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We propose a fully ab initio theory to compute the electron density response under the pertur-

bation in the local field. This method is based on our recently developed local dielectric response

theory [Phys. Rev. B 92, 241107(R), 2015], which provides a rigorous theoretical framework to

treat local electronic excitations in both finite and extended systems beyond the commonly em-

ployed dipole approximation. We have applied this method to study the electronic part of the

molecular polarizability of water in ice Ih and liquid water. Our results reveal that the crystal

field of the hydrogen-bond network has strong anisotropic effects, which significantly enhance the

out-of-plane component and suppress the in-plane component perpendicular to the bisector direc-

tion. The contribution from the charge transfer is equally important, which increases the isotropic

molecular polarizability by 5− 6%. Our study provides new insights into the dielectric properties of

water, which form the basis to understand electronic excitations in water and to develop accurate

polarizable force fields of water.
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I. INTRODUCTION

Water is one of the most important substances for life, many fields of science, and numerous technological ap-

plications. Despite its simple molecular structure, water has many anomalous behaviors, e.g., its density reaching

the maximum at 4◦C, that have attracted intensive research for decades. One intriguing aspect of the fundamental

properties of water is the electronic excitation, which is essential to the understanding of a broad range of problems,

such as solvation, water/solid interfaces, and electrochemical reactions in liquid solution. The quantum theory of

electronic excitation has been widely used to interpret, e.g., the x-ray absorption1–4 and optical absorption spectra

of water5,6, which in turn provide important physical insights into the atomic structures and the electronic structure

of water. Besides, it has been well established that van der Waals dispersion forces, arising from the coupling of

instantaneous and induced excitations, play a critical role in accurately describing the structure of water in ab initio

molecular dynamics simulations7–11.

In the linear response regime, how to describe the electronic part of the molecular polarizability of water (αH2O)

remains a subject of debate, despite the rather simple textbook picture of dielectrics12. Experimentally, αH2O is

known in the gas phase only13. In the condensed phase, the average value of the molecular polarizability is typically

estimated from the refraction index measurement using the Lorentz-Lorenz relation14. Although this approach is

suitable for gases and nonpolar liquids, it fails for polar liquids, such as water, due to the inaccurate description of the

local field experienced by the polar molecule. Many competing models have been proposed to improve Debye’s dipole

theory14, including models from Onsager15 and Kirkwood16. Due to the deficiency of a classical treatment of the local

field in liquid water, this problem has not been solved yet. Besides the actual value of αH2O, it is more important to

understand how αH2O changes in different chemical environments (e.g. from the gas phase to the condensed phase) or

under different boundary conditions (e.g., bulk water or confined water, such as water at the solid / water interface).

From the computational point of view, although the macroscopic average of the dielectric response of water is very

well captured by the density functional theory (DFT) or beyond-DFT methods, such as the many-body perturbation

theory5,6, the chemical nature of the microscopic counterpart, e.g., the microscopic electric susceptibility (χ), remains

poorly understood. Currently, a rigorous, fully ab initio theory to compute αH2O is lacking, and existing models

predict contradicting trends in αH2O. Using point charge models to represent the solvent molecules, Gubskaya and

Kusalik17 found an increase of αH2O in liquid. Morita18 proposed a cluster model, where the solute polarizability

in the cluster is approximated by the difference of the polarizability of the cluster and that of the solvent only,

∆α = αtot − αsolv. The non-additive correction was taken into account by introducing a dielectric continuum model

of the solvation shell18. In contrast to the point charge model, the cluster model predicts the isotropic molecular

polarizability, ᾱH2O = 1
3Tr (αH2O), in the liquid is reduced from that in the gas phase by 7 − 9%, and the reduction

was attributed to the electron repulsion of the ambient solvent molecules that perturb and confine the spatially diffuse

tail of the electron cloud of the solute18.

Most of other computational studies employed an extension19 of the interactive dipole model (IDM)20–22 to the

condensed phase, where the electrostatics of the electron density response is approximated at the dipole-dipole inter-

action level. IDM calculations found that ᾱH2O in the liquid water is reduced by less than 2%23,24 or the same as25

that of the gas phase. These results also showed an anisotropic effect, with the in-plane components reduced, while

the out-of-plane component enhanced23–25. The origin of these changes is unclear, as the effects of the crystal field
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are intertwined with structural changes of water monomer geometries under the thermal fluctuation.

Because of the uncertainties in determining αH2O from both experiment and theory, there is no clear recipe on how

to choose the right αH2O in a polarizable force field, given the knowledge of the gas phase value26. To address this

open question, in this work we proposed a fully ab initio method to compute αH2O based on the our recently developed

local dielectric response theory (LDRT)27, which is among the techniques to compute the dielectric response function

without explicitly referring to the empty states28–34. The new method is general and can be used to study αH2O

in different chemical environments. We proved that the widely used IDM is the dipole limit of our theory. In the

numerical study of αH2O in liquid water, we paid special attention to separate the environmental effects due to the

crystal field and charge transfer from those caused by intramolecular thermal fluctuations.

