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We consider a theory of a two-component Dirac fermion localized on a (2+1) dimensional brane
coupled to a (3+1) dimensional bulk. Using the fermionic particle-vortex duality, we show that the
theory has a strong-weak duality that maps the coupling e to ẽ = (8π)/e. We explore the theory
at e2 = 8π where it is self-dual. The electrical conductivity of the theory is a constant independent
of frequency. When the system is at finite density and magnetic field at filling factor ν = 1

2
, the

longitudinal and Hall conductivity satisfies a semicircle law, and the ratio of the longitudinal and
Hall thermal electric coefficients is completely determined by the Hall angle. The thermal Hall
conductivity is directly related to the thermal electric coefficients.

I. INTRODUCTION

Recent developments have revealed powerful dualities
between seemingly different nonsupersymmetric quan-
tum field theories in (2+1) dimensions. A special case,
the bosonic particle-vortex duality, has been known for
decades1,2. More recently, a new duality between a free
fermion theory and a gauge theory called QED3 was sug-
gested in the context of the construction of a particle-
hole symmetric version of the composite fermion theory
of the half filled Landau level3. Later, the duality has
been shown to be related to the electromagnetic duality
in the bulk4,5. Most recently, the duality was shown to
be a particular case in a web of dualities that follows from
a relativistic version of flux attachment6,7. Many more
examples of dualities have been recently discovered, in-
cluding those of self-dual theories8–11.
In this paper we consider a simplest quantum theory

living in mixed (2+1) and (3+1) dimensions. The theory
involves a single two-component Dirac fermion Ψ living
in a (2+1)D coupled to a massless U(1) gauge field (pho-
tons) Aµ living in (3+1)D12

S =

∫

d3x iΨ̄γµ(∂µ − iAµ)Ψ− 1

4e2

∫

d4xF 2
µν . (1)

This theory has been previously considered in various
contexts13–15. Most recently, it was considered in Ref. 3
as an example of a relativistic theory exhibiting frac-
tional quantum Hall effect. The theory is similar to
the low-energy effective theory describing graphene—
Dirac fermions in (2+1) dimensions interacting through
a 3D Coulomb potential—with two notable differences:
there is only one (instead of four) two-component Dirac
fermion, and the photon propagate with the same ve-
locity as the fermion (instead of 300 times faster as in
graphene).
The bosonic version of the theory has been known for

some time16–18. In analogy with the bosonic case, we
find that the theory exhibits a strong-weak duality, which
combines the electromagnetic duality in the bulk and the
fermionic particle-vortex duality on the brane. The du-
ality maps e to ẽ = 8π/e, and the theory is self-dual at
e2 = 8π. Provided that the theory is conformal at this
coupling, we found nontrivial consequences for the trans-

port of the U(1) charge. In particular, we find that the
electrical conductivity is equal to a universal value

σ = σ0 ≡ 1

4π

[

σ0 ≡ e2

2h

]

. (2)

The expressions in the square brackets [· · · ] on the right-
hand side in this and later equations correspond to the
standard normalization of current and gauge field, in
which the electric charge e stays in the covariant deriva-
tive in Eq. (1). Remarkably, the electrical conductivity is
independent of the ratio between the frequency and the
temperature, ω/T , and hence has the same value in the
ballistic (ω ≫ T ) and hydrodynamic (ω ≪ T ) regimes.
This behavior has previously been noted in the strongly
coupled large-N theory living on a stack of M2-branes19.
Moreover, we find that when one turns on a charge

density n and a magnetic field B satisfying the condi-
tion n = B/(4π) (or filling factor ν = 1

2 in the quantum
Hall terminology), there is nontrivial relationships be-
tween electrical and thermal transport coefficients. The
longitudinal and Hall conductivities satisfy a semicircle
law

σ2
xx + σ2

xy = σ2
0 . (3)

The ratio of the longitudinal and Hall thermoelectric
coefficients is directly related to the Hall angle θH =
arctan(σxy/σxx). In addition, the thermal Hall conduc-
tivity is related directly with the thermoelectric coeffi-
cients.
The plan of this paper is as follows. We describe the

model in Sec. II and derive its self-duality in Sec. III. In
Sec. IV we extract the consequences of the self-duality.
Section V contains concluding remarks.

