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Electron-hole (e-h) compensation is a hallmark of multi-band semimetals with extremely large 

magnetoresistance (XMR) and has been considered to be the basis for XMR. Recent 

spectroscopic experiments, however, reveal that YSb with non-saturating magnetoresistance is 

uncompensated, questioning the e-h compensation scenario for XMR. Here we demonstrate with 

magnetoresistivity and angle dependent Shubnikov – de Haas (SdH) quantum oscillation 

measurements that YSb does have nearly perfect e-h compensation, with a density ratio of ~0.95 

for electrons and holes. The density and mobility anisotropy of the charge carriers revealed in the 

SdH experiments allow us to quantitatively describe the magnetoresistance with an anisotropic 

multi-band model that includes contributions from all Fermi pockets. We elucidate the role of 

compensated multi-bands in the occurrence of XMR by demonstrating the evolution of 

calculated magnetoresistances for a single band and for various combinations of electron and 

hole Fermi pockets.  
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The discovery of non-saturating and extremely large magnetoresistance (XMR) in the semimetal 

WTe2 in 2014 [1] triggered extensive research to uncover the origin of XMR, which has also 

been observed in many nonmagnetic materials such as bismuth [2,3], graphite [3], doped InSb 

[4], PtSn4 [5], PdCoO2 [6], NbSb2 [7], and also in topological semimetals [8-18]. Besides exotic 

mechanisms such as topological protection [8,19,20] and magnetic-field induced metal-insulator 

transition (MIT) [19-23], XMR is also considered to originate from electron-hole (e-h) 

compensation [11, 24-28], as suggested by Ali et al. [1]. An isotropic semiclassical two-band 

model [1] with perfect e-h compensation (i.e., ݊௘ ൌ  ݊௛)  leads to  ܴܯ ൌ ܴܯ ଶ, whereܪ௛ߤ௘ߤ ൌ ሺߩ െ  ଴ are the resistivities in the presence and absence of a magneticߩ and ߩ ଴ andߩ/଴ሻߩ

field H, respectively, and ݊௘, ,௘ and ݊௛ߤ  ௛ are the densities and mobilites of the electrons andߤ

holes, respectively. The quadratic magnetic-field dependence provides a straightforward 

explanation of the non-saturation behavior of the magnetoresistance, with large values of ߤ௘ and ߤ௛, ensuring XMR. Since a perfect (or nearly perfect) e-h compensation is often found in 

multi-band semimetals with XMR [28-31], it has become the prevalent explanation for the 

observed non-saturating XMR [11,24-31].  

Lately, XMR was observed in the rare-earth monopnictides LnX (Ln = La/Y/Nd/Ce and X = 

Sb/Bi) [19,24-28,30-36]. Similar to other multi-band XMR materials, a nearly perfect e-h 

compensation was found in LaSb and LaBi and proposed as one of the origins for their XMR 

behavior [24-28,30]. However, recent angle-resolved photoemission spectroscopy (ARPES) 

measurements on YSb crystals [32], revealed a ratio of 0.81 for the electron/hole concentration. 

In the semiclassical two-band model, such an imbalance in charge carrier densities will result in 

a saturating MR behavior at intermediate magnetic fields, unless a large difference in the e-h 

mobility ሺߤ௘/ߤ௛  > 250) is invoked to account for the observed XMR [32]. Since YSb is 
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topologically trivial [32] and the MIT mechanism can also be excluded [33-34], the ARPES 

finding indicated a new origin for the observed XMR. 

Here we report on magnetoresistivity measurements to uncover the origin of the non-saturating 

XMR in YSb. We measured angle dependent Shubnikov – de Haas (SdH) oscillation to 

determine the shape and volume of the Fermi surface. Like in ARPES, our measurement shows 

anisotropic electron pockets and nearly isotropic hole pockets. However, in contrast to the 

ARPES result, our quantum oscillations data suggests a nearly compensated e-h ratio (ne/nh ≈ 

0.95) in YSb. More importantly, we show that a semiclassical theory can quantitatively describe 

both the transverse MR and Hall resistance when contributions from both the anisotropic 

(electron) and isotropic (hole) Fermi pockets are included.  

