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Abstract

We study thermal and electrical transport in metals and superconductors near a quantum phase

transition where antiferromagnetic order disappears. The same theory can also be applied to quan-

tum phase transitions involving the loss of certain classes of intrinsic topological order. For a clean

superconductor, we recover and extend well-known universal results. The heat conductivity for

commensurate and incommensurate antiferromagnetism coexisting with superconductivity shows

a markedly different doping dependence near the quantum critical point, thus allowing us to dis-

tinguish between these states. In the dirty limit, the results for the conductivities are qualitatively

similar for the metal and the superconductor. In this regime, the geometric properties of the

Fermi surface allow for a very good phenomenological understanding of the numerical results on

the conductivities. In the simplest model, we find that the conductivities do not track the doping

evolution of the Hall coefficient, in contrast to recent experimental findings. We propose a doping

dependent scattering rate, possibly due to quenched short-range charge fluctuations below optimal

doping, to consistently describe both the Hall data and the longitudinal conductivities.
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I. INTRODUCTION

Recent experimental results on the Hall coefficient in hole doped cuprates [1] suggest the

existence of a quantum critical point (QCP) near optimal doping, at which the charge-carrier

density changes by one hole per Cu atom. Results consistent with such a scenario were also

found in the electrical [2, 3] and thermal [4] conductivities of various cuprate materials. Such

a change of the carrier density with decreasing hole doping could be caused by various QCPs.

In one scenario, the appearance of long-range commensurate antiferromagnetic (AF) [5],

incommensurate antiferromagnetic [6] or charge-density wave (CDW) order [7] leads to a

reconstruction of the Fermi surface. In an alternative scenario, the QCP is associated with

the appearance of a pseudogap metal with topological order [6, 8–12]. At finite temperature,

a suppression of the Hall number could also be obtained as a result of strongly anisotropic

scattering by dynamical CDW fluctuations [13].

Ideally, one would like to resolve the Fermi surface on both sides of the QCP with spectro-

scopic probes like ARPES, or using quantum oscillation measurements. In the underdoped

regime the former resolves arcs, and it is not clear whether these are closed into Fermi

pockets. Quantum oscillation experiments are difficult in the underdoped cuprates due to

restrictions on the sample quality or accessible temperatures and magnetic fields. In the

underdoped regime, quantum oscillations have only been observed near a doping of 1/8

hole per Cu site, where the ground state shows charge-density wave order in high magnetic

fields [14–21].

Given the lack of direct evidence, it is desirable to further explore the consequences

of different proposals for the QCP at optimal doping and make predictions for feasible

measurements. Changes in the Hall coefficient are very similar in all proposals involving a

reconstruction of the large Fermi surface into small Fermi pockets with decreasing doping.

In this paper, we therefore present a detailed discussion of transport properties near a QCP
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where static or fluctuating antiferromagnetic order disappear. The former could be due to

commensurate or incommensurate spin-density wave order. The latter is associated with

Fermi liquids with a certain class of topological order [11]: as we will describe in Section VI,

these have transport properties very similar to those of conventional Fermi liquids with

magnetic order at low temperature.

Transport properties of d-wave superconductors have mostly been studied in the clean

limit. In this case, thermal transport is universal in the sense that the thermal conductivity

depends only on the number of nodes, the Fermi velocity and the gap velocity [22]. Some

cuprate materials are, however, not in the clean limit around optimal doping. It is therefore

interesting to complement studies of the clean limit by the dirty limit, and in the presence

of additional symmetry-breaking order parameters.

This paper is organized as follows. In Section II, we introduce our most general Hamilto-

nian, and derive expressions for the Green’s function and the thermal current and conduc-

tivity from linear response theory. Then, in Section III, we discuss analytic and numerical

results for the conductivity across the antiferromagnetic QCP in the metallic limit. We ex-

tend our results to include additional superconductivity in Section IV, discuss the clean and

dirty limits, and also make connections with the universal Durst-Lee formula [22]. In Sec-

tion V, we extend our analysis for the dirty superconductor to include a phenomenological

doping-dependent scattering rate, and find good qualitative agreement of the longitudinal

conductivities and Hall angle with recent transport experiments [3, 4]. We present an alter-

nate model of the pseudogap phase as a topological metal in Section VI, and argue that a

Higgs transition across a topological QCP results in identical charge and energy transport.

We end with a discussion of the effect of additional excitations and fluctuations beyond

our mean-field picture of the transition on the transport properties in Section VII, and a

summary of our main results in Section VIII.
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II. MODEL AND FORMALISM

A. Hamiltonian

We consider a mean-field Hamiltonian describing the coexistence and competition of

superconductivity and spiral antiferromagnetism [23, 24] in the presence of disorder,

H = H0 +HSC +HAF +Hdis

H0 =
∑
k

ξkc
†
kσckα

HSC =
∑
k

∆k

(
c†k↑c

†
−k↓ + c−k↓ck↑

)
HAF = −

∑
i

mi · Si = −A
∑
k

(
c†k↑ck+Q↓ + c†k+Q↓ck↑

)
, (2.1)

where ξk = −2t(cos kx + cos ky) − 4t′ cos kx cos ky − µ is the fermionic dispersion, ∆k =

∆d(coskx − cosky) is the superconducting pairing gap with d-wave symmetry and mi =

2A [x̂ cos(Q · ri) + ŷ sin(Q · ri)] is the in-plane local magnetization that corresponds to Néel

order if the ordering wave vector Q = (π, π) is commensurate and spiral order for incom-

mensurate Q = (π − 2πη, π). In the following we set t = 1 and use it as the unit of energy.

Hdis describes impurity scattering of the electrons, the effects of which will be taken into

account by a finite scattering rate Γ = (2τ)−1, where τ is the quasi particle lifetime of the

low-energy electrons.

We evaluate the thermal conductivity in various regimes, including metals with commen-

surate or incommensurate fluctuating or long-range antiferromagnetic order, or supercon-

ductors in the presence of the latter two orders. We distinguish between the clean limit in

which Γ � ∆d, and the dirty limit Γ � ∆d. In the clean limit, transport is dominated by

contributions from the nodes, while in the dirty limit the nodal structure is washed out and

the entire Fermi surface contributes to transport. Throughout our computation, we assume

that both Γ and ∆d are much smaller than the Fermi energy EF . Except close to the QCP,

they are also significantly smaller than the antiferromagnetic gap.

For simplicity, we first choose Γ to be independent of doping. We find that while the

conductivity drops below the transition, in the dirty limit the drop relative to the phase with

no magnetic order is quite small. We note that a self-consistent computation of Γ would

involve the density of states for the appropriate Fermi surface (the reconstructed one below
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the critical doping), and a spin-dependent scattering matrix element as the quasiparticles

have spin-momentum locking after Fermi surface reconstruction (in case of the long-range

magnetic order). The density of states at the Fermi surface decreases gradually across the

transition. Further, the scattering matrix element averaged over the Fermi surface decreases

in the ordered phase because the smaller overlap between the spin-wavefunctions of initial

and final scattering state of the quasiparticle. Hence, these effects cannot further decrease

the conductivities on the ordered side, in contradiction with experiments. However, the

small Fermi pockets are susceptible to charge density waves, and quenched disorder in form

of charge fluctuations can lead to an increased scattering rate. Therefore, we modify our

results to have a doping-dependent Γ that increases below the critical point, and find that

this can consistently explain both the Hall data and the longitudinal conductivities in the

dirty limit.

B. Thermal current operator

The details of the computation of the thermal current operator and thermal conductivity

depend upon the state and limit under consideration. We first derive the most general

thermal current operator for the models considered, and outline our approach to evaluating

the thermal conductivity via the Kubo formula.

We generalize the derivation of the heat current operator for a d-wave superconductor

presented in [22] to include additional magnetic order. In presence of co-existing charge

density wave order and superconductivity, the heat current operator can be derived from

the spin current operator, as quasiparticles have conserved sz [25]. However, the Hamiltonian

in Eq. (2.1) does not possess the U(1) symmetry corresponding to the conservation of Sz, so

we need to derive the thermal current operator from scratch. We do so for a general value

of Q, so that our results also apply for the incommensurate case.

