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Optical lattice experiments with ultracold fermion atoms and quantum gas microscopy have
recently realized direct measurements of magnetic correlations at the site-resolved level. We
calculate the short-range spin correlation functions in the ground state of the two-dimensional
repulsive Hubbard model with the auxiliary-field Quantum Monte Carlo (AFQMC) method. The
results are numerically exact at half filling where the fermion sign problem is absent. Away
from half-filling, we employ the constrained path AFQMC approach to eliminate the exponential
computational scaling from the sign problem. The constraint employs unrestricted Hartree-Fock
trial wave-functions with an effective interaction strength U , which is optimized self-consistently
within AFQMC. Large supercells are studied, with twist averaged boundary conditions as needed, to
reach the thermodynamic limit. We find that the nearest-neighbor spin correlation always increases
with the interaction strength U , contrary to the finite-temperature behavior where a maximum is
reached at a finite U value. We also observe a change of sign in the next nearest neighbor spin
correlation with increasing density, which is a consequence of the buildup of the long-range anti-
ferromagnetic correlation. We expect the results presented in this work to serve as a benchmark as
lower temperatures are reached in ultracold atom experiments.

PACS numbers: 71.10.Fd, 02.70.Ss, 05.30.Fk

I. INTRODUCTION

The Hubbard model1 is one of the most studied models
in physics. The model is believed to be relevant to many
correlated electron phenomena including interaction-
driven metal-insulator transitions2, magnetism4 and
spin and charge density waves3, and most importantly
high-temperature superconductivity5. Except in one
dimension6, however, there is no analytic solution to
the model. Numerical simulations have thus played an
increasingly larger role in the study of the Hubbard
model7.
The development in ultracold atom experiments

provides another possibility for direct “simulation” of
the Hubbard model8,9. Recently, the two-dimensional
Hubbard model was realized with ultracold atoms
in optical lattices, and a flurry of activities have
been reported where both local quantities and short-
range (spin and charge) correlations were measured10–15.
Numerical results have usually been used to benchmark
the experimental results. In addition to serving as a
thermometry for ultracold atoms, computational results
have been integrated in these studies to guide the
experiments and interpretation.
Understanding the properties of the doped Hubbard

model is challenging, because of the existence of
different competing orders for the ground state which
are separated by tiny energy scales16. High accuracy
and resolution is required to distinguish and characterize
the different candidate states. To date, the temperature
that can be reached by ultracold atom experiments is
about 0.6t, which is still relatively “high” compared
to the energy scales of the competing ground-state
orders. In this regime, reliable numerical results
have been provided by a multitude of computational

methods including finite temperature determinant
quantum Monte Carlo (DQMC)17,18, dynamical cluster
approximation (DCA)19, and numerical linked-cluster
expansion (NLCE)20,21, all of which work at finite
temperatures.

As experiments continue the development of cooling
technology, we can expect lower temperatures to be
reached in the near future. In fact a lower temperature
of T = 0.25(2)t has already been reported in the
most recent experiment22. This offers the exciting
prospect of determining and understanding the low-
temperature and ground-state phases of the Hubbard
model by the optical lattice experiments. Reliable
numerical data at lower temperatures and ground state
will be crucial for benchmarking experimental results
and assisting interpretation and analysis. Reaching
lower temperatures present significant challenges7 for
numerical methods, however, and numerical data will be
less readily available or reliable.

In anticipation of these developments and challenges,
we calculate the short-range spin correlation functions of
the 2D Hubbard model at zero temperature. Applying
the state-of-the-art auxiliary-field quantum Monte Carlo
(AFQMC) method, we study systems with large size and
take advantage of twist averaged boundary conditions
to reach the thermodynamic limit. At half-filling,
where the sign problem23,24 is absent, the results are
numerically exact. For doped systems, we employ the
constrained-path (CP) approximation25 to deal with
the sign problem. In CP-AFQMC the sign problem
is eliminated by a constraint on the random walks in
Slater determinant space which is dependent on the trial
wave-function. Previous studies have shown that this
bias is usually small26,27. A further recent advance
allows a self-consistent optimization of the trial wave-
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function28. For each filling and interaction strength,
we test a series of trial wave-functions generated from
unrestricted Hartree-Fock (UHF) with different U values,
relying on the feedback from the CP-AFQMC calculation
to self-consistently determine the optimal effective U
value, UUHF

eff , for the UHF. As a result, the computational
approach we use can treat sufficiently large system sizes
in the ground state, and obtain highly accurate results7,16

