,
VZ = 8 meV. The upper panels are the Andreev reflection
between each spinful channel with in index 0 and 1 (i.e., the
|eiα| in Eq. (19)) as a function of nanowire length. In the long
nanowire limit, the Andreev reflection becomes perfect. The
lower panels are the normal reflection between each spinful
channel (i.e., the |eiβ | in Eq. (20)) as a function of dot length.

potential, long semiconductor-superconductor nanowire,
and long quantum dot, the conclusion well applies to the
realistic situation with intermediate value of chemical po-
tential, finite length of the nanowire and quantum dot,
since these two situations are adiabatically connected
with each other. This conclusion is explicitly verified by
the extensive numerical results presented in this work.

VIII. CONCLUSION

We have developed a non-interacting theory for
the low-lying energy spectra and the associated tun-
neling transport properties of quantum dot-nanowire-
superconductor hybrid structures focusing on quantum
dots strongly coupled to the proximitized wire. The the-
ory is motivated by a striking recent experiment [20] re-
porting intriguing coalescence of Andreev bound states
into zero-energy states characterized by zero-bias con-
ductance peaks that mimic the predicted Majorana zero
mode behavior. The specific question we address in
our work is whether the midgap coalescence of Andreev
bound states and their sticking together propensity at
zero energy necessarily imply a metamorphosis of An-
dreev states into topological Majorana modes in the pres-
ence of spin-orbit coupling and Zeeman splitting. The
topological Majorana bound states are operationally de-
fined as the pairs of well-separated Majorana zero modes
localized at the opposite ends of the wire, while the An-
dreev bound states, which can be viewed as pairs of over-
lapping (or partially overlapping) Majorana zero modes,
are localized near one end of the hybrid system. Our
numerical simulations produce essentially exact qualita-
tive agreement with the data of Ref. [20], reproducing
the observed features of the Andreev states as functions
of Zeeman splitting and chemical potential, although a
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quantitative comparison (and hence, a definitive conclu-
sion) is impossible because the experimental parameters
to be used in the theory are mostly unknown.

Our conclusion is that in strongly-coupled dot-
nanowire hybrid structures (and in the presence of su-
perconductivity, Zeeman splitting, and spin-orbit cou-
pling) Andreev states generically coalesce around zero
energy producing zero-bias tunneling conductance values
that mimic Majorana properties, although the physics is
non-topological. In fact, the transport properties of such
“accidental” almost zero-energy trivial Andreev states in
class D systems are (locally) difficult to distinguish from
the conductance behavior of topological Majorana zero
modes. We show that this zero-energy-sticking behavior
of trivial Andreev bound states (superficially mimicking
topological Majorana behavior) persists all the way from
an isolated (i.e. non-superconducting) quantum dot at
the end of the nanowire to a quantum dot completely
immersed inside the nanowire (i.e. superconducting) as
long as finite Zeeman splitting and spin-orbit coupling
are present. Our theory thus connects the recent obser-
vations of Deng et al. [20] to the earlier observations of
Lee et al. [32], who studied Andreev bound states in a
superconducting dot (not attached to a long nanowire),
establishing that the physics in these two situations inter-
polates smoothly. In both theses cases zero-bias conduc-
tance peaks may arise from trivial Andreev bound states
in the presence of superconductivity, spin-orbit coupling,
and Zeeman splitting. Of course, in a small quantum dot,
the concept of MZMs does not apply because of strong
overlap between the two ends whereas in the Deng et al.
experiment (i.e. in a dot-nanowire hybrid system) the
ZBCP may arise from either trivial ABS or topological
MZM. We establish, however, that in both cases the ABS
can be thought of as overlapping MZMs, and hence the
generic zero-sticking property of the ABS arises from the
combination of spin-orbit coupling, spin splitting, and
superconductivity. An immediate (and distressing) con-
clusion of our work is that the observation of a zero-
bias conductance peak (even if the conductance value is
close to the expected 2e2/h quantization) cannot by it-
self be construed as evidence supporting the existence
of topological Majorana zero modes. In particular, both
trivial Andreev bound states and topological Majorana
bound states may give rise to zero-bias peaks, and there
is no simple way of distinguishing them just by looking at
the tunneling spectra. Since the possibility that a given
experimental nanowire may contain inside it some kind
of accidental quantum dot can never be ruled out, the
tunneling conductance exhibiting zero-bias peaks in any
nanowire may simply be the result of the existence of
almost-zero-energy Andreev bound states in the system.
Our work shows this generic trivial situation to be a com-
pelling scenario, bringing into question whether any of
the observed zero-bias conductance peaks in various ex-
periments by themselves can be taken as strong evidence
in favor of the existence of Majorana zero modes since
the possibility that these ZBCPs arising from accidental