We work in the continuum limit in position space. At the end of the computation, we

can replace the Fermi velocity by that of the lattice model, which is equivalent to neglecting

interband contributions in the presence of magnetic order. This approximation has been used

before for the computation of the electrical and Hall conductivities of spiral antiferromagnetic

states [6, 26]. Moreover, we assume that the pairing amplitude ∆d is real. The Hamiltonian
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for the clean system is then given by

H =
1

2m

∫
dx∇c†α(x).∇cα(x) +

∫
dx dy ∆(x− y)

[
c†↑(x)c†↓(y) + c↓(y)c↑(x)

]
−A

∫
dx
[
e−iQ·xc†↑(x)c↓(x) + eiQ·xc†↓(x)c↑(x)

]
≡
∫
dxh(x), (2.2)

where h(x) is the local Hamiltonian density. The latter can be identified with the heat

density if we measure energies with respect to the chemical potential. Therefore, the thermal

current operator jQ(x) can be defined by the continuity equation:

ḣ(x) +∇ · jQ(x) = 0 (2.3)

The time-derivative of the Hamiltonian density is given by

ḣ(x) =
1

2m

[
∇ċ†α(x).∇cα(x) +∇c†α(x).∇ċα(x)

]
+

∫
dy∆(x− y)

[
ċ†↑(x)c†↓(y) + c†↑(x)ċ†↓(y) + ċ↓(y)c↑(x) + c↓(y)ċ↑(x)

]
−A

[
e−iQ·x

(
ċ†↑(x)c↓(x) + c†↑(x)ċ↓(x)

)
+ eiQ·x

(
ċ†↓(x)c↑(x) + c†↓(x)ċ↑(x)

)]
. (2.4)

This expression can be simplified using the equations of motion of the fermionic operators,

i ċα = [cα, H] , (2.5)

yielding

i ċ↑(x) = − 1

2m
∇2c↑(x) +

∫
dy∆(x− y)c†↓(y)− Ae−iQ·xc↓(x)

i ċ↓(x) = − 1

2m
∇2c↓(x)−

∫
dy∆(y − x)c†↑(y)− AeiQ·xc↑(x) (2.6)

for the above Hamiltonian. We can re-write the first term in Eq. (2.4) in the following

convenient way:

1

2m

[
∇ċ†α(x).∇cα(x) +∇c†α(x).∇ċα(x)

]
=

1

2m
∇ ·
[
ċ†α(x)∇cα(x) +∇c†α(x)ċα

]
+

ċ†α(x)

[
− 1

2m
∇2cα(x)

]
+

[
− 1

2m
∇2c†α(x)

]
ċα(x)

(2.7)

Replacing the terms with Laplacians using the equation of motion, Eq. (2.6), we find that

fermion bilinears with two time derivatives cancel, and obtain for the second term in Eq. (2.7)

ċ†α(x)

[
− 1

2m
∇2cα(x)

]
+

[
− 1

2m
∇2c†α(x)

]
ċα(x) =

−
∫
dy∆(x− y)

[
ċ†↑(x)c†↓(y) + c↓(y)ċ↑(x)

]
+

∫
dy∆(y − x)

[
ċ†↓(x)c†↑(y) + c↑(y)ċ↓(x)

]
+AeiQ·x

[
ċ†↓(x)c↑(x) + c†↓(x)ċ↑(x)

]
+ Ae−iQ·x

[
ċ†↑(x)c↓(x) + c†↑(x)ċ↓(x)

]
. (2.8)
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Substituting the results from Eq. (2.7) and Eq. (2.8) in Eq. (2.4), we find that several

terms, including the terms proportional to the antiferromagnetic order parameter A cancel.

Therefore, we can re-write Eq. (2.4) as:

ḣ(x) =
1

2m
∇ ·
[
ċ†α(x)∇cα(x) +∇c†α(x)ċα

]
+

∫
dy∆(x− y)

[
c†↑(x)ċ†↓(y) + ċ†↓(x)c†↑(y) + ċ↓(y)c↑(x) + c↑(y)ċ↓(x)

]
(2.9)

where we have used that ∆(x − y) = ∆(y − x) for the d-wave superconductors we are

interested in. Note that the first-term is already written as a divergence, so we already have

jQ1 (x, t) = − 1

2m

(
ċ†α(x)∇cα(x) +∇c†α(x)ċα

)
(2.10)

We only need to recast the second term as a divergence to find the expression for the thermal

current operator. To do so, we consider the space-time Fourier transform of the second term.

We set the following convention for the Fourier transform:

jQ(x, t) =
1

V

∑
q,Ω

ei(q·x−Ωt)jQ(q,Ω), (2.11)

cα(x, t) =
1√
V

∑
k,ω

ei(k·x−ωt)cα(k, ω) (2.12)

Some algebra yields

−∇ · jQ2 (x, t) =
1

V

∑
q,Ω

e−i(q·x−Ωt)

(∑
k,ω(∆k −∆k+q)

[
i(ω + Ω)c†↑(k, ω)c†↓(−k− q,−ω − Ω)

+ iωc↓(−k,−ω)c↑(k + q, ω + Ω)
])

(2.13)

for the second contribution to the heat current operator. In the limit q→ 0, we exploit

∆k+q −∆k ≈ q · ∂∆k

∂k
= q · v∆(k) (2.14)

and can obtain

jQ2 (q→ 0,Ω) =
∑
k,ω

v∆(k)

(
(ω + Ω)c†↑(k, ω)c†↓(−k− q,−ω − Ω) + ωc↓(−k,−ω)c↑(k + q, ω + Ω)

)
.

(2.15)

Computing the space-time Fourier transform of Eq. (2.10) and using vF = k/m (= ∂kξk for

a more general dispersion), we obtain

jQ1 (q,Ω) =
∑
k,ω

(
ω +

Ω

2

)
vF c

†
α(k, ω)cα(k + q, ω + Ω). (2.16)
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The total thermal current operator is thus given by

jQ(q→ 0,Ω) = jQ1 (q→ 0,Ω) + jQ2 (q→ 0,Ω). (2.17)

The thermal current operator does not depend on the spiral order amplitude A. One way

to understand this result is to think about conductivities in terms of generalized velocities

multiplied by occupation numbers. In our case, both the Fermi velocity and the gap velocity

appear as the dispersion ξk and the gap ∆k are both momentum-dependent. However, the

amplitude A does not depend on momentum, i.e, ∂kA = 0, and it thus does not appear in

the expression for the thermal current. This is similar to the absence of spatially uniform

order parameters in thermal current operators in previous studies, e.g, for the s-wave on-

site CDW order studied in Ref. 25, or the s-wave superconductivity in Ref. 27 where the

gap-velocity is zero.

C. Green’s function

In momentum space, the Hamiltonian for the clean system (Hdis = 0) can be written

as H =
∑′

k Ψ†kh(k)Ψk, where Ψk is a 2 or 4 component Nambu spinor which depends on

the particular regime we are considering, and
∑′

k corresponds to the momentum sum over

an appropriately reduced Brillouin zone (BZ). The bare Matsubara Green’s function in the

Nambu basis described above is given by

G0(k, iωn) = (iωn − hk)−1 . (2.18)

We add impurity scattering through a self-energy, which is a 2× 2 or 4× 4 matrix Σ̂(iωn) in

Nambu space in full generality. Here, we only consider the scalar term for simplicity, which

allows us to write down the dressed Green’s function in terms of the bare one as follows

G−1(k, iωn) = [G0(k, iωn)]−1 − Σ̂(iωn) ≈ [G0(k, iωn)]−1 − Σ(iωn)I4×4

= G0(k, iωn − Σ(iωn))
(2.19)

For the computation of DC conductivities at low temperatures, we need the imaginary part

of the retarded Green’s function, ImGR(k, ω), for ω → 0. GR(k, ω) is obtained by analytic

continuation of the Matsubara Green’s function, GR(k, ω) = G(k, iωn → ω + i0+). In the

low-energy limit, the retarded self-energy from impurity scattering can be approximated as

ΣR(0) = −iΓ, where Γ is the disorder-induced scattering rate.
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FIG. 1: The bare fermion bubble required to be evaluated for κab

D. Kubo formula for thermal conductivity

In terms of the Nambu spinor Ψk, the thermal current operator is given by

jQ(q→ 0,Ω) =
′∑

k,ω

(
ω +

Ω

2

)
Ψ†kVkψk+q, (2.20)

where Vk is a generalized velocity matrix which will be appropriately defined in the different

scenarios. Following Ref. 22 and 25, we can calculate the thermal conductivity via the Kubo

formula,

↔
κ(Ω, T )

T
= − lim

Ω→0

Im

[ ↔
ΠR
κ (Ω)

]
T 2Ω

. (2.21)

ΠR
κ (Ω) is the retarded current-current correlation function for the thermal current, which is

obtained from the Matsubara correlation function via analytic continuation,

ΠR
κ (Ω) = Πκ(iΩn → Ω + i0+). (2.22)

In this study, we neglect vertex corrections to conductivities, so that the evaluation of the

conductivity reduces to the evaluation of the one-loop contribution to the current-current

correlation function. It is shown diagrammatically in Fig. 1, and is given by

Πκ(iΩn) =
1

β

′∑
iωn,k

(
iωn +

iΩn

2

)2

Tr [G(k, iωn)VkG(k, iωn + iΩn)Vk] , (2.23)

where β = (kBT )−1, and and the momentum sum is over the reduced Brillouin zone. For

the evaluation of the conductivity, it is useful to express the Green’s function in terms of

the spectral representation (for associated subtleties which are irrelevant for us because our

order parameters are real, see the appendix of Ref. 25),

G(k, iωn) =

∫ ∞
−∞

dω1
A(k, ω1)

iωn − ω1

, where A(k, ω1) = − 1

π
G′′ret(k, ω1). (2.24)
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Plugging this into Eq. (2.23), we find

Πκ(iΩn) =

∫ ′
d2k

(2π)2

∫
dω1

∫
dω2 S(iΩn) Tr [A(k, ω1)VkA(k, ω2)Vk] , (2.25)

where

S(iΩn) =
1

β

∑
iωn

(
iωn +

iΩn

2

)2
1

iωn − ω1

1

iωn + iΩn − ω2

. (2.26)

The apparent divergence of the Matsubara sum in Eq. (2.26) is a consequence of the improper

treatment of time ordering and time derivatives, which do not commute. A more careful

treatment [27] shows that these issues can safely be ignored and Eq. (2.26) yields

Sret(Ω) = S(iΩ→ Ω + i0+) =

(
ω1 + Ω

2

)2
nF (ω1)−

(
ω2 − Ω

2

)2
nF (ω2)

ω1 − ω2 + Ω + i0+
. (2.27)

Exploiting this result, we obtain

Im

[ ↔
ΠR
κ (Ω)

]
=

∫ ′
d2k

4π

∫
dω

(
ω +

Ω

2

)2

(nF (ω + Ω)− nF (ω))Tr [A(k, ω)VkA(k, ω + Ω)Vk]

(2.28)

for the imaginary part of the retarded polarization bubble. The real part of the polarization

bubble can in principle be calculated using a Kramers-Kronig transformation, but is not

required for the computation of the DC thermal conductivity.