We find major differences in the behavior of the short-
range magnetic correlations from what has been observed
to date experimentally and computationally. At half-
filling, the spin correlation always increases with the
interaction strength U and monotonically approaches
the Heisenberg limit with U → ∞. This behavior of
the spin correlation is in sharp contrast with the finite-
temperature situation, where the correlation reaches
its maximum at a finite U . For the more important
doped cases, we observe a change of sign in the next
nearest neighboring (NNN) correlation functions which is
a precursor for the onset of spin-density wave orders and
the buildup of the anti-ferromagnetic correlation with
increase of density. We find that the filling factor where
the NNN correlations function changes sign is essentially
independent of interaction strengths.
The rest of the paper is organized as follows. In

Sec. II, we first define the Hubbard model and give a
brief summary of the method used in this work. We will
comment on the approach to the thermodynamic limit
with twist averaged boundary conditions (TABC), and
mention some of the latest technical advances employed
in the study to improve accuracy and computational
capabilities and efficiency. In Sec. III we present the
results on spin correlations at half-filling as a function
of U values. In Sec. IV, the nearest and next nearest
neighboring spin correlation functions for systems away
from half-filling are presented. A short summary in
Sec. V will conclude this paper.

II. MODEL AND METHOD

A. Hubbard Model

The Hubbard model is defined as

H = K + V = −
∑

i,j,s

tij

(

c†i,scj,s +H.c.
)

+ U
∑

i

ni↑ni↓,

(1)
where K and V are the kinetic and on-site interaction
terms, respectively. The creation (annihilation) operator

on site i is c†i,s (ci,s), with s =↑, ↓ the spin of the electron,
and ni,s is the corresponding number operator. We
denote the total number of electrons with ↑- and ↓-spin by
N↑ andN↓, respectively. In this work, only spin-balanced
systems (N↑ = N↓) are considered. The filling factor is
defined as n = (N↑ + N↓)/N with N being the total
number of lattice sites in the supercell. So n = 1 means
half-filling. We will typically use supercells of square

lattice with size N = L × L. We only consider nearest
neighbor and uniform hopping in this work, tij = t for
each near-neighbor pair 〈ij〉, and t is set as the energy
unit. The strength of the repulsive interaction is given
by U/t.
The quantity we investigate in this work is the spin

correlation function,

c(r) = 〈ψg|
−→
S (0) ·

−→
S (r)|ψg〉, (2)

where |ψg〉 is the ground state of H in Eq. (1). The spin
operator at r is given by

−→
S (r) =

1

2

∑

ss′

c†i,s
−→σ s,s′ci,s′ , (3)

where i is the lattice site label of the position r, and−→σ are
the Pauli matrices. Because of translational invariance,
the reference site ‘0’ can be averaged over in the periodic
supercell, and the correlation function is only a function
of lattice vector r and satisfies all lattice symmetries.
In order to extrapolate more reliably to the

thermodynamic limit (TDL), we adopt twist averaged
boundary conditions29. Under twist boundary conditions
(TBC), an electron gains a phase when hopping across
the boundaries:

Ψ(. . . , rm + L, . . .) = eiL̂·ΘΨ(. . . , rm, . . .), (4)

where L̂ is the unit vector along L, rm is the position
of the m-th electron, and the twist angle Θ = (θx, θy)
is a two dimensional parameter, with θx (θy) ∈ [0, 2π).
This is equivalent to placing the lattice on a torus and
applying a magnetic field which induces a flux of θx along
the x-direction (and a flux of θy along the y-direction). In
Eq. (4), the translational symmetry is explicitly broken,
however it can be easily restored with an alternative
gauge, i.e., adjust t to t× eiθx/L along x (t× eiθy/L along
y).
To implement TABC, a set of Nθ twist angles is