We measured two YSb crystals grown in Sb self flux, with more synthesis and characterization 

details given in Ref.25. The dimensions of the crystals are 473.6 μm (w) × 85 μm (d) × 493.5 μm 

(l) and 950 μm (w) × 180 μm (d) × 982.5 μm (l) for samples I and II, respectively, with d and w 

being the thickness and width of the crystal and l the separation between the two voltage contacts 

for transverse magnetoresistivity measurements. DC resistivity experiments [37,38] were 

conducted in Quantum Design PPMS (PPMS-9) using constant current mode. Angular dependent 

measurements were realized by placing the sample on a precision, stepper-controlled rotator with 

an angular resolution of 0.05°, with the magnetic field H(θ)  rotated in the y-z, i.e. (100) plane 

and the applied current I along the x- ([100]) direction, such that the magnetic field is always 

perpendicular to the current as indicated in the inset of Fig.1.  

In Fig.1 and Fig.S1 [37] we present the temperature dependence of the zero-field resistivity ρ0(T) 

and ρxx(H) at T = 5 K, respectively, for sample I. We obtained a residual resistivity ratio rrr of 

~200 and a MR of 1.3×105 %, indicating the high quality of the crystal. The MR in our YSb 
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crystals follows a power-law dependence with magnetic field, with an exponent less than but 

close to 2 (see inset of Fig.S1 [37]), similar to other XMR materials [38-41].  

The bulk electronic band structure and Fermi surface of rare-earth monopnictides LnX were 

investigated more than three decades ago [42-44] and also reported in recent publications [19,24-

26,30,32,33]. The bulk FS consists of electron pockets centered at X and elongated along the Γ –

X direction in addition to two hole pockets centered at Γ  [24−26]. As revealed by ARPES [32] 

and illustrated by the projection of the calculated Fermi pockets on the field-rotation (100) plane 

in the inset of Fig.2(b), the electronic structure of YSb has three (ߙ,  bands [25]. The (ߛ and ߚ

electron band, ߙ, has three orthogonally arranged ellipsoidal Fermi pockets 

,ଵߙ) ,ଶߙ and ߙଷሻ while the hole bands ߚ and ߛ Fermi pockets are nearly spherical. We conducted 

angle-dependent SdH oscillation measurements to determine these Fermi pockets and to obtain 

the charge carrier density and the mobility anisotropy.  

Fig.2(a) shows a typical ߩ௫௫ሺܪሻ curve at T = 2.5 K and θ =139.5°. SdH oscillations can be 

observed at high fields, and highlighted in the inset after subtracting a smooth background. FFT 

analysis result is presented in Fig.2(b). We identified four fundamental frequencies and their 

higher harmonics that can be indexed to the ߙଵ, ,ଶߙ  Fermi pockets shown in the inset. We ߛ and ߚ

did not observe frequencies expected from the ߙଷ Fermi pocket. This absence, however, is not 

difficult to understand: the current flows along the long axis of the elliptical ߙଷ Fermi pocket, 

and hence the mobility of the associated electrons is low [see discussions below: the mobility 

 ሻ ofୄߤఓଶሻ smaller than that ሺߣ=) ଷ Fermi pocket is a factor of ~10ߙ of the electrons from the (צߤ)

the ߙଵ and ߙଶ Fermi pockets]. Since the oscillation amplitude depends exponentially on the 

mobility [24], ∆ߩ ~ ݁ିଵ/ఓு, the SdH quantum oscillations from the ߙଷ Fermi pocket could be 

below the measurement sensitivity level associated with our maximum magnetic field of 9 Tesla. 
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Applying the same analysis procedure to the SdH oscillations obtained at various angles, we 

derive the angle dependences of the frequency F for the three bands, as shown in Fig.3. 

Quantitatively, the angle dependence of ܨఈଵ,  ఈଶ can be fitted withܨ

ఈܨ                ൌ ߠଶሾݏ݋଴/ඥܿܨ  െ ሺ݊ െ 1ሻ2/ߨሿ ൅ ఓିߣ  ଶ݊݅ݏଶሾߠ െ ሺ݊ െ 1ሻ2/ߨሿ       

where F0 = 355 Tesla, ߣఓ = 3.26, and n = 1, 2 for the α1, α2 pockets, respectively.  

Using the Onsager relation F = (φ0/2π2)A with φ0 and A being the flux quantum and the area of 

the extremal orbit [24], we can extract the short Fermi vector ݇ிௌ  = 1.0386×107 cm-1 and the long 

Fermi vector ݇ி௅ ൌ  ఓ݇ிௌ  = 3.3858×107 cm-1 for the electron ellipsoid pocket. This leads to aߣ 

density of ݊௘ఈ = 1.2335×1020 cm-3 for ߙଵ and ߙଶ. Due to the crystal symmetry, however, the three 

electron pockets are equivalent, and hence ߙଷ should have the same electron density as ߙଵ and ߙଶ, resulting in a total electron density of ݊௘ = 3.7006×1020 cm-3.  