II. METHOD

A. Molecular polarizability in extended systems under the dipole approximation

In order to quantify molecular polarizabilities in an extended system, it is necessary to express the dielectric response

of a many-electron system in a local representation, instead of the Bloch representation. A formal way to proceed is

to use the Wannier function (WF) formalism, such as the maximally localized Wannier function (MLWF)35–37, where

the WFs (|wRn〉) are constructed from unitary transformations of the Bloch orbitals (|ψk
m〉). In systems with a finite

band gap, we consider only the occupied bands:

|wRn〉 =
Ω

(2π)3

∫
BZ

dke−ik·R
nv∑

m=1

U (k)
mn|ψk

m〉, (1)

where nv is the total number of the occupied bands, and Ω is the real space primitive cell volume. Unitary matrices

(U (k)) in the MLWF formalism minimize the spatial spreads of the WFs labeled by the lattice vector (R) and the

Wannier center index (n). In this study, we focus on isolated systems or periodic systems with a large supercell, where

a single Γ-point sampling in the reciprocal space is used. The extension to general cases of the k-point sampling,

although in principle feasible, is beyond the scope of this work. In the Γ-point formulation, the above expression is

simplified to

|wn〉 =

nv∑
m=1

Umn|ψm〉. (2)

Within the modern theory of the electric polarization in crystalline dielectrics38–41, the dipole moment of a sub-system

(e.g., a ion or molecule labeled by M) is defined in atomic units as

µM =
∑
i∈M

ZiR
ion
i − 2

∑
n∈M

rn, (3)

where Zi and Rion
i are the charges and positions of ions. Positions of the Wannier centers that belong to M ,

rn = xnî+ ynî+ znk̂, can be computed from35

xn = − L

2π
= ln〈wn|e−i

2π
L x|wn〉, (4)

where L is the size of the supercell.
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Upon a small perturbation from an external electric field (E) at a given frequency, the electronic contribution to

the net induced dipole of M in the gas phase is given by

∆µM = αgas
M E, (5)

where αgas
M is the frequency-dependent gas phase molecular polarizability tensor. Here we dropped the explicit

frequency dependence to simplify the notation. Once the molecule is embedded in a chemical environment, e.g. a

cation in a solid or a solute molecule surrounded by solvent molecules, the induced dipole arises from the response

to the local field that is the sum of the external field and the induced field from the environment, Eloc
M = E +Eind

M .

Unlike E, Eind
M is a microscopic quantity, whose direction and amplitude vary within the size of the molecule. In

practice, this finite size effect is often ignored, which leads to the approximate expression,

∆µM = αM Eloc
M , (6)

where αM is the environment-dependent molecular polarizability tensor.

Under the dipole approximation, Eind
M in the IDM is approximated by the dipole field of environment molecules

(N 6= M),

Eind
M ≈

∑
N 6=M

TMN ∆µN , (7)

where TMN = ∇∇r−1MN is the dipole-dipole interaction tensor with rMN the inter-molecular distances. Substituting

Eq. 7 into Eq. 6, one can derive an equation of interacting dipoles19–22,

∆µM = αM (E +
∑

N 6=M

TMN ∆µN ). (8)

αM in Eq. 8 can be solved conveniently, once ∆µ are obtained from finite external field calculations19,24 or linear

response theory25.

B. Local dielectric response theory

R1: Mol 
R2:CT 

R3: Crystal field Env 

Mol Eloc 

a b 

FIG. 1. a) Schematics of local excitations of a molecule inside a chemical environment. b) Three regions in the quantum

mechanical description of the problem, R1 ∈ R2 ∈ R3. R1: the region of the molecule of interest, R3: the whole system

providing the crystal field (CF), and R2: a subset of R3 coupled to R1 through charge transfer (CT) upon local excitations.

Although the IDM combined with DFT has been widely used to calculate molecular polarizabilities19,23–25,42, it

has several drawbacks. First of all, as mentioned above, Eq. 6 neglects the finite size effect in the induced field of the



5

environment. Secondly, the dipole approximation neglects all the higher order terms. It might be justifiable at the

far field, but when molecules get close to each other, the validity of the dipole approximation is questionable. More

severely, the use of TMN does not satisfy the positive definite requirement of Eq. 822. As a consequence, molecular

polarizabilities from the IDM can diverge or become negative in simple systems, e.g., the cooperative (head to tail)

induced dipoles in the direction of the line connecting the two22,43,44. Finally, at the interface between M and the

environment (see Fig. 1b), wavefunctions of excited environmental electrons can have finite overlap with the occupied

valence electron orbitals of M , leading to a charge transfer (CT) type of density response on M . The CT contribution

is a quantum effect, and can not be captured at the level of dipole-dipole interaction.

In order to develop a rigorous, fully quantum mechanical treatment of αM , let us first consider a slightly broader

scenario, the local excitations of a molecule embedded a chemical environment as shown in Fig. 1a. The whole system

can thus be divided into three regions (R1 ∈ R2 ∈ R3) as shown in Fig. 1b, R1: the region of the molecule of interest

(M), R3: the whole system providing the crystal field (CF), and R2: a subset of R3 coupled to R1, such that CT

can happen between R2 and R1 upon local excitations. We will introduce a formal theory based on the microscopic

susceptibility, χ. We note that Allen44 developed a model of charge-dipole interaction along the same line, where

charges are treated by quantum mechanics, and charge interactions are solved in the random phase approximation

(RPA). The remaining obstacle in our approach is to reformulate χ, a non-local quantity by definition, in the local

representation.

