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Strong spin-orbit coupling (SOC) can result in ground states with non-trivial topological proper-
ties. The situation is even richer in magnetic systems where the magnetic ordering can potentially
have strong influence over the electronic band structure. The class of AMnBi2 (A = Sr, Ca) com-
pounds are important in this context as they are known to host massive Dirac fermions with strongly
anisotropic dispersion, which is believed to be due to the interplay between strong SOC and magnetic
degrees of freedom. We report the optical conductivity of YbMnBi2, a newly discovered member of
this family and a proposed Weyl semi-metal (WSM) candidate with broken time reversal symmetry.
Together with density functional theory (DFT) band structure calculations, we show that the com-
plex conductivity can be interpreted as the sum of an intra-band Drude response and inter-band
transitions. We argue that the canting of the magnetic moments that has been proposed to be
essential for the realization of the WSM in an otherwise antiferromagnetically ordered system is not
necessary to explain the optical conductivity. We believe our data is explained qualitatively by the
uncanted magnetic structure with a small offset of the chemical potential from strict stochiometry.
We find no definitive evidence of a bulk Weyl nodes. Instead we see signatures of a gapped Dirac
dispersion, common in other members of AMnBi2 family or compounds with similar 2D network
of Bi atoms. We speculate that the evidence for a WSM seen in ARPES arises through a surface
magnetic phase. Such an assumption reconciles all known experimental data.

I. INTRODUCTION

Correlated electron systems with strong SOC have
been the subject of intensive research in recent years.
The interplay of electronic correlations and SOC can
result in emergent topological phases and has opened
up a completely new direction in condensed matter
physics. This interplay can be very different de-
pending on the specifics of the electronic correlation.
In weakly to moderately interacting electron systems,
SOC can lead to non-trivial band topology as ob-
served in conventional topological insulators1, Dirac and
Weyl semi-metals2–4, axion insulators5 and topological
superconductors6. More recently, the effects of SOC on
strongly correlated systems are being explored with the
realization of new material systems with heavy 4d/5d
transition metal compounds7. The iridates deserve spe-
cial mention in this category and have been instrumental
in exploring much of this uncharted territory8,9.

In addition to the emergence of topologically non-
trivial ground states, the interplay between SOC and
magnetic degrees of freedom themselves is also quite in-
teresting. The family of AMnBi2(A = Sr, Ca) com-
pounds are particularly important in this context. Be-
ing structurally similar to iron based superconductors,
they are referred to as manganese pnictides, which con-
tain layers of Mn-Bi edge sharing tetrahedra and a Bi
square net separated by a layer of A atoms10. These
compounds were expected from first principles DFT band
calculations to host highly anisotropic Dirac dispersions
with a finite gap at the Dirac point due to SOC11. Such
predictions were confirmed experimentally through mag-
netization, magneto-transport measurements12,13 and

later using angle resolved photoemission spectroscopy
(ARPES)14. What makes these compounds particularly
interesting is the antiferromagnetic (AFM) ordering of
the spin magnetic moment on the Mn2+ atoms which
has a 3d5 electronic configuration. The magnitude of the
ordered moment is around 4µB with an ordering tem-
perature ∼300K as observed in several experiments10,11.
Strong in-plane super exchange is responsible for the
Néel-type AFM ordering observed in the ab plane with a
rather weak inter-layer magnetic coupling whose nature
is dependent on the A atom10.