II. MIXED-DIMENSION QED

We start to recall some feature of the model (1) which
we will call QED4,3.
The coupling constant e is dimensionless. Physically,

e determines the force between two charges located in-
finitely far from the brane, and hence it does not run.
The theory is scale invariant at small e, but the situa-
tion at large e is not clear. The large N version of (1) is
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conformal for all values of e, including e = ∞ where the
theory becomes N -flavor QED3. It is expected that there
exist a critical value Nc, below which QED3 undergoes
spontaneous chiral symmetry breaking. For N < Ncrit

then one expects QED4,3 to be conformal only for suf-
ficiently small e, e < ecrit(N). Analytic estimates for
Nc based on a truncation of the Schwinger-Dyson equa-
tion are typically of order 6–920,21, but a recent numer-
ical simulation22 suggests that scale invariance persists
at N = 2, implying that Ncrit < 2. There has not been
any numerical study of N = 1. The “strong version”
of the conjectured duality between QED3 and free Dirac
fermion4,5 would imply that QED4,3 is scale invariant
even at e2 = ∞.
Applying the fermionic particle-vortex duality to the

(2+1)D part of (1), the model is mapped to

S =

∫

d3x

[

iψ̄γµ(∂µ − iaµ)ψ − 1

4π
ǫµνλAµ∂νaλ

]

− 1

4e2

∫

d4xF 2
µν . (4)

where ψ is the “composite fermion,” or the fermionic
vortex. Since aµ is now a field propagating in (2+1)D,
Care is needed to define the theory (4) on a compact
manifold—to avoid parity anomaly one should restrict
the path integral over the a field configurations with even
fluxes, or to introduce another gauge field (for discussions
of this point see Ref. 6 and 7). For the questions that we
will be interested in this paper, this subtlety will not play
an important role. At the first sight (4) and (1) appear to
be very different theories, however we will show that they
are the same theory with different coupling constant.

III. DERIVATIONS OF SELF-DUALITY

A. A simple derivation

The most straightforward way to see the self-duality is
to rewrite both theories in the form of theories with non-
local current-current interactions. Integrating over Aµ in
Eq. (1) we obtain a nonlocal action in 2 + 1 dimensions,

S =

∫

d3x iΨ̄γµ∂µΨ− i
e2

2

∫

d3x d3x′ jΨµ
1√
∂2
jµΨ. (5)

where 1√
∂2

is the (3+1)D Feynman propagator subject to

the constraint z = z′ = 0. On the other hand, integrating
over Aµ in the dual theory (4) leads to

S =

∫

d3x iψ̄γµ(∂µ−iaµ)ψ−
ie2

(8π)2

∫

d3x d3x′ fµν
1√
∂2
fµν ,

(6)
where fµν = ∂µaν − ∂νaµ, and now integrating over aµ
we get

S =

∫

d3x iψ̄γµ∂µψ − i
(8π)2

2e2

∫

d3x d3x′ jψµ
1√
∂2
jµψ , (7)

which has the same form as Eq. (5), with the replacement
e→ 8π/e.

B. Alternative derivation through bulk

electromagnetic duality

There is another derivation of the self-duality which
reveals the connection to electromagnetic duality in the
bulk. We first note that across the brane, the density
and current on the brane determines the jump of the
perpendicular (to the brane) component of the electric
field and the parallel components of the magnetic field,

∆Ez = e2ρ, ∆B‖ = e2 j× ẑ. (8)

In contrast, Bz and the E‖ are continuous across the
brane.
Without losing generality, we can impose an orbifold

condition

Aµ(z) = Aµ(−z), α = t, x, y (9a)

Az(z) = −Az(−z). (9b)

One can see that by decomposing the fields into sym-
metric and antisymmetric (under z → −z) parts: Aµ =
Asµ +Aaµ, the action then decomposes into

S[ψ,Asµ, A
a
z ] + S[Aaµ, A

s
z]. (10)

The fields Aaµ and Asz do not couple to the brane degrees
of freedom and can be integrated away. With the orbifold
condition (9), Eqs. (8) completely determine the bound-
ary values of the perpendicular component of the electric
field and the parallel components of the magnetic field,

Ez(z = ±ǫ) = ±1

2
e2ρ, (11a)

B‖(z = ±ǫ) = ±1

2
e2j× ẑ. (11b)

In contrast E‖ and Bz are continuous at z = 0.
We now analyze the composite fermion theory (4).