trivial ABSs cannot a priori be ruled out. Consequently,
a zero-bias conductance peak obtained by tunneling from
one end of the wire cannot be accepted as a compelling
topological Majorana signature (even when the height of
the peak is quantized at 2e2/h), since a likely alternative
scenario is that the zero-bias peak is, in fact, a signa-
ture of a trivial Andreev bound state associated with
a strongly coupled quantum dot or other type of inho-
mogeneity (unintentionally) present in the system. One
must carry out careful additional consistency checks on
the observed ZBCPs in order to carefully distinguish be-
tween ABS and MZM.

Therefore, to be more decisive, transport experiments
must demonstrate the robustness of the quantization to
all possible variations in the barrier. One possibility is
to study avoided crossings between levels in the quantum
dot and a potential Majorana state [40, 41] that essen-
tially eliminate the quantum dot. This can be done for
example by extending the normal region in the semicon-
ductor wire in between the metallic and superconducting
lead shown in Fig. 1. By such an extension, one can
enhance gate control so as to be able to create a single-
channel quantum point contact. The quantization of the
conductance (at low enough temperature compared to
the transmission of the point contact) is still a topological
invariant [55]. In addition, one should always check (by
using suitable externally controlled gate potentials) the
stability of any observed ZBCP to variations in the tun-
nel barrier as well as the electrostatic environment near
the wire ends (as in Sec. V). This test is absolutely essen-
tial in our opinion since the ABS-induced trivial ZBCP
should manifest splitting as the dot potential is tuned
strongly. Despite these checks, it is still likely that trans-
port measurements will need to include additional con-
sistency tests to confirm the nonlocal nature of the Ma-
jorana modes (e.g, observing the ZBCPs from both ends
of the wire, measuring nonlocal correlations) and their
robustness (e.g., robustness of the ZBCP quantization
against variations of the barrier height, Zeeman splitting,
chemical potential, and other variables). Any type of hy-
brid structure that is not capable of passing these rel-
atively straightforward tests of ZBCP robustness would
not be suitable for more complex experiments involving
interferometry, fusion, or braiding. In short, a ZBCP is
only a necessary condition for an MZM, and could easily
arise also for non-topological zero-energy ABSs in class
D systems.

The obvious consistency test is of course the robustness
of the ZBCP to variations in all controllable experimen-
tal parameters. The topological MZM-induced ZBCP
should show stable robustness whereas the ABS-induced
ZBCP will not. In particular, we discuss in Sec. V that
varying the dot potential will lead to splitting or possi-
bly even disappearance of the trivial ABS-induced ZBCP,
but the MZM-induced ZBCP should be relatively stable.
This, in principle, enables a unique distinction between
the two cases, but in reality this may not be as simple.
Since the “quantum dot” is often not obvious, it is not
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clear how to vary its potential. Perhaps the most obvious
check is to use additional gates with varying gate volt-
age to ensure a complete stability of the observed ZBCP.
Another possible test is rotating the magnetic field, but
here both trivial and topological MZMs go away as the
field is rotated toward the spin-orbit direction in the wire
(and is unaffected by any rotation in the plane perpen-
dicular to the spin-orbit direction). Although there are
quantitative differences between the two cases, it may
not be easy to be definitive. Seeing correlations in the
ZBCP while tunneling from the two ends of the wire sep-
arately may be quite definitive since it is unlikely that the
same ABS can be operational at both ends of the wire
(as it requires identical quantum dot confinements at the
two ends), but this kind of correlated tunneling measure-
ments from both wire ends have not yet been successfully
performed in the laboratory.

We find that generically the ABS-induced ZBCPs re-
quire high values of chemical potential, µ > ∆, and for
µ� ∆, the trivial zero-sticking region could extend over
a very large Zeeman field range from VZ = ∆ to µ,
with the eventual topological phase emerging at a still