An early proposal was made by Hanke to address this issue by localizing electrons and holes separately when

building an explicit electron-hole pair basis45. In practice, this method is inconvenient, because of a) the difficulty

to numerically converge the number of unoccupied bands, and b) even if the convergence can be reached, the poor

locality of the high energy unoccupied bands. Both limitations of Hanke’s method45 can be avoided, because it is

unnecessary to localize the unoccupied bands. In other words, we formulate the theory on the occupied manifold only,

without using the explicit electron-hole pair basis. In the following, we first summarize the recently developed local

dielectric response theory (LDRT)27 that provides the theoretical framework to study local excitations. Then we use

the LDRT to develop a fully ab initio theory to calculate the dielectric response of the perturbation in the local field.

The central quantities in the linear response theory are the bare, χ0(ω; r, r′), and the screened susceptibility,

χ(ω; r, r′), which are the functional derivatives of the charge density response with respect to perturbations in the

self-consistent field potential (δVscf ) and the external potential (δVext):

χ0(ω; r, r′) = δρ(ω; r)/δVscf (ω; r′),

χ(ω; r, r′) = δρ(ω; r)/δVext(ω; r′). (9)

In the following, we adopt the shorthand notation: ∆ρ = χ0 ∆Vscf = χ∆Vext, where integration on common variables

is implied. χ can be solved from χ0 through Dyson’s equation46, χ = χ0 +χ0K χ, where K = vH +Kxc with vH and

Kxc being the Coulomb and exchange-correlation kernel, respectively. In the language of the linear response theory,

χ0 is the building block.

Under the Bloch representation, both ∆ρ and χ0 can be partitioned according to occupied bands,

∆ρ =
∑
v

∆ρv, χ0 =
∑
v

χ0
v,

∆ρv = χ0
v ∆Vscf = 2 (|∆ψ+

v 〉+ |∆ψ−v 〉)〈ψv|, (10)
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where |∆ψ±v 〉 are the solution of the Sternheimer equation at + and − frequencies29,

(εv − Ĥ − αP̂ ± ω)
∣∣∆ψ±v 〉 = Q̂∆Vscf |ψv〉 . (11)

Here εv are energy levels of the occupied states of the Kohn-Sham (KS) Hamiltonian (Ĥ); P̂ =
∑

v |ψv〉 〈ψv| and

Q̂ = Î− P̂ are projectors onto the occupied and unoccupied state manifolds, which are introduced to avoid the explicit

reference to the unoccupied states29. The term αP̂ is introduced to remove the singularity of Eq. 11.

The essence of the LDRT is to recognize that ∆ρ is invariant under the unitary transformation of the occupied

orbitals, which allows ∆ρ and χ0 to be formulated under the Wannier representation,

∆ρ =
∑
n

2 (|∆W+
n 〉+ |∆W−n 〉)〈Wn|, (12)

where |∆W±n 〉 are solutions of the generalized Sternheimer equation27,∑
n′

(ε̃nn′ − Ĥ − αP̂ ± ω)
∣∣∆W±n′

〉
= Q̂∆Vscf |Wn〉 . (13)

Since |Wn〉 are not the eigenstates of the KS Hamiltonian, εv are replaced by the coupling matrix elements, ε̃n,n′ =

〈Wn|H|Wn′〉. In contrast to Eq. 11, linear response equations in Eq. 13 are entangled due to ε̃n,n′ . The variation of

|Wn〉 caused by the perturbation at |Wn′〉 can be obtained from∣∣∆W±n 〉 =
∑
n′

∣∣∆W±nn′

〉
≡
∑
n′

[ε̃− (Ĥ + αP̂ ∓ ω) Î]−1nn′ Q̂∆Vscf |Wn′〉 ,
(14)

where Î is an Nv×Nv identity matrix. The indices of ∆Wnn′ denote the perturbation site (right) and the response site

(left), respectively. For systems with a finite band gap, Ge and Lu27 proved that the spatial distribution of |∆W±nn′〉

decays exponentially in real space, and its magnitude decays exponentially as the distance between sites n and n′.

Combining Eqs. 13 and 14, one can formally construct the partial response densities and partial microscopic

susceptibilities (PMSs) on Wannier centers according to

∆ρ =
∑
nn′

∆ρnn′ , χ0 =
∑
nn′

χ0
nn′ ,

∆ρnn′ = χ0
nn′ ∆Vscf = 2 (|∆W+

nn′〉+ |∆W−nn′〉)〈Wn|. (15)

Similarly, χ can also be partitioned into PMSs through the Dyson’s equation,

χnn′ =
∑
n′′

∞∑
m=0

χ0
nn′′

(
K χ0

)m
n′′n′ . (16)

The partition of χ0 (χ) into PMSs is illustrated in Fig. 2 for a system with two occupied Wannier centers. On each

site, there are four possible diagrams: local perturbation (LP) only, local response (LR) only, local perturbation plus

local response (LPR), and an empty site (ES). Therefore, χ0 (χ) of the whole system can be partitioned into four

terms: two diagonal terms (LPR on site 1 and 2) and two off-diagonal terms (LP on one site and LR on the other

site).