chosen and we carry out an independent calculation for
each twist. The final result of a physical quantity is
the averaged value from these independent calculations.
The constrained path condition can be generalized
straightforwardly to the case of TBC26. By imposing
a random TBC, the possible degeneracy of the non-
interacting energy levels is lifted by explicitly breaking
the rotational symmetry of the lattice. This eliminates
the so called open-shell effects and helps to reduce the
constraint bias when a free-electron trial wave function
is used. In most of our calculations, we use UHF trial
wave functions so that this is not especially relevant.
Nevertheless we have retained the same procedure.
When implementing the TABC, we use a quasi-

random instead of a pseudo-random sequence to generate
the twist. As shown in Ref.30, the TABC physical
quantities converge faster (with respect to the number
of twists used) with quasi-random twists than with
a pseudo-random sequence. A quasi-random sequence
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is distributed more uniformly in the sampled space.
Twists from a uniform grid have essentially the same
convergence rate as a quasi-random sequence, however
it can lead to open-shell situations in the many-body
calculation, which is less advantageous especially when
a simple trial wave function is used30. Additionally, a
uniform grid is typically not cumulative which means
that, if the targeted statistical accuracy is not reached
with a given set, we would likely not be able to re-use
the data, and new calculations would be necessary for
each twist in the new set. A quasi-random sequence
avoids these problems and combines the advantages of
a pseudo-random sequence and a uniform grid.

B. Auxiliary-field quantum Monte Carlo method

In this section, we will briefly introduce the methods
used in this work. (A more comprehensive discussion
of this method can be found in Ref.31.) Our AFQMC
calculations share much of the same basic framework
as standard DQMC method32 and its ground-state
variant33. By repeatedly applying the projection
operator to a state |ψ0〉 with non-zero overlap with the
ground state |ψg〉 of the Hamiltonian H in Eq. (1), we
can obtain |ψg〉:

|ψg〉 ∝ lim
β→∞

e−βH |ψ0〉 (5)

and the expectation value of an operator O can be
represented as

〈O〉 =
〈ψ0|e

−βHOe−βH |ψ0〉

〈ψ0|e−2βH |ψ0〉
. (6)

Through the Trotter Suzuki decomposition, the kinetic
and interaction parts in the projection operator can be
decoupled as:

e−βH = (e−τH)n = (e−
1

2
τKe−τV e−

1

2
τK)n +O(τ2), (7)

where β = τn. The Trotter error can be eliminated by
an extrapolation of τ to 0. We typically choose τ = 0.01
in this work. We have verified that the Trotter error with
τ = 0.01 is smaller than the targeted statistical errors.
The initial state |ψ0〉 is usually chosen as a Slater

determinant in AFQMC. The one-body term e−
1

2
τK can

be directly applied to it and the result is another Slater
determinant. This is not true for the two-body term
e−τV . However, the two-body term can be decomposed
into an integral of one-body terms through the so-called
Hubbard-Stratonovich (HS) transformation. Different
types of HS transformations34 for e−τV exist in literature.
The two commonly used types are the so called spin
decomposition

e−τUn↑n↓ = e−τU(n↑+n↓)/2
∑

x=±1

1

2
eγsx(n↑−n↓) , (8)

with the constant γs determined by cosh(γs) ≡
exp(τU/2), and the charge decomposition

e−τUn↑n↓ = e−τU(n↑+n↓−1)/2
∑

x=±1

1

2
eγcx(n↑+n↓−1) , (9)

with cosh(γc) ≡ exp(−τU/2)35. Here x is an Ising-spin-
like auxiliary field. Transformations with continuous
Gaussian auxiliary-fields exist which can be made27

essentially as efficient as the discrete forms. Different
choices of the HS can lead to different accuracies or
efficiencies, because of symmetry considerations27,36 or
other factors37.
With the HS transformation, Eq. (6) turns into

〈O〉 =

∑

{Xi,Xj}
〈ψ0|

∏n
i=1 Pi(Xi)O

∏n
j=1 Pj(Xj)|ψ0〉

∑

{Xi,Xj}
〈ψ0|

∏n
i=1 Pi(Xi)