higher field
√

∆2 + µ2. But, some non-universal beating
or apparent oscillation of the ZBCP around zero energy
is likely since the ABSs do not stick precisely to zero en-
ergy as there is no exponential protection here unlike the
corresponding MZM case in the long-wire limit. On the
other hand, the MZM-induced ZBCPs also manifest an
apparent beating around zero energy due to MZM split-
ting oscillations arising from Majorana overlap invariably
present in any finite wire. (We note that the exponen-
tially small MZM splitting can only happen in very long
wires since at high magnetic field the induced gap is small
making the SC coherence length very large.) The ques-
tion, therefore, arises if the oscillatory behaviors of the
two situations (the ABS beating around zero energy in
the trivial phase because of the zero-sticking in D class
SC versus the MZM oscillating around zero energy in
the topological phase due to the Majorana overlap from
the two ends) can somehow be used to distinguish triv-
ial and topological zeros. This question was addressed
in a related, but somewhat different, context by Chiu
et al. [37] in trying to understand the experiment of Al-
brecht et al. [17]. In fact, Chiu et al. showed [37] that the
data of Albrecht et al. claiming exponential Majorana
protection [17] can be understood entirely by invoking
ABS physics, consistent with our findings in the current
work. We show in Appendix F our calculated low-lying
energy spectra for both trivial ABS and topological MZM
approximate zero-modes in simple nanowire and hybrid
(i.e. nanowire + dot) structures respectively, keeping
all the other parameters very similar. It is clear that
the oscillatory or beating structures in the two cases are
superficially similar except that the ABS oscillations are
non-universal whereas the MZM oscillations always man-
ifest increasing amplitude with increasing VZ by virtue
of the decreasing induced gap with increasing VZ .

We mention that although we have used the termi-

nology ‘class D’ to describe the system and the physics
studied in the current work, the standard terminology for
class D systems [29–31, 52, 53] specifically invokes disor-
der and discusses random or chaotic systems whereas we
are discussing clean systems with no disorder. We only
mean the simultaneous presence of spin-orbit coupling,
Zeeman splitting, and superconductivity when we men-
tion ‘class D’ , and as such our ABS-induced ZBCP is
fundamentally distinct from those discussed in Refs. [29–
31, 53].

Before concluding, we point out that, although
Ref. [20] contains some of the most compelling experi-
mental evidence for the existence of stable almost-zero-
energy Andreev bound states in quantum dot-nanowire
hybrid structures, there have been several earlier exper-
iments hinting at the underlying Andreev physics dis-
cussed in our work. The foremost in this group is, of
course, the experiment by Lee et al. [32] who studied zero-
bias peaks induced by Andreev bound states in quan-
tum dots in the presence of spin-orbit coupling, Zeeman
splitting, and superconductivity. But a re-evaluation of
the experimental data in the InAs-Al system by Das et
al. [13], where the nanowires were typically very short
(i.e., almost dot-like), indicates that the zero-bias peak
in this experiment is most likely a precursor of the Deng
et al. experiment with Andreev bound states coming
together and coalescing around midgap with increasing
Zeeman splitting. Of course, in a very short nanowire
the midgap state is an operational Andreev bound state
by construction, since the condition of “well separated”
Majorana bound states cannot be satisfied due to the
short wire length. By contrast, in long wires with quan-
tum dots (engineered or unintentional) and other types
of inhomogeneities, the emergence of topological Majo-
rana modes is possible (and may very well have hap-
pened for some of the ZBCPs observed in Ref. [20]),
but the observation of a robust zero-bias peak does not
guarantee their presence (since trivial coalescing Andreev
bound states are a likely alternative). Recent theoreti-
cal work by Chiu et al. [37] provides support to the idea
that the experimental observation of Coulomb blockaded
zero-bias peaks by Albrecht et al. [17] in a quantum dot-
nanowire hybrid structure most likely arises from the
presence of Andreev bound states in the system(in com-
bination with MZMs). Finally, very recent unpublished
work from Delft and Copenhagen [56, 57] hint at the
possibility that zero-bias conductance peaks manifesting
conductance values 2e2/h may have now been observed
in nanowire systems. The peaks could be Majorana-
induced, but (trivial) Andreev bound states generated
by unintentional quantum dots present in these struc-
tures represent a likely alternative scenario that a pri-
ori cannot be ruled out without a systematic study of
the barrier dependence as discussed in the last para-
graph. To understand these brand new experiments in
high-quality epitaxial semiconductor-superconductor hy-
brid structures, more work is necessary involving both
experiment (i.e., performing the consistency tests) and
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theory (e.g., modeling the effective potential profiles). In
particular, robustness of the ZBCP to variations in pa-
rameters (e.g., magnetic field, chemical potential, tunnel
barrier, dot confinement) is essential before MZM claims
can be taken seriously even when the ZBCP is quantized
at 2e2/h.