The frequencies for the two hole pockets show a slight angle dependence with a four-fold 

symmetry. Mathematically, we can fit the data for the ߚ and ߛ pockets respectively with ܨఉ ൌ  728/ඥܿݏ݋ଶሺ2ߠ െ 2ሻ/ߨ ൅  1.015ିଶ݊݅ݏଶሺ2ߠ െ ఊܨ  2ሻ  and/ߨ ൌ  1277/ඥܿݏ݋ଶሺ2ߠ െ 2ሻ/ߨ ൅  1.115ିଶ݊݅ݏଶሺ2ߠ െ    2ሻ/ߨ

The ‘anisotropy’ of 1.015 and 1.115 for the β and γ pockets, respectively, is much smaller than 

that (3.26) of the α pockets. To calculate the hole density, we treat both β and γ Fermi pockets as 

spheres with average values ܨఉ = 732 T and ܨఊ = 1351 T of the minimal and maximal 

frequencies for the β and γ pockets, corresponding to hole densities of ݊௛ఉ = 1.1204×1020 cm-3 

and ݊௛ఊ = 2.8091×1020 cm-3, respectively. This results in a total hole density of ݊௛ ൌ 3.9295×1020 

cm-3.  Thus, we obtain an electron-hole ratio of ݊௘/݊௛ = 0.942 for sample I. The SdH results for 
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sample II are presented in Fig.S2, yielding ݊௘/݊௛ ൌ 0.949. That is, both samples give consistent 

results and reveal that YSb is a compensated semimetal.  

As discussed in the introduction and also in Ref.45, ߩ௫௫ሺܪሻ and ߩ௫௬ሺܪሻ have typically been 

described using an isotropic two-band model, which assumes the same mobility in all directions 

for each type of charge carriers, i.e., ߤ௘  for all electrons and ߤ௛  for all holes. Clearly, the 

assumption on electron mobility is not applicable to YSb, where the mobility of electrons from 

the three anisotropic Fermi pockets differs significantly. For comparison purpose, we present in 

Fig.4(a) the results for our YSb crystal using the two-band model. We obtain ݊௘/݊௛ = 

0.982, ௘ߤ ൌ 0.935 m2V-1s-1 and ߤ௛ ൌ 1.056 m2V-1s-1, which are comparable to those of LaSb 

[24]. The derived charge carrier densities (݊௘ ൌ  1.202 ൈ 10ଶ଴ cmିଷ, ݊௛ ൌ  1.223 ൈ10ଶ଴ cmିଷ), however, are only 1/3 of those obtained from SdH measurements. 

For a magnetic field H applied in the z-direction with current flow along the x-axis, the 

magnetoconductivity tensor for an anisotropic electron Fermi pocket is given as follows [46]: 

ොߪ                       ൌ ቀߪ௫௫   ߪ௬௫ߪ௫௬   ߪ௬௬ቁ                                                                                                      ሺ1ሻ  
 with ߪ௫௫ ൌ ௫/ሺ1ߤ݁݊ ൅ ௬௬ߪ ;ଶሻܪ௬ߤ௫ߤ ൌ ௬/ሺ1ߤ݁݊ ൅ ௬௫ߪ ;ଶሻܪ௬ߤ௫ߤ ൌ  െߪ௫௬  ൌ ሺ1/ܪ௬ߤ௫ߤ݁݊ ൅ߤ௫ߤ௬ܪଶሻ. Here, n is the electron density, and ߤ௫ and ߤ௬ are the respective mobilities along the x 

and y axes. Eq.(1) is applicable for an ellipsoidal hole pocket by changing the sign of both the 

charge e and the mobility. It can also be implemented for the isotropic case by assuming ߤ௫ ൌߤ௬. By replacing ߪ௜௝ in Eq.(1) with ߪ௜௝் ൌ ∑ ௜௝௣௣ߪ  where ݌ ൌ ,ଵߙ ,ଶߙ ,ଷߙ ,ߚ and ߛ, we obtain the 

magnetoresistivity tensor [46]: 

ොߩ                        ൌ ቀ  ௬௬ ቁ                                     (2)ߩ   ௫௬ߩ ௬௫ߩ   ௫௫ߩ
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where ߩ௫௫ ൌ ௬௬்ߪ௫௫்ߪ௬௬்/ሾߪ ൅ ൫ߪ௫௬்൯ଶሿ,  ߩ௬௬ ൌ ௬௬்ߪ௫௫்ߪ௫௫்/ሾߪ ൅ ൫ߪ௫௬்൯ଶሿ,  ߩ௬௫ ൌ െ ߩ௫௬ ൌߪ௫௬்/ሾߪ௫௫்ߪ௬௬் ൅ ൫ߪ௫௬்൯ଶሿ.   
Since ߪ௜௝் includes contributions from all five Fermi pockets, Eq.(2) provides a complete 

description of the measured transverse and Hall magnetoresistivities ߩ௫௫ሺܪሻ and ߩ௫௬ሺܪሻ. From 

