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Strain can be used as an effective tool to tune the crystal structure of materials and hence
to modify their electronic structures, including topological properties. Here, taking Na3Bi as a
paradigmatic example, we demonstrated with first-principles calculations and k ·p models that the
topological phase transitions can be induced by various types of strains. For instance, the Dirac
semimetal phase of ambient Na3Bi can be tuned into a topological insulator (TI) phase by uniaxial
strain along the 〈100〉 axis. Hydrostatic pressure can let the ambient structure transfer into a new
thermodynamically stable phase with Fm3̄m symmetry, coming with a perfect parabolic semimetal
having a single contact point between the conduction and valence bands, exactly at Γ point on
the Fermi level like α−Sn. Furthermore, uniaxial strain in the 〈100〉 direction can tune the new
parabolic semimetal phase into a DSM, while shear strains in both the 〈100〉 and 〈111〉 directions
can take the new parabolic semimetal phase into a TI. k · p models are constructed to gain more
insights into these quantum topological phase transitions. At last, we calculated surface states of
Fm3̄m Na3Bi without and with strains to verify these topological transitions.

I. INTRODUCTION

Due to the inspiration from fundamental physics and
interest in exotic properties for applications, new topo-
logical materials and phases with non-trivial band topol-
ogy, such as topological insulators (TIs), topological
metals/semimetals and topological superconductors, at-
tracted tremendous attention in the past decade. 1–4

The non-trivial states are usually protected by cer-
tain symmetries, such as time-reversal symmetry (TRS),
crystalline symmetry including inversion symmetry (IS).
Among these topological states, TRS-protected surface
states were first predicted in 19875 to occur in quan-
tum wells of HgTe sandwiched between CdTe and were
successfully observed in experiments in 20066. In 3D
TIs , the surface state is actually a new type of two-
dimensional (2D) massless electron gas, with its spin
locked to its momentum 7,8. These robust metallic sur-
face states differ TIs from normal insulators and make
TIs greatly attractive.

Compared with TIs indexed by Z2, topological
semimetals, in which band crossings appear at Fermi
level in a reduced dimension, have attracted more at-
tention because they may supply platforms to inves-
tigate new types of fermion-like excitations, includ-
ing Dirac fermions9,10, Weyl fermions11–14 and nodal
lines15–20, etc. Among them, the earliest example may
be the 2D Dirac semimetal – graphene21,22. Interest-
ingly, later works show that the surface states in 3D TIs
also present 2D massless Dirac-like dispersions. Among
many candidates with Dirac-like dispersions have been
reported9,10,23,24, Cd3As2 and Na3Bi are particularly at-
tractive 3D Dirac semimetals with their Dirac points lo-
cating exactly at the Fermi level. Featured by 3D Dirac
points in the bulk and Fermi arcs on the surface9,10,23,25,
3D Dirac semimetals have recently been identified exper-
imentally in Cd3As2

26–30 and Na3Bi systems31,32.
Na3Bi was predicted to be a 3D bulk Dirac semimetal9

and verified later by experiments31. This topological
Dirac fermion in Na3Bi is protected by TRS and IS
together with R3z symmetry. It is known that break-
ing of the R3z symmetry, for example 1% compression
along the y axis, will change the system into a TI with
Z2 = 11,2. After the predictions of Na3Bi to be a 3D
Dirac semimetal, large efforts were invested to study
this interesting system, for instance, Fermi arc surface
states32, quantum oscillations33, evidence for the chi-
ral anomaly34, magnetoresistance35, etc. As we know,
alkali pnictides A3B (A = alkali metal, B = pnictide)
usually crystalline into two different structures at ambi-
ent pressure: the hexagonal P63/mmc phase (e.g., K3Bi
and Rb3Bi) and the cubic Fm3̄m phase (e.g., Li3Bi and
Cs3Bi)36. Actually, phonon spectra of P63/mmc phase
of Na3Bi show negative frequencies, which means this
phase should not be dynamically stable, Cheng et al.37

reported that the ground state of Na3Bi at ambient pres-
sure could be a P3̄c1 (or so-called hP24) phase, which is
a distorted superlattice version of the P63/mmc phase.
And this P3̄c1 phase also exhibits features of 3D Dirac
semimetal.