∏n
j=1 Pj(Xj)|ψ0〉

(10)
where Xi is the collection of the N auxiliary fields
from the HS transformation, and Pi is the product of
the kinetic term and the one-body terms from the HS
transformation at time slice i. The multi-dimensional
integrals can then be evaluated by Monte Carlo methods,
e.g., with the Metropolis algorithm.
At half-filling, each individual term in the sum in

the denominator of Eq. (10) is always non-negative,
because of particle-hole symmetry4. So we can use it as
probability density and the sign problem is absent. Our
calculations is this work use mostly the path integral form
outlined above, but introduce several recent algorithmic
advances such as an acceleration technique38 (with force
bias31,39 in the Metropolis sampling) and control of the
divergence of Monte Carlo variance37.
Away from half-filling, a direct evaluation of Eq. (10)

by Monte Carlo will suffer from the sign problem23,24,
since terms in the denominator of Eq. (10) can
become negative for some auxiliary fields31. The sign
problem can be eliminated by the constrained path
approximation. The framework within which this has
been implemented in Hubbard-like model has often been
referred to as the constrained path Monte Carlo (CPMC)
method25. Here we will refer to the approach as CP-
AFQMC to be consistent with recent conventions. A
description of the CP-AFQMC method as applied to
Hubbard-like models can be found in Ref.40.
In CP-AFQMC, the wave function is represented as

an ensemble of a set of Slater determinants which are
called walkers. The evolution of wave function in the
imaginary time is represented as random walks in the
Slater determinant space by sampling the auxiliary fields.
The paths of auxiliary-fields are constrained to ensure
the overlap of any propagated walker with the trial wave-
function, |ψT 〉, computed at each time slice, remains non-
negative. Physical quantities can be evaluated using the
mixed estimate as

〈O〉mixed =

∑

k wk〈ψT |O|ψk〉
∑

k wk〈ψT |ψk〉
, (11)
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FIG. 1. Nearest neighbor (r = (0, 1)) correlation function
versus 1/L3 for U/t = 2, 4 and 8. The largest system size
included is 22× 22. Finite size scaling fits using Eq. (12) are
also shown.

where |ψk〉 is the kth walker, and wk is the corresponding
weight. The mixed estimate is used to compute the
energy (and other observables which commute with the
Hamiltonian). For observables which do not commute
with the Hamiltonian, the mixed estimate is biased, and
we use back propagation to correct for this25,41.

As mentioned, the CP-AFQMC overcomes the sign
problem and restores a low computational scaling with
system size, at the cost of a systematic error which
depends on the trial wave-function |ψT 〉. Previous studies
have shown the systematic error is small even with a
free-electron or Hartree-Fork trial wave-function26. In
this work, we adopt a recent advance28 which allows the
self-consistent construction of an optimal optimal UHF
trial wave-function with an effective interactionUUHF

eff . In
the self-consistent procedure, we couple the CP-AFQMC
calculation with a mean-field calculation. We first carry
out an ordinary CP-AFQMC calculation with a free
electron or UHF trial wave-function. Then instead of
solving the mean-field Hamiltonian self-consistently, we
feed the local density from the CP-AFQMC calculation
as the “field” in the mean-field Hamiltonian and scan the
interaction U to find the solution whose local density is
closest to the input density. Next we use the mean field
solution with this “optimal” U as the trial wave-function
for the next-step CP-AFQMC calculation. The same
process is repeated until the local density is converged.

The use of the self-consistent CP-AFQMC further
improved the accuracy, especially for determining spin-
and charge-orders28. We have carried out additional
benchmarks here in smaller systems specifically targeting
short-range correlations. Therefore results presented
here, consistent with previous experience7,16, are
expected to be very accurate.

TABLE I. Values of the spin correlation functions plotted
in Fig. 2 for U = 2, 4, 6, 8, 10, and 12, with distance r =
(0, 1), (1, 1), (0, 2), and (1, 2).