The key message of our work is that Andreev bound
states could coalesce in the trivial superconducting
regime of nanowires producing surprisingly stable almost-
zero-energy modes mimicking Majorana zero mode be-
havior even in completely clean disorder-free systems,
thus making it difficult to differentiate between Andreev
bound states and Majorana zero modes in some situa-
tions. Thus the existence of a zero-bias conductance peak
is at best a necessary condition for the existence of Ma-
jorana zero modes.
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Appendix A: Conductance of two-subband simple
nanowire model

For a quasi-one-dimensional nanowire with small cross
section, a second subband may appear. We model the
second band using the same Hamiltonian as Eq. (1) but
with a higher chemical potential µ′ = 5 meV such that
the second band is always non-topological within the
range of Zeeman field of our interest. The total con-
ductance through this two-subband model is approxi-
mately the sum of the individual conductance through
each band. The differential conductance for two such
nanowires are shown in Fig. 24. The most significant
features are the kF peaks from the second band, in ad-
dition to all the other features already existing in the
one-band model. In Fig. 24(a), the proximity supercon-
ducting effect is introduced by a constant s-wave pairing
∆0τx. In Fig. 24(b), proximity effect is introduced by
a self-energy term in Eq. (4) with a Zeeman-dependent
bulk gap ∆(VZ) as in Eq. (6). Thus the crucial differ-
ence between the two cases is that in Fig. 24(b), there
is an edge of quasi-particle continuum above which con-
ductance becomes smeared and featureless.

Appendix B: Conductance of hybrid structure with
constant s-wave pairing

The differential conductance for one-band and two-
band hybrid structures with constant s-wave pairing are
shown in Fig. 25. In Fig. 25(a), low-energy (small-bias)

V
(m

V
)

VZ (meV ) VZ (meV )

FIG. 24. (color online). Differential conductance through
simple two-subband Majorana nanowires with chemical po-
tential µ = 0 meV, µ′ = 5.0 meV, and length L = 1.3 µm.
(a): the proximity superconducting effect is introduced by a
constant s-wave pairing ∆0τx. (b): the proximity effect is
introduced by a self-energy term in Eq. (4) with a Zeeman-
dependent bulk gap ∆(VZ) as in Eq. (6).

behavior of conductance is quite similar to the case with
self-energy in the main text shown in Fig. 4(a), while
high-energy (large-bias) behavior of conductance is quite
different because there is no quasiparticle continuum in
this case, leading to clear patterns in conductance. For
two-band model with a second band with larger chem-
ical potential µ′ = 10 meV, the total conductance is
approximated as the sum of the conductance of each
band separately. The differential conductance is shown
as Fig. 25(b). In addition to almost the same behavior
as the one-band model, a significant new feature is that
the conductance from the lowest few eigenstates from the
second band is much larger and broader than the first
band. This is because a higher chemical potential is ef-
fectively lowering the tunneling barrier, thus enhancing
conductance.
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FIG. 25. (color online). Differential conductance for hybrid
structures with constant s-wave pairing. (a): one-band model
with µ = 0 meV. (b): Two-band model with a second band
of larger chemical potential µ′ = 10 meV.

Appendix C: Energy spectra with and without spin
splitting and spin-orbit coupling

Here we show the calculated energy spectra of hybrid
structures with and without Zeeman spin splitting and
spin-orbit coupling in Fig. 26 and 27. As shown in the
lower panels of Fig. 26, spectra have no zero-energy states
when the Zeeman splitting is turned off. On the other
hand, as shown in the lower panels of Fig. 27, the low-
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energy spectra without spin-orbit coupling are composed
of straight lines. In these cases the energy spectra have a
simple analytic form E = VZ ±

√
ε2 + ∆2, where ε is the

eigen-energy of nanowire without Zeeman splitting and
spin-orbit coupling, and the energy scales linearly with
Zeeman field. It is clear that superconductivity along
with both Zeeman splitting and spin-orbit coupling are
necessary for obtaining low energy Andreev bound states
sticking to the midgap.

Appendix D: Expansion of projected self-energy
term in quantum dot subspace

We can constrain the form of the projected self-energy
F (ω) making use of the particle-hole symmetry in the
nanowire:

P−1HNWP = −HNW , (D1)

where P = σy ⊗ τyK. Thus for any eigenstate |ψa〉 with
eigenenergy E, there must be another state |ψā〉 = P |ψa〉
with eigenenergy −E. So applying particle-hole symme-
try onto the projected self-energy F (ω) in the quantum
dot subspace, we have

Fab(ω) = 〈ψa|u
1

ω −HNW
u†|ψb〉

= 〈ψa|P−1Pu
1

ω −HNW
u†P−1P |ψb〉

= 〈ψā|u
1

ω +HNW
u†|ψb̄〉

= −Fāb̄(−ω). (D2)

If we expand the 2× 2 matrix of F (ω) by Pauli matrices

F (ω) = f0(ω)γ0 + fx(ω)γx + fz(ω)γz, (D3)

and it is easy to see that f0,x are odd functions of ω,
while fz is an even function of ω based on Eq. (D2). The
absence of γy is due to the fact that the Hamiltonian
HNW is accidentally real.