Pressure and strain have been used as effective meth-
ods to modify the topological properties of materi-
als, for instance, in graphene38, BiTeI39, HgTe-class40,
Cd3As2

41–43, TaAs44, ZrTe5
45, WTe2

46, SnTe47, TaP48,
etc. The work by Cheng et al.49,50 showed that Na3Bi
would undergo a pressure-induced structural phase tran-
sition from the P3̄c1 (hP24) phase to a cubic Fm3̄m
(cF16) phase at pressure of about 0.8 GPa, which is
in good agreement with previous experimental find-
ings36,51,52. The transition pressure for Na3Bi is such
low, which means compressive strain has a large effect on
the structure of this system. Previous work50 reported
that shear strain along 〈100〉 axis can develop the cubic
phase of Na3Bi into a TI. However, whether or how dif-
ferent type of strain will affect the topological properties
of Na3Bi and detailed analysis with model Hamiltonian
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still remains an open question.
In this work, we have studied effects of several different

strains on Na3Bi, including uniaxial tensile/compressive
strain and shear strain in different directions. We find
that uniaxial strain on Na3Bi in the space group of P3̄c1
at ambient pressure can induce a topological phase tran-
sition from Dirac semimetal to TI. With the help of Lut-
tinger Hamiltonian53, we also find the Fm3m phase to be
a perfect parabolic semimetal. We then impose a uniax-
ial strain on the Fm3m lattice and find it will open a gap
at the Γ point and induce a Dirac crossing near the Γ.
Furthermore, with the help of a k · p model, we confirm
that the term of gΓ5 in the Hamiltonian generated from
the crystal-field splitting induces the gap and the Dirac
crossing in the uniaxial strained structure.

On the other hand, shear strain in the 〈100〉 and 〈111〉
directions can tune the Fm3m phase into a TI. To get
more insights of these topological phase transitions, we
develop two k · p models corresponding to the two dif-
ferent shear strains, respectively, and find that spin-orbit
coupling (SOC) together with the splitting of the crystal
field plays a key role in these transitions.

II. METHODOLOGY AND THE DETAIL

Ab initio random structure searching54,55 is applied
for crystal structure searching under pressure. Struc-
ture optimization is performed using projector aug-
mented wave (PAW) potential56 with the Perdew-Burke-
Erzernhof57 generalized gradient approximation (PBE-
GGA) exchange-correlation functional implemented in
the Vienna ab initio simulation package (VASP)58 in
the framework of density functional theory (DFT). The
plane wave cutoff is set to 850 eV, structure relaxation
is carried out until all of the atomic forces on each
ion is less than 0.0025 eV/Å. Electronic band struc-
tures calculations are carried out using full-potential lin-
earized augmented plane-wave method implemented in
the WIEN2k59 package. SOC is taken into account self-
consistently. 21 × 21 × 21 k-mesh is used as the period
boundary condition for electronic structure calculation
under ambient and high pressure.

III. THE ELECTRONIC STRUCTURES OF
P3̄C1 PHASE UNDER UNIAXIAL STRAIN

A recent work reveals that the zero-pressure ground
state of Na3Bi should be the P3̄c1 phase which presents
the features of Dirac semimetal37. The crystal struc-
tures of the P3̄c1 phase are shown in Fig. 1, and the
corresponding lattice parameters are showed in Table. I.

There are 24 atoms in one unit cell of the P3̄c1 phase
which occupy 4 nonequivalent positions. We sign the
atoms locate at these nonequivalent positions with Na1,
Na2, Na3 and Bi, respectively, as shown in Fig. 1 (a).
The band structure with SOC for the P3̄c1 phase Na3Bi

FIG. 1. (a) Crystal structure of Na3Bi at the ambient pres-
sure with P3̄c1 symmetry. Na1, Na2 and Na3 atoms occupy
the 2a(0,0, 1

4
), 4d( 1

3
, 2
3
,0.200) and 12g(0.354,0.319,0.083) sites,

respectively, while Bi atoms lie at the 6f(0.337,0, 1
4
) site. (b)

Crystal structure of Na3Bi at 1 GPa with Fm3̄m symme-
try. Na1 and Na2 atoms occupy the 4a(0,0,0), 8c( 3

4
, 1
4
, 1
4
) sites

while Bi atoms stay at the 4b(0,0, 1
2
) site.