U/t r = (0, 1) (1, 1) (0, 2) (1, 2)

2 −0.0996(7) 0.0260(8) 0.0211(8) −0.0294(7)

4 −0.1782(7) 0.091(3) 0.0811(8) −0.0875(9)

6 −0.237(2) 0.137(4) 0.123(4) −0.125(3)

8 −0.273(3) 0.162(9) 0.149(5) −0.15(1)

10 −0.293(4) 0.180(5) 0.165(3) −0.167(7)

12 −0.307(2) 0.190(6) 0.176(6) −0.169(6)

III. RESULTS AT HALF-FILLING

In this section, we present results for and discuss the
half-filling case. Following the procedure in Ref.30, we
take advantage of the TABC to remove errors from the
finite size effect from the use of supercells. Lattice size up
to 22×22 are studied, which is sufficient for convergence.
In Fig. 1, we show the results of the nearest neighbor
(NN), i.e., r = (0, 1), spin-spin correlation. It is seen
that the NN correlation is already converged to within
1% with a 14×14 lattice. We also perform a finite-size fit
of the results. Since the NN spin correlation function (in
the infinite large U case) is actually given by the energy in
the Heisenberg model on a square lattice, we fit the short-
range spin correlation function using the result from spin-
wave theory42:

cL = c∞ + a/L3 (12)

FIG. 2. The magnitude of short-range spin correlation
functions at half filling. The correlation function c(r) is
shown versus interaction strength, for several values of r:
(0, 1), (1, 1), (0, 2), and (1, 2). The upper horizontal line
represents the infinite-U value of NN spin correlation function
from the Heisenberg model43. The lower horizontal line
represents the infinite distance value at the infinite-U limit
(the square of the magnetization in the Heisenberg model43).
The dotted yellow curve is the NN spin correlation function
at T = 0.31, taken from Ref.18.



5

where cL is a spin correlation function defined in Eq. (2)
for system with size L×L and c∞ is the thermodynamic
value. The quality of the fits, as shown in Fig. 1, indicate
that the finite-size effects in the NN spin correlation
function is indeed captured well by the form in Eq. (12).

The spin correlation functions for all r between (0, 1)
and (1, 2) at thermodynamic limit are plotted in Fig. 2.
Spin correlations at large distances, in the context of
determining the long-range order, have been computed
in Ref.30. From Fig. 2, we see that the spin correlation
functions always increase as U is increased. The NN spin
correlation function approaches the Heisenberg value,
−0.334718(3)43 when U approaches infinity. Also at
large U the square root of the correlation function in
the infinite distance limit should approach the value of
magnetization in the 2D Heisenberg limit (0.3070(3) in
Ref.43). We also list all the spin correlation function
values in Table I.

We observe that the behavior of spin correlation
functions at zero temperature is different from that at
finite temperatures where thermal fluctuation is present.
For comparison, we include in Fig. 2 the NN spin
correlation at T = 0.31 from Ref.18. While the
T = 0K result increases monotonically with U , the
T = 0.31 NN spin correlation reaches a maximum
value at a finite U (∼ 8)18,20. The difference results
from the competition between quantum and thermal
fluctuations. At T = 0K, with no thermal fluctuations,
the increase of U always drives the system towards
the Heisenberg limit where no double occupancy is
allowed. At a given non-zero temperature, however, the
effective Heisenberg anti-ferromagnetic coupling44, t2/U ,
decreases with U . (This implies that, in the infinite-
U limit, the corresponding Heisenberg model would be
at infinitely high temperature.) So we expect that
the value of U where the NN spin correlation function
reaches its maximum will increase as the temperature
T is decreased, and become infinitely large at the limit
of T = 0K. This behavior should be easy to confirm
experimentally as lower temperatures are reached with
ultracold atoms in optical lattices.

The value of the on-site spin correlation function at
half-filling can be inferred from the double occupancy
results in Ref.30 through the following:

c(0) =
3

4
(1− 2〈n↑n↓〉) . (13)

Unlike the spin correlation function, the double
occupancy always decreases with increasing U .
Correspondingly, the on-site spin correlation function
always increases with interaction, both at zero and finite
temperatures.