First let us write down the field equations. Aµ satisfy
the Maxwell equation in the bulk and the boundary con-
ditions (11), where the charge density and current are

ρ = − 1

4π
b, (12a)

j = − 1

4π
e× ẑ. (12b)

Varying S with respect to aµ we also find, at z = 0

ρCF =
1

4π
Bz, (13a)

jCF =
1

4π
E‖ × ẑ. (13b)

Instead of dealing with Aµ, we now perform an oper-
ation electromagnetic duality in the bulk. We introduce
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a dual electromagnetic field Ẽ and B̃ related to E and B

by

E = − sgn(z)B̃, (14a)

B = sgn(z)Ẽ. (14b)

Note that the transformation has a discontinuity at z =
0. In the bulk Ẽ and B̃ satisfy the same free Maxwell
equations as E and B. Note that the orbifold condi-
tions (9) is preserved by the duality transformation (14).
With Eq. (12), Eqs. (11) become, after the EM duality,

B̃z = −e
2

2
ρ =

e2

8π
b, (15a)

Ẽ‖ =
e2

2
j× ẑ =

e2

8π
e. (15b)

That means we can now extend the gauge field aµ to the
whole (3+1)D space, taking for the value of the field in

the bulk aµ = 8π
e2 Ãµ. The bulk Lagrangian for aµ is

Sbulk[a] = − 1

4e2

(

e2

8π

)2

f2
µν = − 1

4ẽ2
f2
µν , (16)

where ẽ = 8π/e. The electromagnetic duality opera-
tion (14) introduces jumps in components of fµν ,

ez(z = ±ǫ) = 8π

e2
Ẽz(z = ±ǫ) = ±8π

e2
Bz, (17a)

b‖(z = ±ǫ) = 8π

e2
B̃‖(z = ±ǫ) = ∓8π

e2
E‖. (17b)

By using Eq. (13), these equations can be written as

ez(z = ±ǫ) = ±4π
8π

e2
ρCF = ±1

2
ẽ2ρCF, (18a)

b‖(z = ±ǫ) = ±4π
8π

e2
jCF × ẑ = ±1

2
ẽ2jCF × ẑ, (18b)

which have exactly the same form as Eq. (11).
Thus the action for the composite fermion can be writ-

ten as

S =

∫

d3x iψ̄γµ(∂µ − iaµ)ψ − 1

4ẽ2

∫

d4x f2
µν . (19)

When e2 = 8π this action coincides with the action for
the original electron. This is the self-dual point.

C. Comparison with the model in half-space

In the literature, one frequently considers a model
where the gauge field propagates in one half of space
and the fermion is localized on the boundary of the half-
space. In this case (see, e.g., Ref. 7) we need a bulk θ
term with θ = π to properly define the partition function.
The duality transformation considered above becomes a

combination of S and T transformations. To see that, let
us define the complex coupling constant

τ =
θ

2π
+ i

2π

e2
(20)

and recall that the operations S and T act on the constant
as

S : τ → −1/τ (21)

T : τ → τ + 1. (22)

The composite operator ST−2
ST

−1 maps τ into

τ → τ ′ =
τ − 1

2τ − 1
. (23)

In particular, starting from θ = π, one also ends up with
θ′ = π

τ =
1

2
+ i

2π

e2
→ τ ′ =

1

2
+ i

e2

4 · 2π . (24)

The self-dual point is at e2 = 4π. This is twice smaller
than the value e2 = 8π we found for the model living in
the whole space. The factor of 2 difference accounts for
the fact that in our current model the electric field lines
are restricted to one half of space, hence the strength of
the Coulomb interaction is twice larger than in the model
living in the whole space with the same value of e2.