TABLE I. Lattice parameters of Na3Bi at the ambient pres-
sure with P3̄c1 symmetry and 1 GPa with Fm3̄m symmetry.

phase pressure (GPa) a = b (Å) c (Å) α = β (◦) γ (◦)
P3c1 0 9.459 9.674 90 120

Fm3m 1 7.458 7.458 90 90

is shown in Fig. 2(b), the result is similar to earlier work
by Cheng et al.37 We impose a uniaxial tensile strain
along the x axis and meanwhile a compressed strain along
the y axis to keep the volume unchanged. As shown in
Fig. 2(a), this operation or vice versa, breaks the R3z

symmetry in the P3̄c1 phase and changes the space group
of the structure from P3̄c1 to P1̄. We take 2% uniaxial
strain as an example here, and the resulting band struc-
ture with SOC is shown in Fig. 2(c). From the band
structure we can assert that it is an insulator directly.
Using the method by Fu and Kane60, we can easily calcu-
late the Z2 index by multiplying all the parities for all the
occupied bands at all time-reversal-invariant momenta
(TRIMs). The results are shown in Table. II, which in-
dicates Z2 = (1, 111) for this system. This shows that
uniaxial strain will induce a topological phase transition
from Dirac semimetal to TI in the P3̄c1 phase.

TABLE II. The product of the parities for all the occupied
bands at the eight TRIMs for the P3̄c1 phase of Na3Bi with
uniaxial strain.

TRIM Γ 3M 3L A total
Parity + – – – –
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FIG. 2. (a) Crystal structure of Na3Bi with P3̄c1 symmetry under uniaxial strain. The purple bidirectional arrow represents
tensile strain along x axis, while the two blue arrows represents compressed strain along y axis. (b) Corresponding band
structure of Na3Bi without strain and with SOC. The red and blue lines correspond to the conduction band minimum (CBM)
and the valence band maximum (VBM), respectively. (c) Corresponding band structure of Na3Bi under uniaxial strain and
with SOC. The red and blue lines correspond to CBM and VBM, respectively.

IV. THE ELECTRONIC STRUCTURES OF THE
HIGH-PRESSURE FM3̄M PHASE

Crystal structure searches and thermodynamic calcu-
lations afterwards show that a cubic phase in the space
group of Fm3̄m becomes more stable than the ambient
P3̄c1 phase under the critical pressure around 0.8 GPa50.

For the Fm3̄m phase, there are 4 atoms occupying 3
nonequivalent positions in one primitive cell as shown in
Fig. 1(b). The 4 atoms can be signed as Na1, Na1′, Na2
and Bi. Among them, Na1 and Na1′ are equivalent as a
result of IS.

The detailed structural parameters of the Fm3̄m phase
are listed in Table. I. And its electronic band structures
without and with SOC are illustrated in Fig. 3(a) and
Fig. 3(b), similar to the results by by Cheng et al.49

The most interesting feature one can find in the band
structures with and without SOC, as shown in Fig. 3
(a) and (b), is that there is only one touching point be-
tween the valence and conduction bands, which exactly
locates at Γ point on the Fermi level. Detailed first-
principle calculations without SOC indicates that this
touching point is a triply degenerate point contributed
most by Bi-6px,y,z orbits, and the wave functions of low-
energy states around the touching point mainly consist
of Na-3s and Bi-6px,y,z orbits. Due the fact that there
are two Na1 atoms (signed with Na1 and Na1′), which
are centrosymmetric connected to each other, thus we
can construct bonding and antibonding states with defi-
nite parity from the s orbitals of Na1 and Na1′ atoms as

follows:

|Na1±, s >=
1√
2

(|Na1; s > ±|Na1′; s >) (1)

While there is only one atom for Na2 and Bi in the prim-
tive cell, therefore, the parity of the orbits of Na2 and
Bi atoms are only determined by their orbital angular
quantum number themselves.

Taking SOC into consideration, spin and orbital an-
gular momentum are coupled together, which gener-
ates a group of new eigenstates with certain total an-
gular quamtum numbers. We mark these new eigen-
states as |S±

Na1, 12
,± 1

2 >, |S+
Na2, 12

,± 1
2 >,|S+

Bi, 12
,± 1

2 >,

|P−
Bi, 32

,± 3
2 >,|P−

Bi, 32
,± 1

2 > and |P−
Bi, 12

,± 1
2 >. Here S

and P denote corresponding orbits consisting of the new
eigenstates and the superscripts ± represent the parities
of corresponding eigenstates.