More recently, new members have been added to this
family by substituting the rare earth elements with lan-
thanides such as Europium and Ytterbium. Whereas
EuMnBi2 appears to be very similar to its rare earth
sister compounds15, YbMnBi2 appears to have richer be-
havior and has been proposed as a prospective candi-
date for type II Weyl semi-metal (WSM)16. Unlike most
WSMs discovered so far that are non-centrosymmetric
systems (TaAs, NbAs, NbP, TaP, SrSi2, etc) with bro-
ken inversion symmetry, YbMnBi2 has been proposed to
be a potential WSM with broken time reversal symme-
try (TRS). A magnetic WSM has continued to be elusive
to date, with the possible exception of potential WSM
phases in pyrochlore iridates17 and magnetic heuslers un-
der magnetic field18. In contrast to the other members of
the AMnBi2 family, ARPES has shown a Fermi surface
that appears to be continuous with the hole-like lenses
touching the electron-like pockets at what has been in-
terpreted to be the Weyl nodes. It should be noted, that
the band structure calculations predict that a TRS break-
ing WSM state can only be realized in this compound
if a canting of the magnetic moment (∼10◦) from the c
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axis, resulting in an effective in-plane ferromagnetic com-
ponent along (110) direction, is assumed in addition to
the established AFM ordering. Although such a band
structure is in reasonable agreement with the ARPES
results, the ad-hoc assumption of canted antiferromag-
netism has not been supported by neutron scattering
experiments19,20. Moreover, the magnetic space group
found via neutron scattering that describes the AFM or-
dering in YbMnBi2 has a symmetry breaking that does
not allow canting of Mn magnetic moments away from
the c axis. From general considerations, the only way
canting can occur is via an AFM transition that is not
second order, or a lattice symmetry that is not tetrago-
nal. Transport measurements reported in20 further sup-
ports a quasi two dimensional Dirac dispersion in this
compound.

A number of interesting proposals have been made for
the optical properties of WSMs21. An ideal 3D Weyl
state comprises at least a pair of non-degenerate band
crossings in momentum space with the Fermi level at the
nodal point. In 3D Dirac or Weyl systems, the joint den-
sity of states increases with frequency and is proportional
to ω2 whereas the dipole optical matrix element goes as
ω−1 as a result of which at low frequencies, the real op-
tical conductivity is linear in ω. In real systems however
it is hard to achieve such fine tuning in the Fermi energy
(EF ) and hence a cut-off is set by the Fermi level such
that the real part of the conductivity is expected to be

σ1(ω) =
NG0ω

24vF
Θ(ω − 2EF )· (1)

where N is the number of massless fermion species in the
Brillouin zone, G0 = 2e2/h is the quantum conductance
and vF is the Fermi velocity. Experimental evidence of
such linear optical conductivity with zero intercepts has
been reported in Eu2Ir2O7

17 and TaAs22 among others4.
A more detailed theoretical analysis of the inter-band
optical response of TRS breaking WSMs23 however pre-
dicts that the single linear optical conductivity should
be broken into two regions of quasi-linear conductivity
with different slopes by a peculiar kink. The kink is a
manifestation of the van Hove singularity, appearing at a
frequency that corresponds to the energy difference be-
tween the bands crossing to form the Weyl nodes at the
extrema between the two nodes. Such a feature has been
experimentally observed in the inversion symmetry bro-
ken WSM TaAs22.

In this paper, we report the complex optical conductiv-
ity of YbMnBi2

24 obtained from Kramers-Kronig (KK)
constrained variational dielectric function (VDF) fitting
of the reflectivity. A comparison of the experimental op-
tical spectra with that calculated from the DFT band
structure shows that the low energy features in the spec-
trum can be attributed to specific inter-band transitions
and are not a signature of the van Hove singularity as
proposed elsewehere25. The optical spectra has also been
compared to the calculated band structures with both
canted and uncanted AFM ordering which opens the pos-

sibility of reconciling the ARPES experiments with the
neutron scattering and transport results. We believe our
optical data is explained qualitatively by the uncanted
magnetic structure with a small offset of the chemical
potential from strict stochiometry.