PMSs like χnn′ are important quantities to study the non-locality of the response functions. In particular, χnn′

associates the response density at site n to the external perturbation, ∆Vext, at site n′. In the quantum chemistry
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LP LR LPR ES 

χ 0 χ( ) = +

+ +

FIG. 2. Schematics of partitioning χ0 (χ) of a system with two occupied Wannier orbitals into four partial microscopic

susceptibilities. Diagrams at the top indicate all four possible scenarios on one site: local perturbation (LP), local response

(LR), local perturbation plus local response (LPR), and an empty site (ES).

language, similar notions have been introduced based on the local basis set formalism in the conceptual density

functional theory47, to define the local reactivity index48, the atom-condensed linear response matrix49, and a measure

of aromaticity50,51. It is worth noting that PMSs defined through the LDRT are formally additive, and do not suffer

basis set-dependent errors in the local basis set approach. By summing over the perturbation index, one can construct

local response density, ∆ρn =
∑

n′ ∆ρnn′ , and local susceptibilities, χ0
n =

∑
n′ χ0

nn′ and χn =
∑

n′ χnn′ , or their

symmetric form, χ̃0
n = 1

2

∑
n′(χ0

nn′ + χ0
n′n) and χ̃n = 1

2

∑
n′(χnn′ + χn′n). A Dyson-like relation exists between χn

and χ0
n,

χn = χ0
n (1−Kχ0)−1. (17)

χn provides a local measure of excited state properties projected onto a Wannier orbital, such as the bond polariz-

ability27.

C. Electronic density response of the local perturbation

We start by dividing the Wannier centers of the whole system into two sub-systems: the molecule of interest (M)

and the environment (E) as shown in Fig. 1b. It is convenient to define local quantities associated with each sub-

system, S (S = M or E): ∆ρS =
∑

n∈S ∆ρn, χ0
S =

∑
n∈S χ

0
n, and χS =

∑
n∈S χn. A quantum mechanical description

of the molecular polarizability embedded in a medium relies on the density response to the perturbation in the local

field, or in short, the local perturbation. Conceptually, within the linear response theory it implies a) to freeze both

the external perturbation potential and the induced potential due to the polarization of the environment, and b) to

obtain the self-consistent solution of the response density of the molecule. In the same spirit, Buin and Iftimie24

proposed the frozen orbitals polarizability model within the IDM based on the MLWFs, as an alternative to Heaton et

al.’s formulation19. In practice, one has to “unscreen” (US) the PMSs on the molecule (χS) to remove the screening

effects from the environment. For this purpose, we define the unscreened molecular susceptibility (χus
M ) as

∆ρM = χus
M ∆Vloc, (18)

where ∆Vloc = ∆Vext + K ∆ρM is the perturbation in the local potential. Clearly, this quantity is different from χ

that is related to external perturbation, ∆Vext, and χ0 that is related to the self-consistent field perturbation, ∆Vscf .
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The unscreening procedure implies that

χus
M = χ0

M + χ0
M K χ0

M + χ0
M (K χ0

M )2 + · · · = χ0
M + χ0

M K χus
M . (19)

The molecular polarizability is given by

αM,ij = −
∫
dridr

′
j ri χ

us
M (ω; r, r′) r′j ≡ −Tr

[
ri(χ

us
M r
′
j)
]
, (20)

where i and j denote Cartesian axes. Because χ0
M and χM are additive, so is the effective molecular polarizability,

αeff
M,ij = −Tr

[
ri(χMr

′
j)
]
. On the other hand, because χus

M is not additive, neither is αM .

In order to reveal the relation between the above quantum mechanical description and the IDM of Eq. 8, we similarly

define χus
E as the unscreened susceptibility of the sub-system E under the perturbation of the local field,

∆ρE = χus
E ∆Vloc. (21)

It allows us to express the unscreened and screened susceptibilities of each sub-system,

χus
S = χ0

S (1−Kχ0
S)−1,

χS = χ0
S (1−Kχ0)−1. (22)

Employing the additivity relation, χ0 = χ0
M + χ0

E , we have

χM = χus
M + χus

M KχE , (23)

χE = χus
E + χus

E KχM . (24)

Consider ∆Vext(r) = Ej rj . Multiply −ri from left and Ejr
′
j from right on both sides of Eq. 23 and integrate. It

follows that

∆µM,i = αM,ij Ej − Tr
[
ri(χ

us
M KχE r

′
j)
]
Ej . (25)

Ignore Kxc in K, and take the dipole approximation to expand vH =
∑

N∈E |(rM +r′′)−(rN +r′′′)|−1 to the second or-

der of rMN . The only non-vanishing terms arise from r′′ TMN r
′′′ due to the charge neutrality condition,