According to the analysis of irreducible representations
and projected orbits, the touching point of the top of
valence bands and the bottom of conduction bands (de-
noted as Γ−8 ) is mainly composed of |P−

Bi, 32
,± 3

2 > and

|P−
Bi, 32

,± 1
2 > basis. We simplify the notation of these

four basis as |J, jz > with J = 3
2 and jz = ± 3

2 ,±
1
2 .

Take the time-reversal and Oh point-group symmetries
into consideration, a 4 × 4 Luttinger Hamiltonian53 can
exactly describe the Γ−8 bands around the Γ point if
we arrange the 4 basis in the order of | 32 ,

3
2 >,| 32 ,

1
2 >,

| 32 ,−
1
2 >,| 32 ,−

3
2 >, with the Hamiltonian given by

HLuttinger(~k) = α0
~k2I + α1(~k · ~J)2 + α2

3∑
i=1

k2i J
2
i , (2)
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FIG. 3. The band structure of Fm3̄m Na3Bi (a) without soc (b) with soc at 1GPa. The red and blue lines correspond to CBM
and VBM, respectively. (c) The 2D projected band structure of Fm3̄m Na3Bi at 1GPa in the plane of kz=0.

where Ji(i = 1, 2, 3) are spin- 32 matrices and αi(i =
0, 1, 2) are parameters characterizing the band struc-
tures. These three parameters are determined as α0 ≈
205.3Å

2
eV,α1 ≈ −83.1Å

2
eV,α2 ≈ −22.5Å

2
eV by fitting

the first-principle band structures around the Γ point.
With this Luttinger Hamiltonian, we can nicely describe
the unique parabolic dispersion near Γ at the Fermi level
as shown in Fig. 3(c), which is quite different from the
linear Dirac dispersions.

V. THE EFFECT OF DIFFERENT STRAIN ON
THE HIGH-PRESSURE FM3̄M PHASE

A. UNIAXIAL STRAIN ON the Fm3̄m PHASE

When we impose a uniaxial strain ε along any orthog-
onal axis on the original Fm3̄m structure, it will change
the symmetry of the crystal from space group Fm3̄m to
I4/mmm. Here, to keep the volume of the cell invariable,
when a tensile strain ε is applied along the z axis, we add
at the same time a compressive strain 1√

1+ε
along the x

and y axes, respectively. It is obvious that this opera-
tion changes the symmetry of the structure from Fm3̄m
to I4/mmm as well. The uniaxial compressive or tensile
strain energy relative to the perfect Fm3̄m structure is
shown in Fig. 4 (a), which indicates that the tensile strain
somehow is easier to obtain than the compressive one in
this system.

With this uniaxial strain operation, as shown in Fig. 6
(a), we can predict that the triply degenerate px,y,z orbits
without SOC at Γ point will split into a non-degenerated
pz and a doubly degenerated px,y orbits due to the
crystal-field splitting.

When SOC is considered, this uniaxial strain may lead
to the appearance of a Dirac crossing near the Γ point.

FIG. 4. Strain energy of the Fm3̄m Na3Bi under (a) uniaxial
strain with ε varying from -0.1 (compressive) to 0.1 (tensile).
Shear strain energy (b) along 〈100〉 (green) and 〈111〉 (red)
axes with the angular parameter γ or α = β = γ ranging from
85◦ to 95◦, respectively.

In fact, the uniaxial strain changes the point group of
the system from Oh to D4h, which also affects the k · p
Hamiltonian dramatically. As the permutation symme-
try of x, y, z directions is no longer preserved, Jx, Jy, Jz
is not convenient to be used as basis any more. Here we
use the following Γ matrices:

Γ1 =
1√
3
{Jy, Jz},Γ2 =

1√
3
{Jz, Jx},Γ3 =

1√
3
{Jx, Jy}

Γ4 =
1√
3

(J2
x − J2

y ),Γ5 = J2
z −

5

4
,

(3)

while the other ten Γ matrices are given by Γab =
1
2i [Γa,Γb]. The coexistence of TRS and IS constrains
that no Γab terms exist in the model Hamiltonian. After
a careful analysis of the symmetry and a tedious deriva-
tion, we can give the character table of the Γ matrices and

the polynomials of momentum ~k as shown in Table. III
using the same basis functions above-mentioned.
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TABLE III. The character table for the Fm3̄m phase of Na3Bi
under uniaxial strain along z axis.