II. EXPERIMENTAL AND COMPUTATIONAL
DETAILS

Figure 1. (a) Reflectivity of YbMnBi2 measured using FTIR
spectroscopy for different temperatures. (inset) Expanded
plot showing the low-frequency region. (b) Raw reflectivity
data at 300 K along with reflectivity curve as obtained from
VDF fitting. (c) Resistivity of the sample measured using a
4-probe technique along with the Drude scattering rates.
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Optical properties were measured on a cleaved (001)
surface (∼ 3 mm × 3 mm) of a high quality YbMnBi2
crystal using Fourier transform infrared (FTIR) spec-
troscopy. For details of the sample preparation please
refer to Ref.16. The as-grown (001) surface of another
slightly smaller crystal was also measured and had iden-
tical results. Fourier transform spectroscopy is known
to offer excellent signal to noise and frequency resolu-
tion. Reflectivity of YbMnBi2 single crystals were mea-
sured using a commercial FTIR spectrometer (Bruker,
Vertex 80V, Source: Globar/Hg Arc Lamp, Detectors:
DLaTGS/MCT/Bolometer) across far and mid infrared
spectral ranges spanning from 50 cm−1 to 8500 cm−1

(i.e. 1.5-2500 THz) for several temperatures between 5
K and 300 K. The reflection spectra at each temperature
were referenced to that of elemental gold, deposited on
the sample in situ by thermal evaporation. To extend
the measurement across a broader spectral range, the
infrared spectra was supplemented by visible reflection
spectrum between 11150 cm−1 and 29000 cm−1 measured
at room temperature using commercial spectrophotom-
etry (Hitachi, U-3010) and referenced to an aluminum
mirror. Additionally, the DC resistivity of the sample
has been measured using conventional 4-probe measure-
ments down to 2K.

Figure 1(a) shows the measured reflectivity in the in-
frared regime. The reflectivity tends to 1 at low fre-
quencies and drops with a broad plasma edge-like feature
above 4000 cm−1 indicating metallic behavior. Besides
the usual Drude response, two distinct features are ob-
served in the reflectivity spectra that becomes particu-
larly prominent at low temperatures. The lowest one is
close to 200 cm−1 where there is an abnormal increase
in reflectivity and the second feature is a rather broad
bump around 950 cm−1.

Band structure calculations were performed using the
linear muffin-tin orbital method26 as implemented in the
relativistic PY LMTO computer code. Some details of
the implementation can be found in Ref. 27. Calcula-
tions were done assuming collinear AFM ordering of Mn
moments which were aligned along the c axis. Com-
pletely filled Yb2+ 4f14 states were treated as semi-core
states. SOC was added to the LMTO Hamiltonian in the
variational step. All theoretical results presented below
were obtained within the local spin-density approxima-
tion (LSDA) with the Perdew-Wang parameterization28

for the exchange-correlation potential. Test calculations
were also done using the PBE GGA potential.29 They
showed that the use of GGA slightly increases exchange
splitting of Mn d states but has only minor effect on Bi
p derived bands. Brillouin zone (BZ) integrations during
the self-consistency loop were done on a 32×32×16 mesh
using the improved tetrahedron method.30

Matrix elements for interband optical transitions were
calculated in the dipole approximation. Then, the real
part of the optical conductivity was calculated using the
tetrahedron method and the imaginary part was obtained
using the Kramers-Kronig relations.

We found that a very dense k mesh should be used in
order to achieve convergence of the conductivity below
0.3 eV. For instance, the in-plane conductivity spectrum
calculated on the 32×32×16 mesh shows a broad peak
centered at 0.18 eV. The peak shifts to ∼0.10 eV (∼1000
cm−1), becomes narrower, and its height doubles when a
denser 80×80×48 mesh with almost 40000 symmetry in-
equivalent k points in BZ is used. The use of even denser
128×128×48 (∼106 k points) mesh still leads to a small
(<0.01 eV) shift of the peak position and 10% increase
of its height. However, since calculations on such a dense
mesh becomes extremely time consuming we present in
the next section conductivity spectra calculated on the
80×80×48 mesh. It is worth noting, that above 0.5 eV
convergence of the calculated conductivity spectrum is
achieved already on the 32×32×16 mesh.