∫
dr∆ρ(r) =

0. Consequently, the second term on the right hand side of Eq. 25 becomes
∑

N∈E
∑

kl〈ri|χus
M |r′′k〉TMN,kl 〈r′′′l |χE |r′j〉Ej ,

where TMN,kl = ∂k∂lr
−1
MN . It is straightforward to show that

∆µM,i = αM,ij Ej +
∑
N∈E

∑
kl

αM,ik TMN,kl ∆µN,l, (26)

which reproduces Eq. 8. Alternatively, by dividing Ej on both sides of Eq. 26, one obtains the IDM without explicit

dependence on the external field,

αeff
M = αM +

∑
N∈E

αM TMN αeff
N . (27)

We have proved that the IDM is the classical limit of Eq. 23 under the dipole approximation.

One may also arrange the screened and unscreened PMSs in the matrix form throughχM

χE

 =

 1 −χus
M K

−χus
M K 1

−1χus
M

χus
E

 . (28)

By expanding the matrix inversion in Taylor series, the first and second order corrections to χM are χus
M K χus

E and

χus
M K χus

E K χus
M , respectively. In the limit that M and E are spatially fully separated, Dobson52 derived the same low
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order correction terms to χM , which have been used by one of us to derive three-body terms in the RPA correlation

energy53. Because Eq. 28 includes contributions at infinite orders, it is also valid in the regime where the electron

densities of M and E overlap. We also note the similarity between Eq. 23 in this work and Eq. 41 in the linear

response theory of subsystem TDDFT54,55.

III. COMPUTATIONAL DETAILS

In this study, ground state and linear response calculations were performed using the Perdew-Burke-Ernzerhof

(PBE)56 exchange-correlation functional with the SG15 optimized norm-conserving Vanderbilt (ONCV) pseudopo-

tentials57–59 together with the Γ-point sampling. The kinetic energy cutoff of the planewave basis set was chosen at

65 Rydberg. All the gas phase calculations were performed using a simple cubic supercell of 20 Å. MLWFs were con-

structed with Wannier9060. αM is calculated from the self-consistent solution of χus
M according to Eq. 19 through the

DFPT implemented in a customized version of Quantum ESPRESSO61. At each self-consistent step, the generalized

Sternheimer equations are solved, and the density response is projected onto M as ∆ρM = χ0
M∆Vloc. The converged

density response is used to compute αM .

In practice, we first compute the ground state of the system, which can be either a finite system in a supercell or

an extended system described under the periodic boundary condition. Since we are using a Γ-point formalism for

extended systems, the unit cell size has to be sufficiently large. Next we construct Wannier orbitals for occupied

states, and associate Wannier orbitals to their corresponding water molecules. Different environmental effects can be

quantified separately based on the choices of R1, R2 and R3 denoted by (nR1
: nR2

: nR3
) in the subsequent linear

response calculations. Each of R1, R2 and R3 denotes a subset of water molecules. Specifically in the study of αH2O,

R1 is restricted to one water molecule, i.e. nR1 = 1. For the CF effect, R3 contains the whole system, which means

that Vscf of the whole system is used in the Sternheimer equations. We restrict the charge transfer effects inside

the subsystem defined by R2. If nR2 = nR3 , no truncation is applied, and the generalized Sternheimer equations are

solved for all the occupied Wannier orbitals. If nR2
∈ nR3

, the generalized Sternheimer equations are truncated so

that only the occupied Wannier orbitals corresponding to R2 are included.

The effect of the crystal field is investigated by comparing water clusters with different sizes with extended systems.

To this end, we consider two extended systems (ice Ih and liquid water) and three types of water clusters: water

monomers (nR3 = 1), water clusters including the first solvation shell (nR3 = 5), and water clusters including the first

and second solvation shells (nR3
= 17). The structures of gas phase water clusters are fixed at the same geometry

as those in ice Ih or liquid water in order to eliminate the ambiguity due to the structural changes. To study the

distance dependence of the CT effect, the region of R2 is varied in size, with the lower limit being one water molecule

(R1) and the upper limit being the whole system (R3).

The ice Ih structure is modeled by an orthorhombic supercell (nR3
= 96; a = 13.30 Å, b = 15.36 Å, and c = 14.47 Å)

constructed from the hexagonal unit cell (a = b = 7.78 Å, c = 7.33 Å, and γ = 60◦) of Ref. 62. Although the effect

of proton disorder can in principle be studied by using different proton-ordered, energetically quasi-degenerate ice Ih

structures, it is beyond the scope of the current work. The structures of liquid water were taken from the trajectories

of the ab initio molecular dynamics simulation of 64-molecule water samples at 400 K, the water PBE400 dataset63

(nR3
= 64). The supercell size is 12.41 Å. αH2O are averaged over the first 20 snapshots of the PBE400 64 subset,
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resulting in 1280 water molecule geometries.

IV. RESULTS AND DISCUSSIONS

A. Water monomer in the gas phase

αH2O of the gas phase water monomer optimized with the PBE exchange-correlation functional is listed in Table I.