Γ Representation T ~k

Γ0 = I Γ̃+
1 + 1, k2x + k2y, k

2
z

{Γ1,Γ2} Γ̃+
5 + {kxkz, kykz}

Γ3 Γ̃+
4 + kxky

Γ4 Γ̃+
3 + 1, k2x + k2y, k

2
z

Γ5 Γ̃+
1 + k2x − k2y

TABLE IV. The product of the parities for all the occupied
bands at the eight TRIMs for the Fm3̄m phase of Na3Bi under
uniaxial strain along z axis.

TRIM Γ 4N 2X M ; total
Parity – + + + ; –

Finally, from Table. III, our model Hamiltonian yields
as

H =

5∑
i=0

fi(~k)Γi = [a0 + b0(k2x + k2y) + c0k
2
z ]Γ0

+ a12(kykzΓ1 + kxkzΓ2) + a3kxkyΓ3

+ a4(k2x − k2y)Γ4 + [a5 + b5(k2x + k2y) + c5k
2
z ]Γ5.

(4)

The dispersion of above-mentioned model is E(~k) =

f0(~k) ±
√
f21 (~k) + f22 (~k) + f23 (~k) + f24 (~k) + f25 (~k) and

both dispersions are doubly degenerated. As a result,
a band crossing of this model requires f1 = f2 = f3 =
f4 = f5 = 0, i.e. kz 6= 0 ∩ kx = ky = 0 ∩ a5c5 < 0. It
means that we can always find a Dirac crossing along kz
direction when a5c5 < 0 stands, and the location of the

crossing is ~k = (0, 0,±
√
−a5c5 ). Otherwise, a gap near the

Γ point induced by a5Γ5 will always preserve.
When the bands are gapped, the existence of both the

TRS and IS in the uniaxial-strained Fm3̄m Na3Bi en-
ables us to calculate Z2 using Fu and Kane’s method60.
The results are listed in Table. IV, which indicates Z2 =
(1, 000).

Note that the Z2 index remains unchanged when we
tune any parameters in the above-mentioned model be-
cause band inversion between | 32 ,±

3
2 > and | 32 ,±

1
2 >

can not bring the parity inversion (the parities of both
the two doublets at Γ are -1). So we can give result-
ing phase diagram of Fm3̄m Na3Bi under uniaxial strain
shown in Fig. 5. Which shows that, the system belongs
to TI when a5c5 > 0, while it transforms into DSM in
case of a5c5 < 0.

First-principles calculations indicates the Dirac cross-
ing always exists under a strain ε ranging from −10% to
10%. Which means a5c5 < 0 always stands for uniaxial-
strained structure under strains within this range.

We have chosen a uniaxial strain of ε = −4% onto the
Fm3̄m phase to verify our predictions, the corresponding

FIG. 5. Phase diagram of Fm3̄m Na3Bi under uniaxial strain
and shear strain along the 〈111〉 direction from model Hamil-
tonian analysis using Equation (4) and (6), respectively.

band structures without and with SOC are showed in
Fig. 6 (b) and (c) respectively. As showed in Fig. 6(c),
the appearance of this Dirac dispersion is very similar to
HgTe-class materials40, which can also be described with
an additional Γ5 term in the Luttinger Hamiltonian 53.
The difference is, in HgTe-class, with tensile stain along
the z axis, the energy of pz becomes smaller than px,y,
while with compressive strain along the z axis, the energy
of pz becomes larger than px,y when SOC is ignored.
But in Na3Bi, as shown in Fig. 6(d), both tensile and
compressive stain leads to the same result that Epx,y is
always larger than Epz .