III. ANALYSIS AND RESULTS

Figure 2. (a) Real and (b) imaginary part of conductivity.
Solid and dashed lines represent the measured and extrapo-
lated frequency regimes respectively. The markers at 8 cm−1

in (a) represents the dc conductivity calculated from 1(c)

The complex optical conductivity of the sample has
been calculated from the reflectivity spectrum using KK
constrained VDF fitting31. This technique is an alter-
native to using conventional KK transformations to cal-
culate the complex conductivity from a single measure-
ment and is particularly useful in dealing with multiple
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reflection/transmission data from different disjoint fre-
quency ranges. The method, implemented using the soft-
ware RefFIT, involves an initial fitting of the reflectiv-
ity spectra to a standard Drude-Lorentz oscillator model
with a few oscillators and then performing a KK con-
strained variational fitting with many oscillators of the
difference spectra. For YbMnBi2, the reflectivity spectra
for each temperature has been fitted with one Drude and
six Lorentz oscillators which has then been subjected to
the VDF fitting analysis. Figure 1(b) shows the actual
infrared and visible reflectivity data at 300K along with
the output of the VDF fitting. In addition to reflectiv-
ity, the dc conductivity at each temperature as obtained
from 4-probe resistivity measurements (see figure 1(c))
have also been used to constrain the VDF fitting sub-
routine. The real and imaginary parts of the complex
conductivity thus obtained are shown in figure 2(a) and
2(b) respectively.

We model the low frequency response (<150 cm−1)
for all temperatures by a single Drude oscillator. Fig-
ure 1(c) shows the Drude scattering rate, ΓD, as a func-
tion of temperature. Note that the temperature depen-
dence of ΓD scales as resistivity within experimental er-
ror. At low temperatures, the resistivity of YbMnBi2 has
a strong temperature dependence showing the dominant
role of inelastic scattering from either electron-electron
or electron-phonon interactions. The similarity in tem-
perature dependence of resistivity and ΓD thus points
to the coherent nature of the quasiparticles within the
Drude subsystem. The Drude plasma frequency at 5K
as obtained from the fitting is 1.74 eV. Drude fitting of
the low frequency response can be insufficient for a multi-
band system where the different sets of carriers have dif-
ferent optical parameters, but by definition the plasma
frequency is a measure of the spectral weight in the low
frequency intraband part of the spectrum.

The two most prominent features in the real part of
the optical conductivity are the low energy peaks around
200 cm−1 and 950 cm−1. Such peaks in conductivity
are ordinarily attributed to inter-band electronic transi-
tions. To investigate this further, the Drude contribution
(which mostly captures the intra-band optical conductiv-
ity) was subtracted. In general, strong electronic corre-
lation can give low frequency intra-band contributions
that would not generally be captured through a Drude
term only. One possible way to isolate such effects is
through the extended Drude model32 analysis which can
account for inelastic scattering due to electron-electron
or electron-phonon interactions that can be frequency de-
pendent even at low frequencies. However, the extended
Drude model is only reliable much below the energy scales
of inter-band transitions and thus it is not particularly
useful in this context where the lowest possible inter-
band transition could be as low as 200 cm−1. We will
therefore ignore such effects for now and assume that
all the remaining high frequency optical conductivity is
primarily from inter-band transitions and compare it to
the inter-band optical conductivity calculated from band

structure.
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Figure 3. (a) Band structure calculated along symmetry lines
in tetragonal BZ. Doubly degenerate bands near the Fermi
level, discussed in the text, are plotted with blue (37,38), red
(39,40), and green (41,42) lines. and (b) comparison of the
calculated optical conductivity with experiment

Calculated inter-band optical conductivity (see figure
3(b)) is in rough agreement with the experimental obser-
vations at low frequencies and successfully reproduces a
peak at 950 cm−1 (green arrows) although the predicted
amplitude is much larger. However, as one can see, the
calculated conductivity is significantly higher than the
experimental one almost all throughout the frequency
range. The origin and significance of this peak will be
discussed further below.

The more striking feature is perhaps the almost com-
plete absence of a large peak close to 200 cm−1 (red ar-
rows) in the calculated optical conductivity spectra which
might be indicative of some deeper inconsistencies. As
the band structure in figure 3(a) does not include the
canting of the Mn2+ moments that is believed to be nec-
essary for the magnetic WSM phase, a next obvious step
is to include that in the DFT calculations.