In the static limit, where Ω → 0, we can replace (nF (ω + Ω) − nF (ω)) → Ωn′F (ω),

cancelling the factor of Ω in the denominator of Eq. (2.21). Subsequently, we can set Ω = 0

everywhere else and obtain in this limit

↔
κ(Ω→ 0, T )

T
=

∫ ′
d2k

4π

∫
dω
(ω
T

)2

(−n′F (ω)) Tr [A(k, ω)VkA(k, ω)Vk] . (2.29)

In the scenarios we are interested in, the relevant energy scales T and Γ are all much smaller

than the Fermi energy EF . As the derivative of the Fermi function is strongly peaked at

ω = 0, for low T � Γ � EF , we can set ω = 0 in the spectral functions, and evaluate the

frequency integral analytically, obtaining∫ ∞
−∞

dω
(ω
T

)2

(−n′F (ω)) =
π2k2

B

3
(2.30)

In this limit, the conductivity takes the form:

↔
κ(Ω→ 0, T )

T
=
k2
B

3

∫ ′
d2k

4π
Tr [G′′R(k, 0)VkG

′′
R(k, 0)Vk] (2.31)
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where G′′R(k, 0) is the imaginary part of the retarded Green’s function and the momentum

integral is over the (reduced) Brillouin zone. For arbitrary disorder strength, this expres-

sion is difficult to evaluate analytically. In certain limits, we can make analytic progress

and determine for example whether the Wiedemann-Franz law is satisfied. These analytic

calculations will be complemented with numerical results.

III. ANTIFERROMAGNETIC METAL

A. Thermal conductivity in the spiral and Néel states

In this section, we focus on the dirty limit, where the disorder scattering strength is

much stronger than the superconducting order, i. e., the regime where Γ � ∆0. In this

limit, we can neglect superconductivity entirely, and therefore the problem reduces to the

computation of the thermal conductivity in an antiferromagnetic metal. We proceed as

described in Sec. II.

An antiferromagnetic state with ordering wave vector Q can be described by the Hamil-

tonian

Hafm =
∑

k,σ=↑,↓

ξkc
†
kσckα − A

∑
k

(
c†k↑ck+Q↓ + c†k+Q↓ck↑

)

=
∑
k

Ψ†khkΨk with h(k) =

 ξk −A
−A −ξk

 and Ψk =

 ck↑

ck+Q↓


(3.1)

The Green’s function is given by

G0(k, iωn) = (iωn − hk)−1 =
1

(iωn − E+k)(iωn − E−k)

iωn − ξk A

A iωn − ξk+Q

 (3.2)

where

E±,k =
ξk + ξk+Q

2
±
√(

ξk − ξk+Q

2

)2

+ A2 (3.3)

are the two reconstructed bands. An example for the quasi-particle Fermi surface and

spectral function of this Hamiltonian is shown in Fig. 2 [6].

For the transport calculation, disorder is added to the Green’s function as described in

Eq (2.19). In the spiral state, the momenta and the spins of the quasiparticles are tied

12



-1 -0.5 0 0.5 1

kx/π

-1

-0.5

0

0.5

1

k
y
/
π

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

k
y
/π

kx/π

-1 -0.5 0 0.5 1

kx/π

-1

-0.5

0

0.5

1

k
y
/π

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

k
y
/π

kx/π

FIG. 2: Quasi-particle Fermi surface (left) and spectral function (right) of spiral (top row)

and commensurate (bottom row) antiferromagnetic states with t′ = −0.35, A = 0.267,

p = 0.152 and η ≈ p (η = 0) for the spiral (commensurate) AF state. In the left figures,

hole and electron pockets are marked in red and green, respectively. The thin black and

blue lines are the original and Q-shifted Fermi surfaces.

together. This may in general lead to a momentum and spin dependence of the scattering

rate even for potential disorder. However, since each state can get scattered to any other

state on the Fermi surface by repeated scattering, we assume that the averaged scattering

cross-section is roughly the same for any given momenta on the Fermi surface. Therefore,

we use a simple retarded self-energy ΣR(ω → 0) = −iΓ to account for the broadening of the

quasiparticle spectrum near the Fermi surface.

The heat conductivity is then evaluated using Eq. (2.31), using the imaginary part of

Eq. (3.2) after continuation to the real frequency axis, iωn → ω + iδ,

Im
[
GR(k, ω → 0)

]
=

Γ

Gden

[
−
(
(E2

+k + E2
−k)/2 + Γ2

)
τ0 + Γ(E+k + E−k)

(
Aτ1 −

(ξk − ξk+Q)

2
τ3

)]
,

(3.4)
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where Gden = (E+kE−k−Γ2)2 +Γ2 (E+k + E−k)2, τi are the Pauli matrices; and the velocity

matrix,

Vk =

v(k) 0

0 v(k + Q)

 (3.5)

with appropriate Q for the antiferromagnetic state under consideration. This yields the

thermal current operator in Eq. (2.17) with jQ2 = 0. Note that the momentum integral in

Eq. (2.31) is over the whole Brillouin zone for a spiral antiferromagnetic metal.

This expression needs to be evaluated numerically, but we can simplify it to some extent

in the limit where the disorder strength Γ is smaller than all the other relevant energy scales,

the amplitude of the antiferromagnetic order A and the Fermi energy EF (but it is still larger

than ∆d). The final expression, which we do not state here, involves an integral along the

Fermi pockets, and is inversely proportional to the scattering rate Γ.

B. Electrical conductivity and the Wiedemann-Franz Law

In this section we evaluate the electrical conductivity for the dirty metal with Néel or

spiral order, and show that the Wiedemann Franz law for transport holds. The electric

current operator is given by:

je(q→ 0,Ω) =
∑
k,ω,σ

∂ξk
∂k

c†σ(k, ω)cσ(k, ω) =
∑
k,ω

Ψ†kVkΨk+q,

where Vk =

v(k) 0

0 v(k + Q)

 (3.6)

The Kubo formula for the electrical conductivity is given by:

↔
σ(Ω, T ) = − lim

Ω→0

Im

[ ↔
ΠR
e (Ω)

]
Ω

(3.7)

where ΠR
e (Ω) is the retarded current-current correlation function for the electrical current,

obtained via analytic continuation from the Matsubara correlation:

ΠR
e (Ω) = Πe(iΩn → Ω + i0+) (3.8)

Neglecting vertex corrections, we evaluate the bare-bubble contribution to the current-

current correlator:

Πe(iΩn) =
1

β

∑
iωn,k

Tr [G(k, iωn)VkG(k, iωn + iΩn)Vk] (3.9)
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Using the spectral representation of the Green’s function in Eq. (3.9), we find:

Πe(iΩn) =

∫
d2k

(2π)2

∫
dω1

∫
dω2 S(iΩn) Tr [A(k, ω1)VkA(k, ω2)Vk] (3.10)

where

S(iΩn) =
1

β

∑
iωn

1

iωn − ω1

1

iωn + iΩn − ω2

(3.11)

The Matsubara sum is convergent, and evaluates to:

Sret(Ω) = S(iΩ→ Ω + i0+) =
nF (ω1)− nF (ω2)

ω1 − ω2 + Ω + i0+

=⇒ Im [Sret(Ω))] = π(nF (ω1 + Ω)− nF (ω1))δ(ω1 − ω2 + Ω) (3.12)

The imaginary part of retarded polarization bubble is therefore given by:

Im

[ ↔
ΠR
e (Ω)

]
=

∫
d2k

4π

∫
dω(nF (ω + Ω)− nF (ω))Tr [A(k, ω)VkA(k, ω + Ω)Vk] (3.13)

Assuming that T → 0, we can approximate the derivative of the Fermi function by a delta

function as Ω→ 0 in the dc limit:

(nF (ω + Ω)− nF (ω))/Ω ≈ δ(ω) (3.14)

Using this to evaluate the ω integral, we end up with the following expression for the electrical

conductivity:

↔
σ(Ω→ 0, T → 0) =

e2

π2

∫
d2k

4π
Tr [G′′R(k, 0)VkG

′′
R(k, 0)Vk] (3.15)

Comparing Eq. (3.15) with Eq. (2.31), we find that the Wiedemann-Franz law is obeyed, as

one would expect for a quasiparticle Fermi surface with constant scattering lifetime:

κ

σT
=
π2k2

B

3e2
(3.16)

C. Numerical results for antiferromagnetic metals

In the following we discuss numerical results for

κ0 = lim
T→0

κxx(Ω→ 0, T )

T
(3.17)

in the presence of (in-) commensurate antiferromagnetic order. The latter is described by

an antiferromagnetic gap with the phenomenological doping dependence

A(p) = A0(p∗ − p)Θ(p∗ − p), (3.18)
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FIG. 3: Influence of the size of the spiral antiferromagnetic gap A (left) and the scattering

rate Γ (right) on the heat conductivity for t′ = −0.35. and Γ = 0.01. Antiferromagnetism

disappears at p∗ = 0.19. In the left plot we use Γ = 0.01 and in the right plot the gap at

p = 0.05 is set to Apmin
= 0.8.

where A0 is fixed by the antiferromagnetic gap Apmin
at the smallest doping considered,

pmin = 0.05 and p∗ = 0.19 is the critical doping beyond which antiferromagnetic order

disappears. In this section, we set t′ = −0.35. In Fig. 3 we show the influence of the size

of the antiferromagnetic gap on the heat conductivity. Similarly to the Hall coefficient near

an antiferromagnetic phase transition [5, 6], the magnitude of the spiral order parameter

mostly influences the width of the crossover region, in which electron and hole pockets

coexist. With increasing strength of antiferromagnetic order, the transition region shrinks.

In Fig. 3, we show the influence of the size of Γ on the doping dependence of the heat

conductivity. We plot Γκ0 for better comparison. For the smallest value, Γ = 0.001, the

results are indistinguishable from those obtained in a relaxation time approximation in which

Γ→ 0 is assumed, as employed in Ref. 6. The doping dependence of Γκ0 is only altered at

large values of Γ, as shown in Fig. 3.

In Fig. 4, we compare the doping dependence of the heat conductivity for commensurate

or incommensurate antiferromagnetism for p < p∗. In the incommensurate case, the heat

conductivity drops significantly faster for p < p∗ than in the commensurate case. This

difference can be understood analytically and is discussed in the next section.

Collignon et al. found that the drop in the electrical conductivity can be entirely under-

stood as a drop in the charge carrier density when assuming that the charge carrier mobility

is constant across the phase transition [3]. Evidence for a constant mobility is found in the
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FIG. 4: Comparison of the doping dependence of the heat conductivity for commensurate

(cAF) and incommensurate (iAF) antiferromagnetism for p < p∗ for t′ = −0.35 and

Apmin
= 1.0. Antiferromagnetism disappears at p∗ = 0.19. We plot Γκ0 for better

comparison.

behavior of the Hall angle and the magnetoresistance. The charge carrier density can then

be extracted from the heat or electrical conductivity via

pσ = (1 + p)
σ(0)

σ0

(3.19)

where σ0 (σ(0)) is the conductivity in the absence (presence) of antiferromagnetic order. In

experiments, σ0 is obtained by extrapolating the conductivity from high to low temperatures.

For our calculation we assume that the disorder scattering rate is independent of doping

and do not make assumptions on the mobility. This leads to a behavior of pσ that is distinct

from that of the Hall coefficient, as shown in Fig. 5, and is connected to the fact that the

drop in the conductivity is smaller than the drop in the Hall number. In Fig. 6, we plot the

Hall angle across the phase transition to (in-) commensurate antiferromagnetism. For com-

mensurate antiferromagnetism, the Hall angle increases for p < p∗. In the incommensurate

case, there is a slight drop of RHσ below the critical point before it starts to increase. It is

interesting to compare this behavior to the experimental results by Collignon et al. [3] on

Nd-LSCO. In Fig. 10 of their paper the Hall angle is shown to drop by a factor of three

(approximately) within a small doping range. This is attributed to Fermi surface recon-

struction below p∗ and appearance of electron-like pockets. In our model the relative drop is

smaller, and in Sec. V we demonstrate how a doping dependent scattering rate can alleviate

this discrepancy.
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FIG. 5: Effective charge carrier density as extracted from the heat conductivity in

comparison to the Hall number for a phase transition to incommensurate

antiferromagnetic order. Parameters are t′ = −0.35 and Apmin
= 1.0. Γ = 0.001 in the

computation of the conductivity. The Hall number was determined in the relaxation time

approximation as described in Ref. [6].
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FIG. 6: Doping dependence of the Hall angle RHσ, rescaled by Γ, across a phase transition

from a paramagnetic to an (in-) commensurate antiferromagnetic metal with Apmin
= 1.0 in

both cases.

D. Analytic understanding of the numerical results

In this section, we estimate the drop of the conductivity across the phase transition.

Our estimates are valid for the weakly disordered antiferromagnetic metal, or coexisting

antiferromagnetism and superconductivity in the dirty limit (∆ � Γ) and capture the

change quite well. Instead of the thermal conductivity, we focus on the diagonal electrical

conductivity as in this regime the Wiedemann-Franz law is obeyed.
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In our mean-field model, the Fermi velocity vF is unrenormalized across the phase tran-

sition on most parts of the Fermi surface, except close to the points that get gapped out

(near the edges of the pockets). Therefore, the electrical conductivity can be approximated

as:

σxx ∼
∫
k

(
∂Ek

∂kx

)2

n′F (Ek) ≈
∫
k

(vF x)
2δ (vF (k) · (k− kF )) (3.20)

≈
〈
v2
F,x

vF

〉
× Total perimeter of Fermi surface/pockets. (3.21)

We have also assumed that scattering is mainly due to disorder, so that the quasi-particle

scattering rate is unchanged across the transition.

In absence of antiferromagnetic order, we have a large hole-like Fermi surface of size 1+p,

which accommodates both spin species. We assume that this pocket is circular with radius

kF , so that the density of holes is given by (setting lattice spacing a = 1):

2× πk2
F

(2π)2
= 1 + p =⇒ kF =

√
2π(1 + p). (3.22)

This implies that the diagonal conductivity is given by (modulo constant factors):

σLargeFS ∼
〈
v2
F,x

vF

〉
× 2× 2πkF = 4π

〈
v2
F,x

vF

〉√
2π(1 + p) (3.23)

Antiferromagnetic order leads to reconstruction of the large Fermi surface into electron

and hole pockets. In the following we assume that the antiferromagnetic order parameter

is large enough to gap out the electron pockets. In the presence of Néel order, we have

four hole pockets in the large Brillouin zone (taking spin already into account). For the

spiral order there are only two somewhat larger hole pockets, see Figs. 2. These pockets are

approximately elliptic, with an eccentricity of e ≈ 0.5 in both cases. The area of the ellipse

is given by πK1K2 = πK2
1/2, where K1(K2) is the semi-major(minor) axis of the ellipse.

The perimeter of a single elliptical pocket is given by

Sellipse = 4K1

∫ π/2

0

dθ
√

1− e2 sin2θ ≈ 6K1, for e = 0.5. (3.24)

For the Néel ordered case, we find

4× πK2
1

2(2π)2
= p =⇒ K1 =

√
2πp, (3.25)

so that the diagonal conductivity is given by

σNéel ∼
〈
v2
F,x

vF

〉
× 4× 6K1 = 24

〈
v2
F,x

vF

〉√
2πp. (3.26)

19



For spiral order, we have

2× πK2
1

2(2π)2
= p =⇒ K1 = 2

√
πp (3.27)

and can estimate the conductivity as

σiAF ∼
〈
v2
F,x

vF

〉
× 2× 6K1 = 24

〈
v2
F,x

vF

〉√
πp. (3.28)

We estimate the drop of the conductivity across the phase transition by comparing the

results for the large Fermi surface at a doping p1 = 0.2 with the result for the small Fermi

pockets at p2 = 0.1. For Néel order we find

σNéel

σLargeFS
=

6

π

√
p2

1 + p1

=

√
3

π
≈ 0.55, (3.29)

while for spiral order we obtain

σiAF
σLargeFS

=
6

π

√
p2

2(1 + p1)
≈ 0.39 (3.30)

Both of these seem to agree quite well with the numerical data, as does the approximation

that σNéel/σiAF =
√

2 at the same doping p2 after the disappearance of the electron pockets.