Here we give a qualitative explanation. Uniax-
ial strain along the z axis generates a perturbation
Hstrain:Na1;Na2 = −g1,2(J2

z − 5
4 ). Here Hstrain:Na1;Na2 de-

notes the crystal perturbation on |Bi, p > from the effect
of the strain on Na1 and Na2, respectively. From the
unstrained structure in Fig. 6(a), we find that six Na1
atoms around the body-centered Bi atom form an octa-
hedron while eight Na2 atoms form a cubic. We further
consider the effect of the Na1-octahedron and Na2-cubic
on |Bi, p > by removing all the Na2 or Na1 atoms, re-
spectively. As the blue and the green lines shown in
Fig. 6(d), first-principle calculations of these two different
cases indicate that with the absence of Na2-cubic, g1 < 0
(g1 > 0) corresponds to the tensile strain (the compres-
sive strain); while we remove Na2 cubic, g2 > 0 (g2 < 0)
corresponds the tensile strain (the compressive strain).
However, g1+g2 is always less than 0 for both tensile and
compressive strain, which means Na1-octahedron effects
Bi, px,y more in the tensile strain case, while Na2-cubic
effects more in the compressed strain case.
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FIG. 6. (a)schematic diagram of the Fm3̄m phase with uniaxial strain. Six Na1 atoms (pink) next-nearest neighbour around
the body-centered Bi (purple) form an octahedron while eight Na2 (yellow) nearest neighbour around form a cubic; (b) and (c)
The band structures near Γ point of Na3Bi in the space group of I4/mmm which comes from uniaxial strain along z axis on the
Fm3̄m phase without and with spin orbital coupling. The red and blue lines correspond to CBM and VBM respectively. (d)
The energy difference between |Bi, px,y > and |Bi, pz > near the fermi level vs. uniaxial strains in the range of −10% ≤ ε ≤ 10%
for the intact, Na1-absent and Na2-absent Na3Bi.

TABLE V. The product of the parities for all the occupied
bands at eight TRIMs for the Fm3̄m phase of Na3Bi with
shear strain along 〈100〉 axis.

TRIM Γ 2S 2R 2T X ; total
Parity – – – + + ; –

B. SHEAR STRAIN ALONG the 〈100〉
DIRECTION ON the Fm3̄m PHASE

Shear strain might have different effect on the elec-
tronic structures compared with tensile or compressive
strain. If we impose a shear strain along 〈100〉 direction
on the original Fm3̄m structure, we will get a structure
in the space group of I/mmm which belongs to the D2h

point group. In fact, as shown in Fig. 7 (a), this opera-
tion only slightly changes one of the three lattice angles.
The green line in Fig. 4 (b) shows how shear strain en-
ergy Ess〈001〉 varies with the angle parameter γ ranging
from 85◦ to 95◦. It seems that the shear stain costs a
large mount of energy. Here we take the change of γ
from 90◦to 86◦as an example. Electronic band structure
shown in Fig. 7(b) indicates that the resulting structure
is an insulator with a small gap of around 17 meV. The
D2h point group ensures the existence of the inversion
symmetry in the shear-strained structure, which enables
us to calculate Z2 by multiplying the parities for all the
occupied Bloch states at the eight TRIMs using Fu and
Kane’s method60. The results are listed in Table. V,
which clearly show Z2 = 1. Thus shear strain along the
〈100〉 direction brings the system from a semimetal into
a TI.

In fact, the shear strain changes the point group from
Oh to D2h, which also affects the k · p Hamiltonian dra-
matically. After a careful analysis of the symmetry and
a tedious derivation, one can give the character table of

FIG. 7. (a)Crystal structure of Fm3̄m Na3Bi under 〈100〉
shear strain. The purple arrows represent shear strains on the
top and bottom surfaces. (b)Corresponding band structures
(with SOC) of Na3Bi under the 〈100〉 shear strain. The red
and blue lines correspond to CBM and VBM, respectively.

TABLE VI. The character table for the Fm3̄m phase of Na3Bi
with shear strain along 〈100〉 axis.

Γ Representation T ~k

Γ0 = I Γ̃+
1 + 1, k2x, k

2
y, k

2
z

Γ1 Γ̃+
3 + kykz

Γ2 Γ̃+
2 + kzkx

Γ3 Γ̃+
4 + kxky

Γ4 Γ̃+
1 + 1, k2x, k

2
y, k

2
z

Γ5 Γ̃+
1 + 1, k2x, k

2
y, k

2
z

the Γ matrice and the polynomials of momentum ~k as
shown in Table. VI.
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Finally, from Table. VI, our model Hamiltonian yields

H =

5∑
i=0

fi(~k)Γi

=
∑

i=0,4,5

(ai + bixk
2
x + biyk

2
y + bizk

2
z)Γi

+ c1kykzΓ1 + c2kzkxΓ2 + c3kxkyΓ3.