Figure 4(a) and 4(b) shows the band structure along
(001) for a canting of 5◦ and 10◦ from the c-axis respec-
tively. Two sets of Weyl points develop in the band
structure for the canted system. The first set consists
of two pair of Weyl nodes at momentum coordinates
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Figure 4. Band structure calculated along symmetry lines for
a canting of (a) 5◦ and (b) 10◦ from the c-axis. The solid and
dashed lines of the same colors represent the bands that were
degenerate without canting. (c) Comparison of the calculated
optical conductivity for different canting with experiment

(0.193,0.193,0.12), (0.193,0.193,-0.09) and symmetry re-
lated points. In figure 4(a) and 4(b), along the k-space
cut along the M-Γ line, the Weyl point can be seen to be
developing near 200 meV. The other four Weyl nodes are
at (0.394, 0.045, 0.131) and symmetry related points. De-
tails of these Weyl node structures have been discussed
in reference16. Note that for all points, there are cer-
tain non-idealities (both in distortions of the bands and
their position from EF ) when compared to the simplest

Weyl band structure proposed in23 which would make
the observation of Weyl physics in the optical response
challenging.

The inter-band conductivity for these three levels of
canting, as well as the experimental data is plotted in
figure 4(c). Note that a peak slightly above 200 cm−1

gradually develops as one includes the effect of canting
in the band structure. Nevertheless, one must be cau-
tious in claiming this to be evidence for the WSM phase
as there are noticeable alterations in the band structure
unrelated to WSM physics that might bring about the
observed changes in optical conductivity. The principal
modification to the band structure from canting is the
lifting of two fold degeneracy of the bands close to the
Fermi level. This is the feature that gives rise to the
Weyl nodes in the calculated band structure. However,
this also opens up the possibility of having transitions
between these previously degenerate bands as not all of
them are above or below the Fermi level. The signatures
of such inter-band transitions are not expected to be di-
rectly related to the existence of the Weyl nodes as one
can see that they are generally far from the Fermi level.

If the important changes to the optical conductivity
are indeed from the bands being rearranged around the
Fermi level, somewhat similar changes may be observed
by a shift of the chemical potential. Moreover, doping is
rather common in semimetallic systems and thus explor-
ing this possiblity is important. This was investigated
by shifting the chemical potential above the calculated
charge neutral Fermi level (see figure 5(a)). An enhance-
ment in the spectral weight under the calculated peak
at 200 cm−1 is seen upon shifting chemical potential by
20 meV above the charge neutral Fermi level (see figure
5(b)). Thus it is possible that that the observed peak
at 200 cm−1 is simply indicative of a low energy inter-
band transitions and not a signature of Weyl nodes as
postulated elsewhere25.

To investigate the origin of these two peaks more
closely, we decomposed the calculated conductivity into
individual inter-band contributions. Figure 6(a) shows
the result of that decomposition. These calculations pro-
vide more definitive proof to support that the peak in
conductivity at 200 cm−1 is indeed an inter-band tran-
sition from the set of degenerate bands that is mostly
above the Fermi level (bands 39, 40) to the immediate
higher one (bands 41, 42). This is why when the Fermi
level is shifted to higher energies, the occupation in the
lower degenerate set of bands (39, 40) and consequently
the transition probability increases. Hence we observe
the enhancement of the amplitude of the peak in con-
ductivity upon shifting the Fermi level and is a probable
cause of the experimentally observed peak.

It is interesting to note that in the context of the con-
ductivity calculated from the band structure with canted
AFM order, the origin of the peak at 200 cm−1 is some-
what different than in the context of the uncanted struc-
ture, despite appearing at a similar energy scale. A de-
composition into different inter-band contribution indi-
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Figure 5. Band structure along (001) with Fermi level at 0
meV (blue solid line) and 20 meV above (red dashed line). (b)
Calculated optical conductivity for the corresponding Fermi
levels.

cates that in this structure the peak is primarily from
transitions between the previously degenerate bands, i.e.,
bands 37→38 and 39→40 (Band labels given in Fig. 3).
Although there is not much evidence from our experiment
to choose one over the other, we do not favor this as the
correct interpretation of our data as a canted order is
not supported by neutron scattering experiments or the-
oretical considerations. However, this calculation further
elucidates the fact that this peak is not a signature of
Weyl node, even in a band structure that incorporates
the effects of canted AFM order.