IV. CONSEQUENCES OF SELF-DUALITY

A. Electrical conductivity at zero chemical

potential and zero magnetic field

Now let us explore the consequences of duality for the
conductivity. Let us introduce the conductivity tensor,
which is denoted as σij on the electron side and σ̃ij on
the composite fermion side.
On the electron side Ohm’s law reads

ji = σijEj , (25)

and on the composite fermion side

jiCF = σ̃ijej. (26)

Using the duality dictionary:

ji = − 1

4π
ǫijej , (27)

jiCF =
1

4π
ǫijEj , (28)

one can easily find

σ = − 1

(4π)2
ǫ σ̃−1ǫ, ǫ =

(

0 1
−1 0

)

. (29)

Let us assume that the electron theory to be at zero
chemical potential and zero magnetic field, but finite
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temperature. The the conductivity tensor is diagonal:
σij = σδij . Equation (29) now implies

σ(e)σ̃(ẽ) =
1

(4π)2
. (30)

In particular, at the self-dual point e2 = ẽ = 8π,

σ = σ0. (31)

At zero temperature, the conductivity is just the coef-
ficient appearing in the current-current correlation func-
tion

〈Jα(p)Jβ(q)〉 =
σ

√

q2
(q2gµν−qµqν)(2π)3δ(3)(p+q). (32)

For a free Dirac fermion, e2 = 0, σ = 1/1623. Our result
thus indicates that the conductivity at e2 = 8π is by a
factor of 4/π ≈ 1.273 times larger than at e2 = 0. This
can be compared with the weak coupling result derived
in Ref. 24,

σ =
1

16

(

1 + C
e2

4π
+O(e4)

)

, C =
92− 9π2

18π
. (33)

If one naively substitutes e2 = 8π, one finds that the
one-loop correction enhances the conductivity by a factor
of 1.112. Obviously at such large coupling higher-loop
effects cannot be neglected.
From Eq. (30) we also find the conductivity at infinite

coupling,

σ(e2 = ∞) =
1

π2

[

2

π

e2

h

]

. (34)

Moreover, our result (31) is also applicable at finite
temperature, where it implies that the conductivity is
independent of frequency. In particular the conduc-
tivity has the same value in the hydrodynamic regime
ω ≪ T and in the ballistic regime ω ≫ T . A frequency-
independent finite-temperature conductivity has been
found in Ref. 19 for the theory living on a stack of N
M2-branes in M-theory in the limit of large N , which
has been traced back to the electromagnetic duality in
the holographic description.
The result continues to be true in the presence of du-

ality symmetric disorder. Such disorder can be intro-
duced, e.g., as a randomly fluctuating mass term of the
fermion, or by placing random electric charges and mag-
netic monopoles in the bulk near the brane so that the
statistical properties of this random ensemble of electric
and magnetic charges is invariant under electromagnetic
duality.
One can also consider transport at nonzero wave vec-

tors, where it is characterized by the longitudinal and
transverse conductivities. Again from Eq. (29) it follows
that at e2 = 8π,

σ⊥(ω, q)σ‖(ω, q) = σ2
0 . (35)

This exact relationship has been found previously in the
context of holography19 and the bosonic self-dual the-
ory18. When q = 0 the longitudinal and transverse con-
ductivities are equal and one recovers Eq. (31).

B. Electric and thermal transport at filling factor

ν = 1

2

1. Electrical conductivities

We now consider our system in a finite magnetic field
and finite density, so that the filling factor is 1/2. At zero
temperature and at weak coupling, the system forms an
integer quantum Hall state with the zero-energy Landau
level completely filled. Now the conductivity tensor has
nonzero off-diagonal element (the Hall conductivity). For
simplicity we only consider transport at zero wave num-
ber when

σij =

(

σxx σxy
−σxy σxx

)

. (36)

From the duality mapping between the density and the
magnetic fields, it follows that at the self-dual point the
dual theory is exactly the original theory, but with the
filling factor − 1

2 . That means σ̃xx = σxx, σ̃xy = −σxy,
or σ̃ = σT , and Eq. (29) implies

σ2
xx + σ2

xy = σ2
0 . (37)

At zero temperature and in the absence of disorder, we
have an integer quantum Hall state with σxx = 0 and
σxy = 1

4π and Eq. (37) is trivially satisfied. Turning
on the temperature, a nonzero σxx is induced by scat-
terings of the charge fermions on photons in the bulk.
In the limit when the temperature is very large (com-
pared to the scale set by the magnetic field and the den-
sity), σxx = 1

4π as we have derived at zero field and zero
chemical potential. As the temperature changes the con-
ductivities vary between these two extreme, following a
quarter-circle in the (σxx, σxy) plane. This behavior is
reminiscent of the semicircle law in quantum Hall tran-
sitions25–27.