IV. CO-EXISTING ANTIFERROMAGNETISM AND SUPERCONDUCTIVITY

In this section, we discuss the thermal conductivity for co-existing antiferromagnetic and

superconducting order. This is motivated by the fact that most transport experiments at

low temperatures are done in the superconducting phase. The reason is that the experimen-

tally accessible magnetic fields do not suffice to suppress superconductivity completely in

most materials. Therefore it is interesting to ask which experimental signatures of incom-

mensurate antiferromagnetic or topological order could show up in transport measurements

in the superconducting phase. We consider both commensurate (Néel) and incommensurate

(spiral) antiferromagnetic order. Since the formalism has a significant amount of overlap for

these two scenarios, we combine them into a single section, with separate subsections where

the results differ significantly.
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A. Spectrum

Commensurate and incommensurate antiferromagnetism coexisting with superconductiv-

ity can be described by the mean-field Hamiltonian in Eq. (2.1) [24]. For convenience of

calculation, we re-write it in terms of a 4× 4 Nambu notation, with

HAF+dSC =
′∑
k

Ψ†kh(k)Ψk, with h(k) =


ξk ∆k −A 0

∆k −ξk 0 A

−A 0 ξk+Q −∆k+Q

0 A −∆k+Q −ξk+Q

 and Ψk =


ck↑

c†−k↓

ck+Q↓

c†−k−Q↑.


(4.1)

Here we have assumed that the electron dispersion ξk is symmetric under spatial inversion,

k → −k. The sum over momenta k is restricted to −π < kx ≤ π and −π/2 < ky ≤ π/2 in

order to avoid double counting. We have checked explicitly that the mean-field Hamiltonian

can be rewritten in the spinor notation by employing all allowed operations (like shifting the

x-component of momenta, inverting momenta, but not shifting the y-component of momenta

after introducing the reduced BZ). For general Q, the eigenvalues of h(k) are given by:

E2
±,k =

1

2

(
2A2 + Λk ±

√
α2
k + 4A2βk

)
, where

Λk = ∆2
k + ∆2

k+Q + ξ2
k + ξ2

k+Q, αk = ∆2
k −∆2

k+Q + ξ2
k − ξ2

k+Q, and

βk = (∆k + ∆k+Q)2 + (ξk + ξk+Q)2 (4.2)

Setting ∆k = 0, we recover the spectrum of the antiferromagnetic metal [28]. For A = 0, we

recover the spectrum of a superconductor E0
k and E0

k+Q, where E0
k =

√
ξ2
k + ∆2

k. These two

branches together count the states of the uniform superconductor in the full BZ, as there is

no translation symmetry breaking for A = 0.

We choose the superconducting gap to have d-wave symmetry, as appropriate for cuprate

superconductors and theoretical models of antiferromagnetism coexisting with superconduc-

tivity [23, 24, 29–41]. The dispersion in Eq. (4.2) then possesses gapless nodal excitations.

In Fig. 7, we plot the spectrum of the Néel and spiral states coexisting with superconduc-

tivity. We note that the Néel ordered superconductor has 8 nodal points in the extended

BZ, whereas the superconductor with spiral order has only 4 nodes.
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FIG. 7: Plots of logarithm of the dispersions of the lower band (a.u.) at p = 0.152, for

parameter values t′ = −0.35, µ = −1.099,∆d = 0.1, A = 0.267, and η = 0 for Néel and

0.1436 for spiral order.

B. Thermal conductivity

The bare Matsubara Green’s function is in the Nambu basis described above is given by:

G0(k, iωn) = (iωn − hk)−1 (4.3)

Now we add impurity contribution to the self-energy, which is a 4 × 4 matrix Σ̂(iωn) in

Nambu space in full generality. We only consider the scalar term for simplicity, which allows

us to write down the dressed Green’s function in terms of the bare one as follows:

G−1(k, iωn) = [G0(k, iωn)]−1 − Σ̂(iωn) ≈ [G0(k, iωn)]−1 − Σ(iωn)I4×4

= [G0(k, iωn − Σ(iωn))]−1
(4.4)

Following analytic continuation to real frequencies, ΣR(0) = −iΓ, the imaginary part of the

retarded Green’s function in the ω → 0 limit can be expressed as follows in terms of Pauli
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matrices τi and the 2× 2 identity matrix τ0 (relabeling k as 1 and k + Q as 2):

Im[GR(k, ω → 0)] =
1

Gden

G′′a G′′b

G′′c G′′d

 , where

G′′a = −Γ(Γ2 + A2 + ξ2
2 + ∆2

2) τ0

G′′b = −AΓ [(ξ1 + ξ2)− (∆1 + ∆2)(iτ2)]

G′′c = −AΓ [(ξ1 + ξ2) + (∆1 + ∆2)(iτ2)]

G′′d = −Γ(Γ2 + A2 + ξ2
1 + ∆2

1) τ0

Gden = (Γ2 + A2 + ξ2
1 + ∆2

1)(Γ2 + A2 + ξ2
2 + ∆2

2)− A2
[
(ξ1 + ξ2)2 + (∆1 + ∆2)2

]
(4.5)

Noting that v∆(−k) = −v∆(k) and working through some algebra, we find that we can

write the thermal current operator in terms of the Nambu spinor Ψk as:

jQ(q→ 0,Ω) =
′∑

k,ω

(
ω +

Ω

2

)
Ψ†kVkψk+q, where

Vk =

vF (k)τ3 + v∆(k)τ1 0

0 vF (k + Q)τ3 − v∆(k + Q)τ1

 (4.6)

Following the procedure outlined in section II D, we can evaluate the thermal conductivity

by extending the summation to the full BZ with an added factor of half.

↔
κ(Ω→ 0, T )

T
=
k2
B

3

∫
d2k

8π
Tr [G′′R(k, 0)VkG

′′
R(k, 0)Vk] . (4.7)

For arbitrary disorder strength, we evaluate this expression numerically. In the clean limit,

it can be treated analytically so that connections with the universal Durst-Lee result in the

absence of magnetism [22] can be drawn. This is discussed in the next section.

C. Analytic expressions in the clean limit

1. Néel order

For Néel-type antiferromagnetic order coexisting with superconductivity in the clean

limit, Γ0 → 0, the thermal conductivity can be evaluated analytically. In this case, the
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major contribution to the thermal current is carried by nodal quasiparticles, again allowing

us to linearize the dispersion at each nodal point. We obtain

κii(Ω→ 0, T )

T
=

k2
B

3vFv∆

[√
1− α2 v2

F +
1√

1− α2
v2

∆

]
Θ(1− α), where α =

A

Ac
. (4.8)

For A → 0, i. e. vanishing antiferromagnetic order, we recover the result by Durst and

Lee [22] as expected.

Tuning the order parameter A at fixed chemical potential beyond a critical value Ac, the

nodes can collide and become gapped as discussed in Appendix A. This entails an exponential

suppression of the heat conductivity due to the resulting gap in the spectrum in the absence

of large disorder broadening. This scenario could be relevant in the strongly underdoped

regime, as gapping out the nodes leads to a phase transition from a superconductor to a

half-filled insulator.

The above result also indicates that close to the doping p∗ where antiferromagnetic order

appears, the number of nodes and the nodal velocities remain unaffected across the phase

transition. Thus, a smooth behavior of the heat conductivity is expected near p∗, consistent

with our numerical results in Fig. 8.

A few further comments are in order. The apparent divergence of κ/T for A → Ac is

an artifact of the clean approximation, which will get smoothened out by disorder. More-

over, there is no nematic order (corresponding to the breaking of the C4 symmetry of the

square lattice to C2) and κxx = κyy. This is markedly different from the cases of super-

conductivity coexisting with spiral antiferromagnetism or charge density waves with axial

wave-vector [25]. Finally, our result is valid for any anisotropy ratio vF/v∆, unlike the

isotropic limit discussed in Ref. 25. The dependence of κ on the order parameter magnitude

is also different in these two cases, and may be used as a probe to distinguish between these

two different orders in a clean d-wave superconductor.

Note that although the results in Ref. 25 correspond to a s-wave charge density wave,

the wave-vector (π, 0) is obtained considering the second harmonic of the experimentally

observed wave-vector of (π/2, 0). For a d-wave bond density wave which has been observed

in STM experiments [42], we need to consider the second harmonic which has a squared

form factor, i.e, ψk ∼ (coskx − cosky)
2. Therefore, the equation ∂kψk = 0 still holds at the

nodes which lie along kx = ±ky, and their results are valid for the d-form factor density

wave state as well.
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2. Spiral order

For the case of spiral order, the metallic state with no superconductivity has only two hole

pockets, which are in the region kx > 0 for Q = (π − 2πη, π). This can be understood from

the fact that for small A, the particle-hole polarization bubble at momentum Q is maximum

when Q approximately nests two segments of the Fermi surface, and accordingly the saddle-

point free energy for the fluctuations of the order-parameter field after integrating out the

fermions is minimum. As we fix the phenomenological doping dependence of the order

parameter amplitude A and minimize the free energy by optimizing the incommensurability

η [6], the preferred η gaps out a large part of the Fermi pockets to reduce the mean-field

free energy.

Adding superconductivity on top of the spiral state therefore implies that there are only

four nodes in the extended BZ, coming from the two hole-pockets. The other four nodes

will collide and disappear once spiral order sets in. Thus, in the clean limit we expect the

thermal conductivity to drop to half of its original value soon after crossing p∗ from the

overdoped side. Evaluating the heat conductivity by focusing on the vicinity of the four

nodal points for p . p∗, the thermal conductivity for the clean d-wave superconductor with

spiral order is given by half of the Durst-Lee value,

κii(Ω→ 0, T )

T
=
k2
B(v2

F + v2
∆)

6vFv∆

(4.9)

Indeed, numerical results in Fig. 8 show a sharp drop of the thermal conductivity by a factor

of two across the critical point.