Eq.(1) we know that the magnetoconductivity of each Fermi pocket is determined by three 

parameters (݊,  ୄߤ and the short axis צߤ ௬). Once the ratio ݇ி௅/݇ிௌ of the ellipse’s semimajor and semiminor axes ݇ி௅ and ݇ிௌ is known, the relationship of the mobility along the long axisߤ ௫ andߤ

can be described as צߤ/ୄߤ ൌ ୄ݉/צ݉ ൌ ሺ݇ி௅/݇ிௌሻଶ, where ݉צ and ݉ୄ are the effective masses 

along the long and short axes [47]. That is, only one of the two mobilities is an independent 

fitting parameter. Due to the crystalline symmetry, α1, α2 and α3 have identical Fermi pockets 

but oriented differently. Their electron densities n1, n2 and n3 are the same, i.e., ݊ଵ ൌ ݊ଶ ൌ ݊ଷ ൌ݊݁ߙ, and equal to one third of the total electron density ݊݁. For example, we can rewrite the 

magnetoconductivity for the α1, α2 and α3 Fermi pocket ߪ௫௫ఈଵ ൌ ݊௘ఈ݁ୄߤ/ሺ1 ൅ ଶୄߤ ௫௬ఈଵߪ ,ଶሻܪ ൌ ݊௘ఈ݁ߤଶୄ ሺ1/ܪ ൅ ଶୄߤ ௫௫ఈଶߪ ;ଶሻܪ ൌ  ݊௘ఈ݁ୄߤ/ሺ1 ൅ ଶୄߤ ఓଶߣ/ଶܪ ሻ, ߪ௫௬ఈଶ ൌ  ݊௘ఈ݁ߤଶୄ ఓଶߣሺ/ܪ ൅ ଶୄߤ ௫௫ఈଷߪ ଶሻ; andܪ ൌ  ݊௘ఈ݁ୄߤ/ሺߣఓଶ ൅ ଶୄߤ ௫௬ఈଷߪ ,ଶሻܪ ൌ  ݊௘ఈ݁ߤଶୄ ఓଶߣሺ/ܪ ൅ ଶୄߤ ఓߣ ଶሻ, withܪ ൌ ݇ி௅/݇ிௌ. That is, we 

have only two independent fitting parameters ሺ݊௘ఈ,  ሻ for the three electron Fermi pockets. Forୄߤ

simplification we treat the hole Fermi pockets as a sphere with an isotropic mobility of ߤ௫ ൌߤ௬ ൌ ௫௫௛଴ߪ ௛ and a zero-field conductivity ofߤ  ൌ  ݊௛݁ߤ௛. With these two parameters we can 

obtain ߪ௜௝ for the hole bands, e.g., ߪ௫௫ఉ ൌ  ݊௛ఉ݁ߤ௛ఉ/ሾ1 ൅ ሺߤ௛ఉܪሻଶሿ and ߪ௫௬ఉ ൌ  ݊௛ఉ݁ሺߤ௛ఉሻଶܪ/ሾ1 ൅ሺߤ௛ఉܪሻଶሿ. Thus, we have six free variables ݊௘ఈ, ,௛ఉ݊ ;ୄߤ ,௛ఉ and  ݊௛ఊߤ  .௛ఊ for the five Fermi pocketsߤ

We found that the fit of Eq.(2) to the experimental data is very sensitive to the value of the 

carrier density. We were unable to achieve reasonable fits to both ߩ௫௫ሺܪሻ and ߩ௫௬ሺܪሻ by 
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applying the experimental ݊௘ఈ, ݊௛ఉ and ݊௛ఊ. Since first principles calculations give a more 

complicated ߛ Fermi pocket than the one we determined from its projection on the (100) plane, 

our estimated density ݊௛ఊ could have significant deviation. In the analysis we treat ݊௛ఊ as a free 

variable.  