FIG. 3. Optimal value of UUHF

eff . The relative difference δUHF

is plotted versus the effective interaction used in the UHF
calculation, for an 8 × 8 system with N↑ = N↓ = 28 (n =
0.875) and U/t = 6, 8, 12.

FIG. 4. Comparison of CP-AFQMC and exact
diagonalization results of the NN spin correlation function
for a 4 × 4 system with N↑ = N↓ = 7 and U = 12. A series
of UHF trial wave-functions, generated with different UUHF

eff

values, are used in CP-AFQMC to evaluate the systematic
errors. CP-free indicates CP-AFQMC using free-electron
trial wave-function. In the inset, we also plot the relative
error of the twist averaged results versus UUHF

eff of the UHF
in trail wave-function (δCP in Eq. (15)). The minimum error
corresponds to the optimal UUHF

eff ∼ 3.5 in this case.

IV. RESULTS AWAY FROM HALF-FILLING

A. Self-consistent constraint and error

quantification

In order to control the sign problem we a constraint
on the paths of the importance-sampled random walks
in Slater determinant space, as mentioned in Sec. II B.
A UHF trial wave function is used, which is generated
with an effective interaction, UUHF

eff , via a self-consistent
iteration with the AFQMC calculation28. The optimal
UUHF
eff is the value of effective U with which the

corresponding UHF solution yields results closest to those
from AFQMC (using the UHF as constraining trial wave-
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function and always performed with the physical U). To
measure “closeness” we seek to minimize the following
metric in the present work:

δUHF =

∑

r
|cUHF(r)− cAFQMC(r)|
∑

r
|cAFQMC(r)|

. (14)

Since we treat periodic supercells and the UHF solution
breaks translational symmetry, a subtlety arises in using
the UHF as a trial wave-function and also in comparing
the results as in Eq. (14) above. One can think of this
as applying a small pinning field as was the situation in
Refs.16,28. In the TDL one would expect the effect on the
short-range correlations to be small. This is supported
by our finding below that the optimal UUHF

eff is slightly
larger for smaller supercells but approaches the results
in Ref.28 in large supercell sizes. It is important to note
that the AFQMC results are insensitive to variations in
the trial wave function that result from small changes in
the value of UUHF

eff .
In Fig. 3, we show the 8×8 system with U = 6, 8 and 12

and n = 7/8 as an example for the search of the effective
U for the UHF trial wave-function. The optimal UUHF

eff
is seen to fall between 2.5 and 3.0 which is close to the
results (Ueff ∼ 2.7 for U = 8) in Ref.28, where fully self-
consistent calculations were performed. We apply this
procedure to all other fillings and U values and determine
the corresponding optimal UUHF

eff in the same way. We
then study systems with larger supercell sizes using the
UHF trial wave-functions with the same corresponding
UUHF
eff . As correlation effects are diminished in systems

with small U and at very low filling factors, the optimal
trial wave-functions are found to become the free electron
wave-functions (UUHF

eff = 0).
We also carried out an additional benchmark of CP-

AFQMC, comparing results with exact diagonalization
(ED) in the worst case scenario of the 4× 4 lattice, with
U = 12 and N↑ = N↓ = 7. Results are shown in Fig. 4.
We plot the NN spin correlation functions for 7 quasi-
random twist angles, where the CP-AFQMC calculations
were performed with UHF trial wave-functions generated
with different UUHF

eff . We calculate the relative absolute
error of the NN spin correlation with respect to the ED
values as:

δCP =

∑

Θ
|cΘAFQMC − cΘED|
∑

Θ
|cΘED|

. (15)

From the inset of Fig. 4, we see that UUHF
eff ∼ 3.5 yields

a minimum δCP, of ∼ 5%. This is consistent with the
optimal UUHF

eff value determined by the minimization of
δUHF in Fig. 3. As mentioned above, it is reasonable in
a smaller system that UUHF

eff is slightly larger, due to a
need to overcompensate for lack of dynamic correlations.
It should be noted that the final TABC result will have a
smaller error, because of error cancellations from different
twist angles. (For the system shown in Fig. 4, it is 3%.)
The results in this system provide a kind of upper bound
estimate to the CP bias. Lower U and other doping

parameters all make the method much more accurate.
Larger supercell sizes are also expected to reduce the
sensitivity of the short-range correlations.