Appendix E: Spectra of ABSs and their
wave-functions

We show spectra of hybrid structures with unproxim-
itized quantum dot (dot length l ' 0.3 µm ) as a func-
tion of the dot depth VD and the corresponding wave-
functions of these ABSs in Fig. 28. The upper panels are
spectra, for which we focus on the spectra of ABSs within
the induced SC gap. The trend is that at low chemical
potential (upper left panels), the spectra of ABSs are
quite sensitive to the depth of quantum dot, while at
high chemical potential (upper right panels), the spec-
tra of ABSs are insensitive to the depth of quantum dot.
This can be understood by looking at the corresponding

wave-functions, as shown in the lower panels. When the
chemical potential is small, the wave-function (lower left
panels) is quite localized inside the quantum dot, and
therefore the ABS is easily affected by the dot depth.
When the chemical potential is large, the wave-function
becomes more extended, leaking well into the nanowire
(lower right panels) due to a larger Fermi wave-vector.
Thus a variation of dot depth affects only a fraction of
the wave-function, leading to a minor change in the spec-
tra.

Appendix F: Majorana oscillations and ABS
oscillations

We show here in Fig. 29 the calculated results for
topological MZM and trivial ABS oscillations in simple
nanowire and nanowire + dot hybrid systems for two
different wire lengths. In both cases, TQPT point is at
VZc = 0.9 meV for µ = 0 and at VZc ' 4.1 meV for
µ = 4.0 meV. For hybrid structures with large chemical
potential (Figs. 29(d) and (f)) we see beating or oscilla-
tion patterns in the non-topological regime arising from
Andreev bound states (e.g., VZ < µ). But these pat-
terns are non-universal while the amplitude of Majorana
oscillations (Figs. 29(a)-(d)) has a universal trend of in-
creasing with increasing VZ . All parameters in the two
systems (nanowire and hybrid) are the same except for
the presence of a quantum dot outside the nanowire in
the hybrid structure.
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FIG. 26. (color online). Energy spectra of hybrid structures with and without Zeeman spin splitting. The four panels in
the upper row (a)-(d) show energy spectra as function of chemical potential at finite Zeeman spin splitting VZ = 1.5 meV.
The spectra generically cross zero energy. The four panels in the lower row (e)-(h) show energy spectra without Zeeman spin
splitting, i.e., VZ = 0. The spectra have no zero energy states.
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FIG. 27. (color online). Energy spectra of hybrid structures with and without spin-orbit coupling. The four panels in the
upper row (a)-(d) show energy spectra as function of Zeeman field with SOC αR = 0.5 eVÅ. Chemical potential is µ = 3 meV
except that in (d) and (h) µ = 5 meV. The four panels in the lower row (e)-(h) show energy spectra without SOC, i.e., αR = 0.
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FIG. 28. (color online). Spectra of hybrid structures with unproximitized quantum dot (dot length l ' 0.3 µm ) as a function
of the dot depth VD and the corresponding wave-functions of these ABSs. The upper panels are the spectra of increasing
chemical potential (from left to right). The lower panels are the corresponding wave-functions.
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FIG. 29. (color online). Comparison of the energy spectra in simple nanowire and hybrid structure: the left four panels (a), (b),
(e), (f) are energy spectra for simple nanowires and the right panels (c), (d), (g), (h) are energy spectra for hybrid structures

with a quantum dot outside the SC nanowire. In all cases, topological MZM-induced ZBCPs form when VZ >
√

∆2 + µ2, with
µ = 0 for (a), (c), (e), (g), while µ = 4 meV for (b), (d), (f), (h). Upper panels (a)-(d) have shorter nanowire length L = 1 µm,
so we can see apparent Majorana oscillations due to Majorana overlap in contrast with lower panels (e)-(h) with longer wires
L = 4 µm and thus less Majorana overlap. For hybrid structures with large chemical potential (d), (f) we also see beating
or oscillation patterns in the non-topological regime arising from Andreev bound states (e.g., VZ < µ). But these patterns
are non-universal while the amplitude of Majorana oscillations has a universal trend of increasing with increasing VZ(a)-(d).
All parameters in the two systems (nanowire and hybrid) are the same except for the presence of a quantum dot outside the
nanowire in the hybrid structure.
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