ᾱH2O = 1.59 Å3, and the three principal components are αxx = 1.58 Å3, αyy = 1.60 Å3, and αzz = 1.58 Å3,

respectively. The principal axes are define as the following: x along the bisector direction, y along the in-plane

perpendicular direction, and z along the normal direction of the molecular plane. These values are in close agreement

with the previous PBE results25. ᾱH2O overestimates the experimental value by 8%, in line with the error expected

from PBE. This overestimation is associated with the underestimation of band gap and band width well-known for

semi-local approximations to the exchange and correlation potential and in line with Penn’s model64 of the dielectric

constant. Nevertheless, our main focus is to understand the general trend of the environmental effects on αH2O in the

condensed phase, i.e., changes in αH2O, not the absolute value.

We also checked our gas phase results using the BLYP functional65,66 in order to compare with the BLYP results in

the literature23,24. As shown in Table I, BLYP results in Refs. 23 and 24 are systematically smaller than our results,

with ᾱH2O is about 8% smaller than our result. This difference is caused by the supercell size convergence issue in

the finite field calculations67 in previous studies23,24. As pointed out by Buin and Iftimie24, αxx obtained from a

10 Å cubic box is known to underestimate the fully converged value by 8%, and similar underestimations are likely to

occur also in their liquid water calculations. Their observation is consistent with the fact that αxx in Refs. 23 and 24

is about 8% smaller than our result. On the other hand, our linear response method does not suffer this convergence

issue. For example, gas phase αii calculated with 20 Å and 30 Å cubic supercells are within 0.04%. If we compare

PBE and BLYP results in this work, ᾱBLYP
H2O

is slightly larger than ᾱPBE
H2O

by 1%.

B. Isotropic molecular polarizability of water

Environmental effects on ᾱH2O in ice Ih are shown in Fig. 3. Because the geometries of each water molecule in the

ground state ice Ih model are almost identical, the computed ᾱH2O differ by less than 0.15%. Therefore we present

the results from a single water molecule in ice Ih. We consider four systems: three gas phase water clusters with

nR3
= 1 (monomer), 5 (first shell), and 17 (second shell) and ice Ih with nR3

= 96. Here gas phase clusters refer

to water molecules with the same geometry as in ice Ih to enable a straight comparison. First, we focus on the CF

effect by fixing nR2
= 1 and varying n = nR3

. The effect of the CF is to reduce ᾱH2O. Compared to ᾱH2O = 1.66 Å3

of the gas phase monomer, ᾱH2O decreases by 3.1% caused by the CF of the first solvation shell. When the full CF

of ice Ih is included, ᾱH2O decreases by 3.8%. Gubskaya and Kusalik17 reported an opposite trend, i.e., an increase

of ᾱH2O by 1.2 ∼ 5.3%, which is likely due to the approximate nature of their local field models represented by the

electrostatic field of a few point charges.

Next, we analyze the CT effect in ice Ih by fixing nR3 = 96 and varying n = nR2 . In general, we expect the CT effect

to enhance αM , as the excitation of neighboring water molecules has a constructive contribution. Indeed after we
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TABLE I. Molecular polarizability of water (in Å3) of the gas phase monomer, ice Ih and liquid water. Results in liquid water

are the statistical average (〈α〉) and the standard deviation (σ). The x axis is the dipole axis, and the z axis is the normal

direction of the molecular plane. Gas phase molecules in the rows of ice Ih and liquid water have the same geometry as in the

condensed phase. CF and CT denote the crystal field and charge transfer, respectively.

αxx σxx αyy σyy αzz σzz ᾱH2O σ

monomer PBEa 1.58 1.60 1.58 1.59

BLYPa 1.60 1.63 1.59 1.61

BLYPb,c 1.47 1.53 1.42

expd 1.468± 0.003 1.528± 0.013 1.415± 0.013 1.470± 0.003

gas phase 1.65 1.71 1.61 1.66

ice Ih CF 1.58 1.44 1.76 1.60

CF+CT 1.69 1.54 1.88 1.70

gas phase 1.64 0.05 1.69 0.08 1.61 0.03 1.65 0.05

water CF 1.66 0.10 1.55 0.09 1.78 0.14 1.66 0.08

CF+CT 1.76 0.11 1.63 0.10 1.86 0.16 1.75 0.09

BLYPb 1.45 1.42 1.48

BLYPc 1.44 0.03 1.41 0.03 1.49 0.03

a this work. b Ref. 23. c Ref. 24. d Ref. 13.

include the CT effect from the first solvation shell, ᾱH2O increases from 1.60 to 1.70 Å3, which is more significant than

the total CF effect. Since the CT effect is short-ranged, it saturates readily at nR2
= 5. At nR2

= 96, ᾱH2O further

increases by only 0.003 Å3. Finally, we combine the CF and CT effects by simultaneously varying n = nR2 = nR3 . As

shown in Fig. 3, the CT effect dominates within the first solvation shell, and ᾱH2O reaches the maximum at 1.72 Å3.

Beyond that, the CT effect fades away, and the tail of the CF effect takes over. ᾱH2O decreases slowly by 0.01 Å3 at

n = 96. Overall, ᾱH2O in ice Ih is larger than the gas phase value by 2.8%.