Using the experimentally determined ݊௘ఈ, ݊௛ఉ, we can use Eq.(2) to quantitatively describe both ߩ௫௫ሺܪሻ and ߩ௫௬ሺܪሻ, as shown in Fig.4(b). It gives ݊௛ఊ  ൌ 2.558 ൈ 10ଶ଴cmିଷ, ୄߤ ൌ 11.96 m2V-

1s-1, ߤ௛ఉ ൌ 9.64 m2V-1s-1, ߤ௛ఊ ൌ  2.482 m2V-1s-1. These mobility values differ significantly from 

the ߤ௘ and ߤ௛ derived using the isotropic two-band model, demonstrating the necessity to include 

the anisotropy and multi-band nature of the material in a quantitative MR analysis. For 

comparison, we present in Table S1 [37] a summary of the density and mobility of the charge 

carriers derived from the SdH measurements, the isotropic two-band model and anisotropic 

multi-band model. We note that the derived ݊௛ఊ  ൌ 2.558 ൈ 10ଶ଴cmିଷ obtained through analysis 

with Eq.(2) is ~ 9% smaller than that (2.8091×1020 cm-3) from SdH measurements, resulting in ݊௘/݊௛ = 1.006. This indicates that YSb may indeed be a perfect compensated system. 

To further demonstrate the role played by the compensated multi-bands on XMR, we show in 

Fig.5 the calculated ߩ௫௫ and ߩ௫௬ for a single Fermi pocket and combinations thereof using the 

parameters obtained from above analysis using Eq.(2). If only the Fermi pocket ߙଵ were present, 

we find a field independent ߩ௫௫ and hence the absence of a MR. However, the addition of 

pockets ߙଶ and ߙଷ results in a magnetic field-dependent ߩ௫௫ with a MR ≈ 300% at μ0H = 9 T. ߩ௫௫ is further enhanced by adding the hole pockets, resulting in ߩ௫௫ to reach an extremely large 

value of 1.3×105 %. 
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In summary, SdH quantum oscillation measurement shows a compensated electron-hole 

behavior in YSb. We find that the origin of the non-saturating XMR in YSb is still semiclassical 

without requiring the presence of surface conduction. Both the transverse and Hall 

magnetoresistivies can be described with an anisotropic multi-band model that allows 

contributions from all electron and hole Fermi pockets. We demonstrated the importance of the 

coexistence of multiple electron and hole bands in the occurrence of XMR. 
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Figure captions 

FIG.1. (color online) Temperature dependence of the resistivity at zero field. The lower right 

panel presents the same data in the semi-log plot to show the large residual resistivity 

ratio rrr (~200). The upper left inset is a schematic defining the angle θ of the magnetic 

field orientation.  

FIG.2. (color online) (a) ρxx(H) curve at T = 2.5K and θ =139.5°. The inset gives the Shubnikov-

de Haas (SdH) quantum oscillation data after subtracting a smooth background. (b) Fast 

Fourier transform (FFT) analysis of the SdH results. Inset gives the projection of the 

calculated Fermi pockets in the magnetic field rotation plane – the (100) plane.  

FIG.3. Angle dependence of the SdH oscillation frequencies. Symbols are experimental data and 

lines are fits to the equations described in the text for the angle dependences of ܨఈ,  ఊ (solid and dashed lines are for the fundamental frequencies and higherܨ ఉ andܨ

harmonics, respectively). 

FIG.4. (color online) Analysis of the Hall and longitudinal magnetoresistivities for sample I at T 

= 5 K and H //c: (a) with the isotropic two-band model using ݊௘ ൌ  1.202 ൈ 10ଶ଴ cmିଷ, ݊௛ ൌ  1.223 ൈ 10ଶ଴ cmିଷ, ߤ௘ ൌ 0.935 m2V-1s-1 and ߤ௛ ൌ 1.056 m2V-1s-1, (b) with the 

anisotropic multi-band model Eq.(2) using ݊௘ఈ and ݊௛ఉ determined through SdH 

measurements and ݊௛ఊ  ൌ 2.558 ൈ 10ଶ଴cmିଷ, ୄߤ ൌ 11.96 m2V-1s-1, ߤ௛ఉ ൌ 9.64 m2V-1s-1 

and ߤ௛ఊ ൌ  2.482 m2V-1s-1. Symbols are experimental data and solid lines are the fits.  

FIG.5. (color online) Calculated ߩ௫௫ and  ߩ௫௬ using Eqs.(1)-(3) with parameters derived from 

the analysis of data in Fig. 4 with Eq. (2). (a) single Fermi pocket ߙଵ, (b) multiple Fermi 

pockets  ∑ ௜ଷ௜ୀଵߙ , and (c) all five electron and hole Fermi pockets. The top panel is the 

projection of the corresponding Fermi pockets in the orbital (001) plane.  
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