A possible explanation for the discrepancy in ampli-
tude of the 200 cm−1 peak would be electronic correla-
tion effects which can potentially add to the intra-band
conductivity but would not be captured through simple
subtraction of the Drude contribution. As an alterna-
tive to this peak being an inter-band excitation, it may
arise from the coupling of conduction electrons to mag-
netism. Neutron scattering experiments on YbMnBi2

19

show prominent spin wave excitations in the energy range
∼ 120 - 340 cm−1 which matches the energy scale of the
low energy peak observed in conductivity. The extent
of this coupling is hard to estimate solely from optical
conductivity measurements. One can expect such corre-
lations to redistribute the Drude spectral weight giving

Figure 6. (a) Decomposition of the the total inter-band opti-
cal conductivity into individual band transitions. Transitions
from bands (39, 40) to (41, 42) result in the peak at 200
cm−1 whereas transitions from bands (37, 38) to (39, 40) is
the origin of the peak at 950 cm−1. (b) Similar decomposition
assuming a 10◦ canted AFM order in the band structure.

an effective mass of the quasiparticles, m∗, different from
the band mass, mb. Such mass renormalizations can be
extracted using extended Drude model analysis but as ar-
gued before, it would be unreliable in the present context
because of the low lying inter-band transitions. However
we can roughly characterize the renormalization effect by
spectral weight analysis. We make use of the conductiv-
ity sum rule

Z0

π2

∫ ωc

0

σ1(ω)dω = ω2
p =

4πne2

mb
(2)

where Z0 is vacuum impedance, n is the carrier density
and ωc is chosen appropriately to include the bandwidth
of interest. If we interpret both the Drude term and
peak at 200 cm−1 both as inter-band contributions, then
the ratio of the total spectral weight to the Drude piece
gives a measure of the renormalized mass. A naive es-
timate of this electron-magnon coupling constant from
this exercise, γ = m∗/mb − 1 = 0.4. This is however
a rather crude estimate as we know that there is a fi-
nite contribution to the conductivity at these frequencies
from inter-band transitions and hence these numbers are
only a rough guide. It would be interesting to estimate
coupling constants from the neutron scattering data.
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The peak at 950 cm−1 is clearly from the inter-band
transition between the bands of interest that would host
the Weyl nodes in the canted structure i.e., right above
(39,40) and below (37,38). However, because of the other
low energy transition, it is nearly impossible to isolate
any signature of the Weyl nodes if they exist in the op-
tical conductivity spectrum. The peak derives from the
quasi-2D Bi p-states (see33) and is indicative of the linear
dispersion. A sharp peak in conductivity is ordinarily ex-
pected to appear if a pair of occupied initial and empty
final bands have nearly parallel dispersion in a large vol-
ume in k-space. Such an energy dispersion may occur if
the Fermi level is inside a gap, which opens due to avoided
crossing of two bands, and the size of the gap is constant
in a large part of Brillouin zone. Hence it is reasonable
to conclude that this peak is a signature of a Dirac dis-
persion with a small mass gap. This gap between the
“lens” shaped Fermi surfaces from the (37,38) bands and
the “boomerang” shaped Fermi surfaces from the (39,40)
bands (see figure 7(a) (inset)) extends along kz over the
whole Brillouin zone as the derived Bi p bands are quasi-
2D. This is further supported by partial conductivity cal-
culations where we have integrated over cylindrical re-
gions in k-space centered around points shown in the in-
set in Fig. 7(a). The radius of each cylinder was chosen
to be ≈ 0.1× 2π

a and the results clearly indicate that the
major contribution to this peak is from the D-point which
is between the “lens” and the “boomerang” shaped Fermi
surfaces where the Fermi level lies in the gap. Calcula-
tions also indicate that the magnitude of this gap does
not depend on kz as expected. The contribution from
B and X-points are also quite significant but as these
points are in close proximity to the D-point, it is not sur-
prising because the cylindrical volumes are not mutually
exclusive. This is the reason why these spectra are not
additive.