The inset of Fig. 3 shows the isosurface of the electron density response in ice Ih due to the charge transfer under a

uniform electric field along the x axis (the red arrow), i.e., ∆∆ρCT = ∆ρ(1, 96, 96)−∆ρ(1, 1, 96). Clearly one can see

a positive induced dipole moment emerging from the four nearest neighbor water molecules (highlighted in purple)

that are H-bonded to the central water molecule. Previously, Lu et al.69 applied the MLWF procedure to localize

the eigenvectors of the static dielectric matrices in ice Ih and liquid water, and identified dominant screening modes

that are either localized on individual water molecules or involving H-bonded water dimers. Based on our study, the

physical origin of these modes becomes clear, which are intramolecular excitations and intermolecular charge transfer

excitations.

Next we compute ᾱH2O in liquid water, where the thermal disorder effects play a key role in contrast to the results

of ice Ih at zero temperature. Here we divided the thermal disorder effects into intramolecular contributions on

individual water molecules and intermolecular contributions from the crystal field including H-bonds and long-range

electrostatic effects. To isolate the intramolecular component, we sampled ᾱH2O of gas phase water monomers with

the same geometries as those in liquid water. The intermolecular contributions were extracted by comparing ᾱH2O of

the gas phase and liquid water that includes environmental effects.

As shown in Table I and Fig. 4, 〈ᾱH2O〉 is 1.65 Å3 in the gas phase, which is averaged over 1280 monomer
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FIG. 3. Environmental effects on the isotropic molecular polarizability of water (ᾱH2O) in ice Ih. Notation (nR1 : nR2 : nR3)

corresponds to the number of water molecules in the molecular region (nR1), the charge transfer region (nR2) and the crystal

field region (nR3) as defined in Fig. 1 and Section III. Inset shows the isosurface of the electron density response due to the

charge transfer under a uniform electric field along the x axis (the red arrow), i.e., ∆∆ρCT = ∆ρ(1, 96, 96) − ∆ρ(1, 1, 96).

Yellow indicates electron accumulation; blue indicates electron depletion. Water molecules are visualized in the ball-and-stick

representation with oxygen and hydrogen atoms represented by red and white spheres. The four water molecules tetrahedrally

H-bonded to the central water molecule are highlighted in purple. The isosurface plot was generated with VMD68.

configurations. Here 〈· · · 〉 denotes the statistical average. This mean value is nearly the same as that in ice Ih

(1.66 Å3), and the intramolecular thermal disorder in the PBE water leads to a standard deviation of σ = 0.05 Å3.

However, once the CF effect is included, 〈ᾱH2O〉 slightly increases to 1.66 Å3, which is substantially larger than that

in ice Ih (1.60 Å3) by 4%. At the same time, σ increases to 0.08 Å3, indicating a notable intermolecular contribution.

The effect of the CT in liquid water is similar to that in ice Ih, which further increases ᾱH2O by 0.09 Å3 with σ almost

unaffected. This suggests that the crystal field is the primary source of the intermolecular thermal disorder effects.
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FIG. 4. Distributions of the isotropic molecular polarizability of water (ᾱH2O) in liquid water. Short vertical lines indicate

corresponding values in ice Ih.
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C. Anisotropic effects of the molecular polarizability of water

The crystal field in the condensed phases can modify the the electronic properties of individual water molecules

significantly. For example, solvated water molecules form hydrogen-bonds (H-bonds) with their neighbors in a tetra-

hedral geometry, which has a strong influence on the Wannier function centers (WFCs: two from the O-H covalent

bonds and two from the oxygen lone pairs). As a consequence, the O-H bond WFCs are pulled in and the lone pair

WFCs are pulled out as compared to the gas phase monomer70. In order to gain insights into the chemical origin of

the CF and CT effects, we examine the anisotropic effects in ice Ih and liquid water by decomposing the αH2O tensor

onto three internal principal axes, and correlating the changes in the molecular polarizability (∆αii, i = x, y, z) with

the changes in the O-WFC pair correlation function, g(r), in terms of ∆rO−WFC.

0

5

10

x

gas phase
crystal field
crystal field+charge transfer

1.25 1.5 1.75 2 2.25

Polarizability (Å
3
)

0

5

10

15

z

0

5

y

N
o

rm
al

iz
ed

 d
is

tr
ib

u
ti

o
n

FIG. 5. Distributions of the molecular polarizability of water in liquid water along three principal directions (x: bisector

direction, y: in-plane perpendicular direction, and z: out-of-plane direction). Short vertical lines indicate corresponding values

in ice Ih.

As shown in Table I, the CF of ice Ih causes αxx and αyy to decrease by 4% and 16%, and αzz to increase

by 9%. It appears that the in-plane suppression effect is more pronounced in the y direction. Interestingly, this

anisotropic CF effect can be qualitatively captured using the point charge model17 except for the x component, which

yields ∆αxx = 4%, ∆αyy = −4%, and ∆αzz = 16% from their model II. This strong anisotropic CF effect is thus

characteristic of the H-bond network in the condensed phase. On the other hand, the effect of the CT is mostly

isotropic, increasing each component by about 0.1 Å3.