D. Violation of the Wiedemann-Franz law

In the clean limit, we can evaluate the bare-bubble electrical conductivity due to gap-

less nodal quasiparticles as described in section III B. For Néel order, the non-superfluid

contribution to the electrical current is given by:

je(q→ 0,Ω) =
′∑

k,ω

Ψ†kVkψk+q, where

Vk =

vF (k)τ0 0

0 vF (k + Q)τ0

 ≈
vF (k)τ0 0

0 −vF (k)τ0

 (4.10)
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From this, the quasiparticle contribution to the electrical conductivity (denoted by σ̃) can

be evaluated using an analogous computation to the thermal conductivity:

σ̃ii(Ω→ 0, T → 0) =
e2

π2

∫
d2k

8π
Tr [G′′R(k, 0)VkG

′′
R(k, 0)Vk]

=
e2

π2

vF
v∆

√
1− α2 Θ(1− α), where α =

A

Ac
(4.11)

Therefore, in the clean limit we have:

κ

σ̃T
=
π2k2

B

3e2

(
1 +

1

1− α2

v2
∆

v2
F

)
(4.12)

Since the Fermi surface is modified as a function of doping, α, the Fermi velocity and the

gap velocity all change and therefore κ/σ̃T is not a constant as a function of doping in the

antiferromagnetic (A 6= 0) regime. However, typically the Fermi velocity is much larger

than the gap velocity, and therefore this correction is expected to be small. As α → 1,

the correction appears large if we hold v∆ fixed. But this is a rather unphysical limit as

increasing antiferromagnetism to its critical value will reduce the superconductivity ∆d, and

v∆ will also drop. Note that for isotropic disorder scattering, the single-particle lifetime is

equal to the scattering time for free fermions. Even for our lattice model, we expect only

minor modifications from the bare-bubble result due to vertex corrections. In particular,

in the dirty limit v∆/vF → 0 and the Wiedemann-Franz law is exactly satisfied by the

quasiparticle contribution to the electric current, as long as the disorder is relatively weak

compared to the Fermi energy, as described in section III B.

E. Numerical results in the clean limit

In Fig. 8, we compare the doping dependence of the heat conductivity in the clean

and dirty limit for antiferromagnetism coexisting with superconductivity. In the case of

commensurate antiferromagnetism, the change near p∗ is less pronounced than in the case

of incommensurate antiferromagnetism for both the clean and dirty limits. In the clean

limit, the location of p∗ is not discernible from the plot of κxx0 in the commensurate case.

This is consistent with the analytical result in Eq. (4.8). In contrast, at the doping where

the spiral antiferromagnetic order appears, the heat conductivity drops to roughly half of its

value. In the case of incommensurate antiferromagnetism coexisting with superconductivity

in the dirty limit, the doping dependence of the heat conductivity is much smoother, as
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FIG. 8: Doping evolution of the heat conductivity in the clean and dirty limits, comparing

commensurate and incommensurate antiferromagnetic order. Parameters are t′ = −0.35

and Apmin
= 1.0.
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FIG. 9: Evolution of heat conductivity from the clean to the dirty limit for coexisting

superconductivity and incommensurate antiferromagnetism, for Apmin
= 1.0 and ∆ = 0.05.

already discussed above. In Fig. 9, we show the evolution of the heat conductivity for

various scattering rates from the clean to the dirty limit, demonstrating how the jump gets

washed out with increasing scattering rate.

V. INFLUENCE OF DOPING-DEPENDENT SCATTERING IN THE DIRTY

LIMIT

In Sec. III D we discussed that the drop in the thermal conductivity across the antifer-

romagnetic phase transition can be understood in terms of a reconstruction of the Fermi
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FIG. 10: Doping dependence of the heat conductivity for t′ = −0.35, Apmin
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Γ0 = 0.01. The curve labeled Γ shows the same data as in Fig. 4 for comparison. The

other two curves were obtained for a doping dependent scattering rate that doubles over a

doping range of ∆p below p∗.

surface in case of a disordered antiferromagnetic metal or a dirty superconductor (∆d � Γ).

In this scenario, the relative drop across the phase transition is smaller than the drop of the

Hall number, whereas experiments suggest that the drops are of very similar magnitude. The

experiments have been interpreted in terms of a Drude-like model, which allows to connect

the drop in the conductivity with a drop in the charge-carrier density [3] by assuming that

the charge carrier mobility is unchanged across the phase transition. However, this requires

the validity of an effective mass picture, or nearly circular pockets, which only holds for a

very large antiferromagnetic order parameter. Below the optimal doping QCP, the pockets

are quite distorted and an effective mass picture is therefore not appropriate. Very recent

experiments on electron-doped cuprate LCCO [43] have also observed similar resitivity up-

turns which cannot be explained only by a drop in carrier density. In this section, we provide

an alternative scenario that would explain the larger drop in conductivity.

The key observation is that the scattering rate Γ cancels in the Hall number [6, 26],

while the thermal conductivity in the dirty superconductor is approximately proportional

to Γ−1. Therefore, one might anticipate that additional sources of scattering that appear

once antiferromagnetism sets in can entail a larger drop of the thermal conductivity. We

show that a phenomenological doping-dependent scattering rate can indeed lead to similar

behavior and drop sizes in the Hall number and the conductivities. We then argue for a

possible source of enhanced scattering in the underdoped regime.
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and the Hall coefficient (nH) as a function of doping. We chose Apmin
= 1.0, where electron

pockets exist for 0.13 ≤ p ≤ 0.19. ∆p is the doping range over which Γ(p) doubles with

decreasing doping.

For simplicity, we assume that the doping dependence of Γ(p) is given by

Γ(p) =


2Γ0 for p < p∗ −∆p

2Γ0 − Γ0(p− p∗ + ∆p)/∆p for p∗ −∆p ≤ p ≤ p∗

Γ0 for p > p∗,

(5.1)

where ∆p is the doping range over which the scattering rate increases. In Fig. 10 we show

results for the heat conductivity of a disordered antiferromagnetic metal as obtained with this

choice of Γ(p). We mentioned in the last sections that for Γ(p) = Γ0 discrepancies between

experiments and the theory of transport in a superconductor in the dirty limit showed up

in the Hall angle and the doping dependence of the charge carrier density. In Fig. 11, we

show the ratio between the charge carrier density as extracted from the conductivity and

the Hall number. For Γ(p) = Γ0, with decreasing doping we find a small peak and then a

decrease to values significantly below one. Adding doping dependent scattering, the peak at

p < p∗ increases as the conductivity drops faster. Note that in this section we assume that

RH depends only weakly on the scattering rate for Γ0 � EF , where EF is the Fermi energy.

Our results for pσ/nH can be compared with the experimental results by Collignon et al. [3],

yielding good qualitative agreement.

A similar picture emerges from the Hall angle RHσ. In Nd-LSCO, a drop by a factor

of three is observed over the width of the transition with decreasing doping [3]. In the
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∆p is the doping range over which Γ(p) doubles with decreasing doping.

disordered antiferromagnetic metal, a rather small drop is observed in this quantity for

p < p∗, followed by an increase at smaller p. As can be seen in Fig. 12, adding doping

dependent scattering allows to enhance the size of the drop and weakens the decrease at

smaller doping, leading to a better qualitative agreement with the experimental results [3].

A doping-dependent scattering rate that increases for p < p∗ can thus improve the qual-

itative agreement between theory and experiment in various transport properties. In the

following we argue that the competing ordering tendencies at different energy scales in un-

derdoped cuprates could provide a mechanism for such a doping-dependence of the scattering

rate. In La-based cuprates like Nd-LSCO, at low dopings (p ∼ 0.12) there is evidence of

stripe-like ordering from neutron scattering and X-ray spectroscopy [44–46]. In other cuprate

materials like BSCCO, local patches of charge modulations have been seen in STM experi-

ments [42, 47, 48]. Theoretical studies also show that the reconstructed small Fermi surface

has a dominant instability towards bond-density waves (BDW) at an incommensurate wave-

vector with a d-wave form factor [11, 49]. The results of recent transport experiments [2, 3]

suggest that charge-ordering sets in at a lower doping than p∗, where the pseudogap line

terminates. However, short-range charge density modulations seem to be omnipresent in the

pseudogap phase, and could act as additional sources of scattering. Indeed, time-reversal

symmetric disorder can destroy long range density wave order in the charge channel as it

couples linearly to the order parameter, but it can only couple quadratically to the spin den-

sity wave order parameter and is therefore a less relevant perturbation to antiferromagnetic
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order [50]. Below, we explore a simple model of disordered density waves and estimate its

contribution to the quasiparticle scattering rate.

FIG. 13: Patches of density waves that act as additional quenched disorder.