2. Thermoelectric coefficients

We now apply the duality technique to the thermo-
electric transport. Introducing the thermoelectric coeffi-
cients αxx and αxy,

ji = σijEj + αij∂jT, (38)

jiCF = σ̃ijej + α̃ij∂jT. (39)

By using again the duality mapping, we find

α =
1

4π
ǫσ̃−1α̃. (40)

Again, at the self-dual point α̃ = αT , and Eq. (40) de-
termines the ratio αxy/αxx in terms of σxy/σxx. If we
introduce the Hall angle θH = arctan(σxy/σxx), then

αxy
αxx

= tan

(

π

4
+
θH
2

)

. (41)
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This can be written in terms of components of the See-
beck tensor, defined through Ei = Sij∂jT when there is
no current, ji = 0,

Sxy
Sxx

= tan

(

π

4
− θH

2

)

. (42)

Note that Sxx is the usual Seebeck coefficient and Sxy/B
is the Nernst coefficient.

Again one can discuss two limits. In the low-
temperature quantum Hall regime, θ → π/2, the Hall
thermoelectric coefficient αxy dominates over the longi-
tudinal coefficient αxx. In the very high temperature
regime, T ≫ n1/2, our result indicates that the ratio
αxx/αyy tends to one, in contrast to the electric conduc-
tivities where σxx dominates over σxy. This is not com-
pletely surprising: the thermoelectric coefficients break
charge conjugation and hence is zero when n = B = 0,
and one can show that αxx is proportional to n and αxy
to B when n and B are small. At filling factor ν = 1/2,
n and B are proportional to each other, hence αxx and
αxy are of the same order of magnitude.

3. Thermal Hall coefficient

Finally, we consider the transport of heat at filling fac-
tor ν = 1

2 . The heat current is

qi = −TαijEj − κ̄ij∂jT, (43)

where κ̄ij is the thermal conductivity tensor in the ab-
sence of electric field, which is related to the thermal
conductivity tensor in the absence of electric current κij
by κ = κ̄ − Tασ−1α. As the heat current is invariant
under electromagnetic duality, it has to be given by the
same expression in the dual description,

qi = −T α̃ijej − ˜̄κij∂jT. (44)

Following the duality maps we obtain a connection relat-
ing the thermal conductivity tensors on the two sides the
duality,

κ̄ = ˜̄κ− T α̃σ̃−1α̃ = κ̃. (45)

Thus, the thermal conductivity at zero field on one side
of the duality is equal to the thermal conductivity at zero
current on the other side. At the self-dual point, α̃ = αT

and ˜̄κ = κ̄T . Equation (45) then establishes a direct

relationship between the thermal Hall conductivity and
the thermoelectric coefficients:

κ̄xy = −κxy =
T

2

α2
xx + α2

xy

σ0
=
T

2
(S2
xx + S2

xy)σ0 . (46)

We also find that κ̄xx = κxx, but otherwise there is no
constraint on this coefficient. Not surprisingly, the values
of the kinetic coefficients in the N M2-branes theory28

also respects an analogous constraint (in the DC regime).
We note that relationships similar to Eqs. (40) and (45)
has been found in Ref. 29 in the context of a holographic
model with bulk electromagnetic duality.

V. CONCLUSION

We have shown that the simple model of (2+1)D
fermion coupled to three-dimensional U(1) gauge field,
QED4,3, exhibits weak-strong duality, and is self-dual at
a particular value of the coupling constant. From the
self-duality we derive the value of the conductivity at
zero density and magnetic field and show that it is inde-
pendent of frequency. At finite magnetic field and filling
factor ν = 1

2 we were able to derive a semicircle law satis-
fied by the longitudinal and Hall conductivities, relate the
ratio of the diagonal and Hall thermoelectric coefficients
with the Hall angle, and derive a relationship between
the thermal Hall conductivity and the thermoelectric co-
efficients.
We note here that all results obtained above can be

transferred to the bosonic model, at zero density and
magnetic field and at filling factor ν = 1. This may be in-
teresting since the ν = 1 bosonic quantum Hall state can
be a Fermi liquid. Most formulas derived in the paper re-
main valid if one replaces the value of σ0 by σ0 = 1/(2π).
It remains to be seen if self-dual systems are accessible

experimentally30. If they do, the predictions made in this
paper may serve as tests of self-duality in such systems.
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