(5)

It’s clear that the band gap in the sheared structure
comes from a4Γ4 + a5Γ5, which depends on the point
group D2h completely. Similarly, a band crossing of
above-mentioned model requires f1 = f2 = f3 = f4 =
f5 = 0, i.e. kα = kβ = 0 ∩ kγ 6= 0 ∩ a4γ

b4γ
=

a5γ
b5γ

< 0. Here

α, β, γ is a permutation of {x, y, z}. It means that we
can find a Dirac crossing along kγ direction only when
a4γ
b4γ

=
a5γ
b5γ

< 0 stands, and the location of the crossing is

kα = kβ = 0, kγ = ±
√
−a5γb5γ . However, from our ab initio

calculations, a gap always exists when shear deformation
along the 〈100〉 axis (γ) is in the range of 85−95◦. In fact,
a4γ
b4γ

=
a5γ
b5γ

< 0 is a very rigorous condition, which can not

be obtained without imposing other symmetries. Thus a
gap near Γ will always occur. On the other hand, the
Z2 invariant remains unchanged because of the same rea-
son discussed for the uniaxial-strained case. Therefore,
the splitting of crystal field together with SOC generates
a4Γ4 and a5Γ5 in the Hamiltonian, and results in the
topological nontrivial band gap at Γ point.

C. SHEAR STRAIN ALONG the 〈111〉
DIRECTION ON the Fm3̄m PHASE

Then we consider the case of shear strain along the
body diagonal direction as Fig. 8(a) shows. This type of
strain turns the space group of the structure from Fm3̄m
to R3̄m (belongs to the D3d point group). In fact, this
type of strain can also be obtained by changing the α, β
and γ by the same amplitude, which can be seen as a
combination of shear strains along the 〈100〉 〈010〉 ,〈001〉
directions. The red line in Fig. 4 (b) shows how shear
strain energy Ess〈111〉 varies with the angle parameter
α = β = γ ranging from 85◦ to 95◦. Here we choose
α = β = γ = 92◦as an example.

The corresponding band structure shown in Fig. 8(b)
indicates an insulator phase. Due to the preservation of
IS, we calculate the product of the parities for the occu-
pied bands at all the eight TRIMs, the result is shown in
Table. VII. Parity inversion at the Γ point leads to a non-
trivial band topology with Z2 = (1, 000), which indicates
that this 〈111〉 sheared structure is a strong TI.

After similar analysis of the symmetry and derivation,
we can give the character table of Γ matrices and the

polynomials of momentum ~k for the case of 〈111〉 shear
strain as Table. VIII shows. As a result, we can obtain

FIG. 8. (a)Crystal structure of Na3Bi with Fm3̄m symmetry
under shear strain in 〈111〉 direction. The green arrows rep-
resents the shear direction. (b)Corresponding band structure
(with SOC) of Na3Bi with the 〈111〉 shear strain. The red
and blue lines correspond to CBM and VBM respectively.

TABLE VII. The product of the parities for all the occupied
bands at the eight TRIMs for the Fm3̄m phase of Na3Bi with
shear strain along the 〈111〉 axis.

TRIM Γ 3L 3FB T ; total
Parity – + + + ; –

the corresponding k · p Hamiltonian as

H =

5∑
i=0

fi(~k)Γi

= [a0 + b0(k2x + k2y) + c0k
2
z ]Γ0 + a12(kykzΓ1 + kxkzΓ2)

+ b12[(−2kxky)Γ1 + (k2x − k2y)Γ2]

+ a34[2kxkyΓ3 + (k2x − k2y)Γ4]

+ b34[kykzΓ3 − kxkzΓ4]

+ [a5 + b5(k2x + k2y) + c5k
2
z ]Γ5.

(6)

Similarly, a band crossing of this model requires f1 =
f2 = f3 = f4 = f5 = 0. It can be classi-
fied into two cases. (a)kx = ky = 0 ∩ kz 6= 0 ∩
a5c5 < 0, (b)a12b12

= − b34
a34
∩ kz 6= 0 ∩ (a5b5 <

0 ∪ a5c5 < 0). In the case of (b), if
−a5a212

b5a212+c5b
2
12

>

0, we can define l =
√

−a5a212
b5a212+c5b

2
12

, then six Dirac

points locating at (∓l, 0,± b12
a12
l), (± 1

2 l,±
√
3
2 l,±

b12
a12
l) and

(± 1
2 l,∓

√
3
2 l,±

b12
a12
l) can be found. It’s obvious that they

are related to each other by R3z symmetries. However,
it should be noted that the condition of a12

b12
= − b34

a34
in

case (b) is very rigorous and can not be obtained without
other symmetries, i.e., case (a) is a unique condition for
a stable DSM. Thus, as discussed in the case of uniaxial
strain, this system belongs to TI when a5c5 > 0, while it
transforms into a DSM only in the case of a5c5 < 0. As a
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TABLE VIII. The character table for the Fm3̄m phase of
Na3Bi with shear strain along the 〈111〉 axis.