We model the disorder-induced scattering as arising from pinned short-range charge-

density wave order with a domain size given by the correlation length ξ, which we assume

to be of the order of ten lattice spacings. Each domain is locally unidirectional with an

incommensurate ordering wave vectors Q, as shown in Fig. 13. The order parameter Pij

scatters an electron from momentum k−Q/2 to k+Q/2. Therefore, each such patch can be

considered to be a short-range potential scatterer with the appropriate matrix element for

scattering between electron states |k〉 and |k′〉 being given by PQ f [(k + k′)/2], where f(k)

is some appropriate internal form factor. We assume a phenomenological Lorentzian depen-

dence on Q that it peaked at Q0, the ordering wave-vector with the largest susceptibility.

Assuming weak disorder with a density ni ∼ 0.01, we can self-average over the disorder to

find a scattering time τ2 given in the Born approximation by (assuming it is independent of

initial state)

τ−1
2 = 2π

∫
d2Q

4π2
g(Q)

∫
d2k

4π2

∣∣PQ(k,k′)f((k + k′)/2)
∣∣2δ(ξk − ξk′), where

PQ(k,k′) ∼ 1

ξ−2 + (k− k′ −Q)2
, (5.2)

where g(Q) is a normalized function peaked at Q0. Now a gradual increase in the density

wave correlation length ξ with decreasing doping can result in a larger scattering rate. Sat-

uration of the charge-density wave correlation length due to disorder also entails saturation

of the scattering rate.
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FIG. 14: Phase diagram adapted from Refs. 11 and 51. The x and y axes are parameters

controlling the condensates of H and R respectively. There is long-range antiferromagnetic

order only in phase A, where both R and H condensates are present. Phase C is a model

for the pseudogap with topological order. We argue in the text that, in the simplest theory,

the charge and energy transport properties of the A → B transition are identical to those

of the C → D transition. The dashed line between phases C and D represents a crossover.

VI. TOPOLOGICAL ORDER IN THE PSEUDOGAP PHASE

In this article, we have so far discussed electrical and thermal transport in a mean-field

model for a quantum phase transition from a (in-) commensurate antiferromagnet to a non-

magnetic Fermi liquid. In Fig. 14, we present the phase diagram of a SU(2) lattice gauge

theory [11, 51] of the square lattice Hubbard model, in which such a quantum transition

corresponds to taking the route A→ B with increasing doping. Along this route, the optimal

doping criticality is associated with the Landau-Ginzburg-Wilson-Hertz [52] theory of the

antiferromagnetic quantum critical point. However, there have, so far, been no indications

that long-range antiferromagnetic order is present in the pseudogap regime of the hole-doped
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cuprates. So we instead examine the route A → C → D → B in Fig. 14 as describing the

evolution of phases with increasing hole-doping. In this route, the pseudogap is phase C, a

metal with Z2 topological order, and the optical doping criticality is the topological phase

transition between phases C and D.

The specific scenario illustrated in Fig. 14 assumes that the pseudogap is a Z2 algebraic

charge liquid (Z2-ACL) or a Z2 fractionalized Fermi liquid (Z2-FL∗) [11, 53]. For both these

phases, the only low energy quasiparticles are charge-carrying fermions with a small Fermi

surface. These phases can be described as metals with quantum-fluctuating antiferromag-

netism in the following manner. We introduce a spacetime-dependent SU(2) spin rotation,

Ri to transform the electron operators ciα into ‘rotated’ fermions ψis, with s = ±: ci↑

ci↓

 = Ri

 ψi,+

ψi,−

 , (6.1)

where

R†iRi = RiR
†
i = 1. (6.2)

The same transformation rotates the local magnetization mi to a ‘Higgs’ field Hi

σ ·mi = Ri (σ ·Hi)R
†
i (6.3)

Note that under Eq. (6.3), the coupling of the magnetic moment mi to the electrons is equal

to the coupling of the Higgs field to the ψ fermions

mi · c†iασαβciβ = Hi · ψ†isσss′ψis′ (6.4)

A second key observation is that the mappings in Eqs. (6.1) and (6.3) are invariant under

the SU(2) gauge transformation generated by Vi, where ψi,+

ψi,−

 → Vi(τ)

 ψi,+

ψi,−


Ri → RiV

†
i (τ)

σ ·Hi → Vi (σ ·Hi)V
†
i . (6.5)

So the resulting theory for the ψ, R and H will be a SU(2) lattice gauge theory.

We are interested here in the properties of state C as a model for the pseudogap. From

Fig. 14, we observe that in this state the local antiferromagnetic order mi quantum fluctuat-

ing, but the Higgs field (which is the antiferromagnetic order in a rotating reference frame)
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is a constant. Moreover, from Eq. (6.4), the coupling of the ψ fermions to the Higgs field

is identical to the coupling of the electrons to the physical magnetic moment. If we assume

that the dispersions of the ψ and c fermions are the same (in a suitable gauge), then we can

compute the charge and energy transport properties of the transition from state C to state

D without further analysis: they are identical to the charge and energy transport properties

of the transition from state A to state B which were computed in earlier sections of this

paper. There are significant differences in the spin transport properties of C → D from A

→ B, but these have not so far been experimentally accessible in the cuprates.

So we have the important conclusion that the concurrence between theory and experi-

ments, in this paper and in earlier work [5, 6], applies also for the topological phase transition,

C→ D, model of the optical doping criticality. And this model has the important advantage

that long-range antiferromagnetic order is not required in the pseudogap phase C. Phase D

is described by a SU(2) gauge field coupled to a large Fermi surface of fermions with SU(2)

gauge charges: such a phase is expected to be unstable to a superconductor in which all

SU(2) gauge charges are confined, and so the state is formally the same as a BCS super-

conductor. However, a magnetic field could suppress the superconductivity and expose the

underlying non-Fermi liquid, and this makes phase D a candidate to explain the observed

strange metal in the overdoped regime [54].

We note that it is also possible to construct models of Z2-FL∗, different from that in

Fig. 14, building on the models reviewed in Ref. 55 in which the low-energy charge-carrying

excitations are bosonic [56, 57]. However, these models support charge-neutral spinons in the

deconfined phase [12] and therefore violate the Wiedemann-Franz law quite strongly. The

reason is that the spinons contribute to the thermal conductivity but not to the electrical

conductivity. Such violations have not been observed in experiments [58].

VII. DISCUSSION

It is natural to ask how the presence of other excitations or fluctuations would affect our

findings above. The parameter regime very close to the critical doping p∗ cannot be reliably

described by our simple mean-field approach. This requires a more sophisticated theory of

transport in a strange metal and the consideration of quantum critical fluctuations. How-

ever, the quantum critical regime of doping shrinks to a point as T → 0, and away from
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this regime fermionic quasiparticles exist and are well-described by nearly non-interacting

fermions. Interaction effects can be taken into account by Fermi liquid corrections [22] to the

conductivities. In principle, vertex corrections and Fermi liquid corrections may be different

on the two sides of the phase transition. We argued that the results for the conductivities

in the dirty limit can be well understood under the assumption that the Fermi velocity

does not change across the optimal doping QCP. There is experimental evidence for certain

cuprates like BSSCO that the Fermi velocity is roughly constant across p∗, although it does

get renormalized to smaller values for lower doping [59, 60]. Our results are thus robust

if the Fermi velocity in the calculation is interpreted as the measured Fermi velocity from

experiments. Fermi liquid corrections should thus not change our conclusions substantially.

Moreover, we studied the interaction of fermions with disorder only within a simple relax-

ation time approximation. We expect this to capture the qualitative features in the relevant

limits. It would be interesting to determine the scattering time self-consistently, as gapping

out parts of the Fermi surface may also influence the scattering time. This could be done

in an unconstrained Hartree-Fock calculation similar to Ref. 61.

On the overdoped side, there are no gapless excitations besides the fermions. In the

scenario where static iAF order disappears at the QCP, in the overdoped regime p > p∗

magnons are gapped and do not contribute to the heat conductivity at low temperatures.

On the overdoped side of the QCP from the topological metal to the normal metal, there are

also no additional low energy excitations which could contribute to thermal transport. The

reason is that in this scenario, the normal metal is a confined phase, where all additional

excitations carrying Z2 gauge charge are confined and the gauge field is massive.

Similar arguments hold in the underdoped regime. In the Z2-ACL or Z2-FL∗ with

fermionic chargons, the charge-neutral spin-excitations as well as the visons (which are the

Z2 gauge fluxes) yield additional contributions to the heat conductivity at finite tempera-

ture. However, these are suppressed at low temperatures because the spinons and visons are

both gapped. In the scenario with static iAF order, magnons yield additional contributions

to the heat conductivity, which vanish at zero temperature. The two scenarios could possi-

bly be distinguished at finite temperature, where gapped gauge fields contribute differently

from magnons. Note that no magnon contribution to the heat conductivity of YBCO is

seen beyond the doping where long-range commensurate antiferromagnetic order at finite

temperature disappears in the strongly underdoped regime [62]. This could, however, also
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be a consequence of long-range incommensurate antiferromagnetic order only existing in the

ground state [63]. We leave the study of this interesting problem for future work.