B. Results

In all our calculations we study sufficiently large
supercells to ensure that finite-size effects are negligible
in the computed spin correlation functions. In Fig. 5,
we plot the NN and NNN spin correlation functions for
U = 4 and 8 at a filling factor of n = 0.75. Linear fits of
the results with 1/L are also shown. It can be seen that,
in these systems, the finite size effect is smaller than the
targeted statistical accuracy even at 12× 12.
In Fig. 6, we plot the NN and NNN spin correlation

functions for interaction strengths ranging from U =
2 to U = 12. The negative sign of the NN
spin correlation function reflects the short-range anti-
ferromagnetic correlations in the Hubbard model. The
dependence of the correlation on U is mild at the
dilute limit, which is reasonable since double occupancy
is significantly reduced. As the density is increased,
stronger dependence of the correlation on U is seen
from weak to moderate interactions. For even larger
interaction strengths, the NN spin correlation functions
approach the value of infinite-U limit where no double

FIG. 5. Illustration of the dependence of NN (upper panel)
and NNN (lower panel) spin correlation functions on supercell
size. Two interaction strengths, U = 4 and U = 8, are shown
in a system with n = 0.75. Linear fits in 1/L are also plotted.
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FIG. 6. NN (upper panel) and NNN (lower panel)
spin correlation functions versus filling factors at different
interaction strengths. The half-filling results in Fig. 2 are
included here for completeness. The value of NN spin
correlation function at half-filling for U = ∞ is from Ref.43.

occupancy is allowed.

For the NNN spin correlation function, the sign is
negative from the dilute limit through n ∼ 0.8. This
is a reflection of the exchange-correlation hole which
continues from on-site to NN to NNN correlations and so
on. Similar to the NN spin correlation function, it only
shows mild dependence on the interaction strength in
the dilute limit. As the filling factor is further increased,
the NNN spin correlation changes sign from negative to
positive, which is a precursor of the buildup of anti-
ferromagnetic order in the system. Interestingly, the
crossover points in density are very close for different
interaction strengths. The change of sign in the NNN
spin correlation function, needless to say, does not
necessarily imply long-range order in the systems. To
establish the existence of long-range anti-ferromagnetic
orders, a more systematic examination of the behavior of
the tail of c(r) is necessary (see, e.g. Ref.30 for analysis
at half-filling).

Previous AFQMC calculations have shown the
existence of spin-density wave states at intermediate
interaction (U ∼ 4) for density larger than ∼ 0.8545. For
larger interactions they evolve into stripe states16,45. The
determination of such phases requires the study of long-
range spin correlation functions45 or long-range density
and spin-density variations in the presence of pinning
fields16, as well as careful removal of the influence of
finite size and supercell shape16,26,45. The effect of these
collective modes in the ground state is less direct in the
short-range correlations computed here, although clearly
they can lead to quantitative modifications (reductions)
in the magnitude of NN and NNN spin correlations. The
slopes of the curves in Fig. 6 show large increases in
magnitude as we approach half-filling, which is consistent
with and could be a manifestation of these states.

V. SUMMARY

In summary, we have calculated the short-range spin
correlation functions in the two-dimensional Hubbard
model at zero temperature with AFQMC. At half-filling,
the results are numerically exact. The absolute values
of spin correlation functions are found to always increase
with U , which is different from the finite temperature
behavior. Away from half-filling, we eliminate the sign
problem with a self-consistent constraint. The systematic
errors from the constraint are examined and quantified.
We observe a change of sign from negative to positive in
the next nearest neighbor spin correlation function as a
function of doping, with a crossing point slightly below
0.8 which shows very weak dependence on the interaction
strength. The results in this paper can serve as a
valuable benchmark as optical lattice experiments with
ultra-cold atoms reach lower temperatures. The detailed
and quantitative results on spin correlation functions
provide useful information in the search for theoretical
understanding and experimental realization of exotic
phases of magnetic and accompanying or competing
charge and possibly superconducting orders.
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