Similar to the isotropic molecular polarizability, 〈αii〉 of gas phase monomers in liquid water (1.64, 1.69 and 1.61 Å3)

are very close to those in ice Ih (1.65, 1.71 and 1.61 Å3) as shown in Table I and Fig. 5, with the largest deviation

of 1% from the y direction. The largest spread is also found in the y direction (σyy = 0.08 Å3), followed by x

(σxx = 0.05 Å3) and z (σzz = 0.03 Å3). The CF in liquid water also exhibits a significant anisotropic effect, which

leads to ∆〈αii〉 = +1%, −9%, and +11% as compared to the gas phase values. Another important feature is that

the z component acquires the largest spread (σzz = 0.14 Å3), and the spreads in x and y directions are much smaller

(σxx = 0.10 Å3 and σxx = 0.09 Å3). The CT effect in liquid water increases 〈αii〉 almost uniformly by 0.1 Å3, and

the spreads are only slightly increased.

The origin of the CF effects in ice Ih and liquid water was investigated using ∆rO−WFC, which are the differences

of O-WFC distances between the condensed phases and the gas phase. As shown in Fig. 6, in ice Ih ∆rO−WFC = 0.05
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FIG. 6. Pair correlation function of the oxygen - Wannier function centers (O-WFCs) in liquid water. Short vertical lines

indicate corresponding values in ice Ih.

and −0.04 Å for the oxygen lone pair and the O-H bond, respectively. In other words, O-H bond WFCs are pulled

in from 0.53 Å by 0.04 Å, while lone pair Wannier centers are pulled out from 0.30 Å by 0.05 Å as compared to the

gas phase monomer, in line with the established trend in liquid water70. The formation of the H-bonds therefore

weakens the intramolecular O-H bond, making it more ionic, and loosens the oxygen lone pairs. Since the O-H WFs

become more tightly bound to the oxygen atom, the in-plane components of αH2O are suppressed. In contrast, since

the lone pair WFs become more loosely bound to the oxygen atom, the out-of-plane component is enhanced. In liquid

water, both changes get smaller, i.e. ∆〈rO−WFC〉 = 0.03 and −0.03 Å, indicating overall softer H-bonds than ice Ih.

Consequently, the CF effects have a smaller impact on the in-plane components of liquid water (∆〈αxx〉 = 1% and

∆〈αyy〉 = −9%) than ice Ih (∆αxx = −4% and ∆αyy = −16%), while ∆〈αzz〉 in both systems are comparable (11%

and 9%). The oxygen lone pair has a larger spread (σO−WFC = 0.015 Å) than the O-H bond (σO−WFC = 0.012 Å),

which is consistent with the largest spread in αzz (see Fig. 5 and Table I).

To investigate any possible correlation between the CF and CT effects in liquid water, we track ∆αii from CF and

CT effects for each water molecule. As shown in Fig. 7, while the distribution of ∆αCF
xx is nearly symmetric around

zero, the signs of ∆αCF
yy and ∆αCF

zz are opposite, with one being predominantly negative and the other positive. No

apparent correlation was found for the in-plane components, while there is a weak correlation between ∆αCF
zz and

∆αCT
zz . Therefore our procedure of treating CF and CT effects separately is justified.

The main differences between our model and previous models can be understood as the following. In the point

charge model17, the CF is over-simplified. In the IDM, although the full CF is included at the ground state level, the

Coulomb kernel is approximated by the dipole interaction. It is not straightforward to compare the absolute values of

αH2O of this work with the IDM results in the literature23,24, because different exchange-correlation functionals (PBE

and BLYP) were used, and results in previous studies are likely not fully converged. A likely meaningful comparison

is the trend of the environmental effects on αH2O with respect to the gas phase values computed from the optimized

geometry. In this work, the relative changes of 〈αii〉 are 11%, 6% and 18% in x, y, and z, respectively. The trends

are qualitatively different from the IDM that yields -2∼-1%, -8∼-7% and 4∼5%, respectively23,24. Besides the effects

from different functionals, these differences may be attributed to several limitations in the IDM, such as the lack of

the finite size effect and the use of the dipole-dipole approximation.
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FIG. 7. Correlation between the crystal field (CF) and charge transfer (CT) contributions in the molecular polarizability of

water in liquid water.

In summary, we have developed a fully ab initio method to compute the electron density response to the perturbation

in the local field based on the local dielectric response theory. We applied this method to compute the molecular

polarizability of water in condensed phases. Using the same molecular geometries as in the condensed phases, we found

that the effects of the crystal field is to reduce αyy and enhance αzz, and that the charge transfer effect increases all the

principal components uniformly. Our study provides a rigorous theoretical framework to determine αH2O, essential

to both the physical understanding of water and computer simulations using polarizable force field models. As

the electron-based spectroscopy techniques, e.g., electron energy loss spectroscopy (EELS), has reached subangstrom

spatial resolution71, we expect these experimental techniques can provide more details about the microscopic dielectric

response of water in the future.
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