We can isolate the low frequency features of this partic-
ular inter-band contribution from the conductivity mea-
sured experimentally by fitting the peak at 200 cm−1 to
a Lorentz oscillator and subtracting it from the previ-
ously calculated inter-band conductivity. The resultant
shows a roughly linear regime between 300 cm−1 and
950 cm−1 that can be fitted to a straight line with zero
intercept (see figure 7(b)). With the assumption that
this linearity is due to the Dirac dispersion, we can cal-
culate the Fermi velocity using equation (1). There are
four Dirac points in each Brillouin zone of YbMnBi2

16

and thus the calculated Fermi velocity is (1.1±0.4)×105

cm/s [or 0.045±0.01 eV·Å]. This estimated Fermi velocity
is within the range expected from ARPES which varies
between 9 eV·Å(perpendicular to the kxky plane) and

0.043 eV·Å(along kz). As discussed before, anisotropic
Dirac cones are a hallmark of AMnBi2 compounds and
our observations here on YbMnBi2 fits well into this de-
scription. The existence of a Dirac fermionic dispersion
is also in good agreement with the reported magneto-
transport experiments23.

We note that our interpretation of these peaks is at

Figure 7. (a) Decomposition of the the inter-band contribu-
tion to the optical conductivity from the transition between
the bands (37,38) → (39,40) from different parts of the Fermi
surface (fig. inset) (b) Linear fit of the inter-band transition
peaked at 950cm−1.

odds with another recent optical study25 that has ob-
served similar features in low energy conductivity but
proposes that the peak around 200 cm−1 derives from
the van Hove singularity in a simplified WSM band struc-
ture. We do not favor this interpretation as realistic band
structure calculations of YbMnBi2 show it to exhibit cer-
tain non-idealities that will obscure the canonical behav-
ior given in Ref.23. Moreover, the Weyl state appears to
be dependent on the existence of the magnetic structure
for which there is no evidence. To reiterate, the the gross
features of the optical response can be explained by the
electronic structure of a uncanted state with a slightly
shifted chemical potential.

IV. CONCLUSION

We have measured the reflectivity of YbMnBi2 in the
infrared regime and calculated the optical conductivity.
The various features in the conductivity has been inter-
preted using DFT band structure calculations. We be-
lieve that the low energy peaks in conductivity at 200
cm−1 and 950 cm−1 are true inter-band transitions and
the spectrum can be explained reasonably well without
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invoking a canted magnetic structure which is necessary
to realize Weyl nodes in this system. The conductivity
leading up to the peak at 950 cm−1 is consistent with a
linear Dirac dispersion with a small gap. Although cant-
ing of the Mn moments does improve the agreement of
the calculated spectra with the experiments, similar ef-
fect can also be achieved by small shift in Fermi level.
Precise control of the Fermi level in semimetals is rather
difficult which when considering the lack evidence for
canting, we believe makes the latter outcome more likely.
However, in either case the high relative amplitude of
the low energy peak is not apparent from band structure
calculations but could be an manifestation of electronic
correlation effects.

One must still reconcile the ARPES data that shows
reasonably convincing evidence for Weyl physics16, with
neutron scattering experiments19,20 that does not show
evidence for canting and our optical data that does not
need it. Moreover, we should reiterate that the crystal
structure of this compound does not allow for a canted
magnetic structure to develop through a second order
phase transition. All of these considerations can be ac-

commodated if we assume that the reduced symmetry
of the surface allows a surface magnetic structure recon-
struction that is consistent with the canted state and a
surface Weyl phase. It is possible that the surface of this
compound hosts a true WSM through the breaking of
time-reversal symmetry. Detailed measurements of the
surface electronic structure or magnetism would be very
useful in this regard.
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