Γ Representation T ~k

Γ0 = I Γ̃+
1 + 1, k2x + k2y, k

2
z

{Γ1,Γ2} Γ̃+
3 + {kykz, kxkz}; {−2kxky, k

2
x − k2y}

{Γ3,Γ4} Γ̃+
3 + {2kxky, k2x − k2y}; {kykz,−kxkz}

Γ5 Γ̃+
1 + 1, k2x + k2y, k

2
z

result, this system have the same phase diagram as shown
in Fig. 5. Similar to the shear strain along 〈100〉 direc-
tion case, from our ab initio calculations, a gap always
exists when shear deformation along the the 〈111〉 axis
(α = β = γ) is in the range of 85− 95◦. Which indicates
that a5c5 > 0 always stands for this shear strain. Due
to the similar reason as discussed in the case of uniaxial
strain, the gap induced by a5Γ5 term from D3d symmetry
will always remain and the Z2 will not change.

VI. SURFACE STATES OF THE FM3̄M PHASE
WITHOUT AND WITH STRAIN

Exotic topological surface states is an important prop-
erty to identify various topological phases. Based on
the tight-binding model constructed with MLWFs (maxi-
mally localised Wannier functions) method61–63, we have
calculated the projected surface states of the Fm3̄m
Na3Bi without strain and with different type of strains, as
shown in Fig. 9. As showed in Fig. 9(a), there is no topo-
logical protected surface states in the Fm3̄m Na3Bi with-
out strain. When we impose a uniaxial strain on Fm3̄m
Na3Bi, a Dirac crossing appears near the Γ point in the
bulk band structure. And the corresponding non-trivial
surface states connecting the Dirac point also emerges,
as showed in Fig. 9(b). As dicusssed above and showed
in Fig. 9(c) and Fig. 9(d), shear strains along the 〈100〉
and 〈111〉 directions induce the original system into TIs,
nontrivial metallic surface states can be found in the gap.

VII. CONCLUSION

In conclusion, with first-principle calculations we inves-
tigate the effect of stress/strain on Na3Bi, a native 3D
Dirac semimetal, and find strains have large effects on
the topological band structures of this system. We apply
a uniaxial strain to break the R3z symmetry on the ambi-
ent P3c1 phase and find that this strain tunes Na3Bi into
a TI with a topological nontrivial gap at Γ point. Ab ini-
tio calculations show that the high pressure Fm3̄m phase
is a new type of semimetal with the unique parabolic
touching point at Γ point on the Fermi level, which can
be well described by a Luttinger Hamiltonian. Accord-
ing to our calculations, uniaxial strain along the 〈001〉
direction can tune the high pressure Fm3̄m Na3Bi from

FIG. 9. The projected surface states of Fm3̄m Na3Bi
(a)without strain and terminated in 〈100〉 direction; (b)under
uniaxial strain and terminated in 〈100〉 direction; (c)under
shear strain in 〈001〉 direction and terminated in 〈100〉 direc-
tion; (d)under shear strain in 〈111〉 direction and terminated
in 〈100〉 direction respectively.

the parabolic semimetal into a DSM, while shear strain
along both the 〈100〉 and 〈111〉 directions can tune the
high pressure Fm3̄m phase from the parabolic semimetal
into a TI. To gain more insights on these quantum phase
transition from strain, we derive three k·p models for the
Fm3m phase and with all kinds of shear strains. It is ob-
vious that SOC together with the splitting of crystal field
from strains we imposed play key roles for the topologi-
cal phase transitions in Na3Bi. In the end, we calculated
surface states of Fm3̄m Na3Bi without strain and with
different types of strains to verify these topological tran-
sitions. Different substrate might be used to introduce
strain on samples grew on them, which might be used to
examine the topological phase transitions studied in this
work.
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