VIII. CONCLUSIONS

We summarize the main findings of our numerical computations for the electrical and

thermal conductivities, and their relationship to observations.

In Fig. 3 we showed the doping dependence of the thermal conductivity of metallic states

in the presence of spiral antiferromagnetic order at low doping. The comparison of these

results with commensurate antiferromagneticsm case appears in Fig. 4. Although there is a

difference between these cases, both sets of results show that the drop in the thermal con-

ductivity κ between large and small p is smaller than that found for the Hall effect in Ref. 6,

as shown in Fig. 5. These results are at odds with the recent observations of Collignon et al.

[3, 4] who found the same drop in the carrier density in the thermal conductivity and the

Hall effect.

Next we turned to corresponding computations in the presence of superconductivity. In

Fig. 8, we plotted the evolution of thermal conductivity as a function of doping in the clean

and dirty limits. In the clean limit, κ shows markedly different behavior for commensurate

and incommensurate antiferromagnetic order. Appearance of Néel order entails a gradual

drop of κ on the underdoped side (p < p∗), whereas advent of incommensurate spiral order

results in a sharp drop by a factor of two, consistent with our analytical results. Fig. 9

depicts how this sharp drop is smoothened out as a function of increasing disorder. We also

noted that appearance of antiferromagnetism can be distinguished from other orders (like

charge density wave [25]) co-existing with superconductivity by studying the evolution of

the thermal conductivity across the quantum critical point.

We then discussed how a doping-dependent scattering rate, possibly due to quenched

density fluctuations, affects the thermal conductivity in the disordered antiferromagnetic

metal or the dirty superconductor. Fig. 10 shows the evolution of κ for different doping

dependent scattering rates. A comparison of the carrier densities extracted from conductivity

and the Hall effect appears in Fig. 11, and a plot of the Hall angle as a function of doping

is shown in Fig. 12; both are in good qualitative agreement with recent experimental data

of Collignon et al. and Michon et al. [3, 4].

36



Finally, we presented an alternate description of the pseudogap phase as an exotic metal

with Z2 topological order, but without long range antiferromagnetism. Fig. 14 shows a

phase diagram outlining the two distinct routes from a small Fermi surface in the pseudogap

phase to a large Fermi surface on the overdoped side. We argued that in both cases, the

electrical, Hall [5, 6] and thermal conductivities exhibit identical evolution as a function of

doping at low temperatures, and therefore the observations in Ref. 3 and 4 can be equally

well-explained by a phase transition from a regular Fermi liquid to a topological pseudogap

phase.
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Appendix A: Néel ordered d-wave superconductor and the phenomenon of nodal

collision

We take a more careful look at the nodes of the general dispersion described in Eq. (4.2)

for Q = (π, π), with a bare fermionic dispersion ξk that pertains to the band structure of

the overdoped cuprates. To model this, we choose the nodes to lie along the diagonal likes

kx = ±ky at a distance kF from the origin. We assume that the node K0 in the first quadrant

of the BZ is separated from the (π/2, π/2) point by a small distance ko, following Ref. 25.

The precise criteria is that the node lies quite close the center of the positive quadrant of the
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FIG. 15: Local coordinate systems adapted to the nodes, defined about the four nodal

collision point (±π/2,±π/2). The blue portion is the reduced BZ used in our calculations.

BZ, and the distance ko = π/
√

2− kF is much smaller than kF . Within this approximation,

we see the same phenomenon of nodal collision which gaps out the nodal quasiparticles of the

d-wave superconductors, as described for charge density waves in Ref. 25. The diagonally

opposite nodes collide at the boundary of the reduced BZ beyond a certain critical value

of the order parameter A (which we determine below), and this renders the spectrum fully

gapped. Since we are mainly interested in the low-energy excitations near the nodes, we

choose local coordinate systems centered at (±π/2,±π/2) adapted to each node, as shown

in Fig. 15.

For any A 6= 0, it is evident that E+,k 6= 0 for any k. The condition for E−,k = 0 can be

reduced by some algebra to(
A2 − ξkξk+Q −∆k∆k+Q

)2
+ (ξk∆k+Q − ξk+Q∆k)2 = 0 (A1)

Defining a local coordinate system (k1, k2) about each of the collision points as shown in

Fig. 15, to linear order in the momenta we find

ξk = vF (k0 + k1), ∆k = v∆k2, ξk+Q = −vF (k1 − k0), ∆k+Q = −v∆k2 (A2)
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where vF and v∆ are the Fermi velocity and gap velocity, respectively, at any node (they

are all identical due to the fourfold rotation symmetry). Substituting these in Eq. (A1), we

find that it reduces to(
A2 + v2

Fk
2
1 + v2

∆k
2
2 − v2

Fk
2
0

)2
+ (2vFv∆ko)

2k2
2 = 0. (A3)

Thus, the nodes are located at

(k1, k2) =

(
±
√
k2
o − A2/v2

F , 0

)
, (A4)

where the minus sign corresponds to the node within the reduced BZ, and the plus sign

corresponds to the shadow node in the 2nd BZ. From this expression, it is obvious that

no nodes exist for spiral order parameters A beyond a critical value Ac = vFko. One can

visualize this as the node and the shadow note approaching each other and annihilating at

(k1, k2) = (0, 0), resulting in a gap in the quasiparticle spectrum for A ≥ Ac. Note that this

nodal collision leads to a half-filled insulator.

Appendix B: Derivation of thermal conductivity for co-existing Néel order and

superconductivity in the clean limit

For Q = (π, π) we note that vF (k+Q) ≈ −vF (k), up to O(k2
0), and v∆(k+Q) = −v∆(k).

The velocity matrix Vk can hence be simplified to:

Vk =

v1k 0

0 v2k

 , where v1k = vF (k)τ3 + v∆(k)τ1, and v2k = −vF (k)τ3 + v∆(k)τ1

(B1)

This allows to rewrite the trace in Eq. (4.7) in terms of Gden, defined in Eq. (4.5) (again,

using labels 1 for k and 2 for k + Q) at each nodal collision point,

Tr [G′′R(k, 0)VkG
′′
R(k, 0)Vk] = 2Γ2

[
(A2 + Γ2 + ξ2

1 + ∆2
1)2 + (A2 + Γ2 + ξ2

2 + ∆2
2)2

]
(vFvF + v∆v∆) /G2

den

−4A2Γ2

[ (
(ξ1 + ξ2)2 − (∆1 + ∆2)2

) ]
(vFvF − v∆v∆) /G2

den

(B2)

Defining a local coordinate system (k1, k2) about each of the collision points as shown in

Fig. 15, we linearize the different terms in the Hamiltonian:

ξ1 = vF (k0 + k1), ∆1 = v∆k2, ξ2 = −vF (k1 − k0), ∆2 = −v∆k2 (B3)
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Note that the numerator in Eq. (B2) is proportional to Γ2, which goes to zero in the clean

limit. Therefore, the most important contributions come from the region of k space where

the denominator also goes to zero. In the linearized approximation described above, we find

that:

Gden =
(
A2 + v2

Fk
2
1 + v2

∆k
2
2 − v2

Fk
2
0

)2
+ (2vFv∆ko)

2k2
2 +O(Γ2

o) (B4)

Therefore, one can see that Gden = 0 in the clean limit, only when k2 = 0 and k2
1 =

k2
o − A2/v2

F . Therefore, beyond a critical strength of the AF order amplitude, i.e, for A >

Ac = vFko, there is no solution. With regards to the spectrum, this corresponds to the

scenario with gapped quasiparticles in the commensurate case, and therefore in the clean

limit the conductivity is equal to zero at T = 0. In the dirty limit when Γ & ∆, this is

not the case as the disorder induced self-energy modifies quasiparticle spectral weights and

closes the gap.

As Γ2
0 → 0, the terms in O(Γ4

0) in the integral can be safely neglected, and the terms

proportional to Γ2
0 can be replaced by their values at the point where the denominator

vanishes, i.e, k2 = 0 and k2
1 = k2

0 − A2/v2
F . Within this approximation, we obtain

Tr [G′′R(k, 0)VkG
′′
R(k, 0)Vk] = Γ2 2A2

c(A
2
c − A2) (vFvF + v∆v∆)− A2A2

c (vFvF − v∆v∆)

[Γ2A2
c + f ]2

, where

f =
(A2 + v2

Fk
2
1 + v2

∆k
2
2 − A2

c)
2

4
+ A2

cv
2
∆k

2
2 (B5)

In the following we evaluate the diagonal conductivity and pick the ith component of the

velocities, i ∈ {x, y}. Since in the coordinate system chosen, vF and v∆ are parallel to either

k̂1 or k̂2, so we have:

2 (vFvF ± v∆v∆)ii = v2
F ± v2

∆ (B6)

Rescaling the momenta by defining q̃1 = vFk1 and q̃2 = v∆k2, and multiplying by a factor

of four for the four pairs of nodal points in the BZ (every point has the same contribution),

we obtain

κii(Ω→ 0, T )

T
=
k2
B(v2

F + v2
∆)

3vFv∆

∫
d2q̃

2π

Γ2A2
c(A

2
c − A2/2)(

Γ2A2
c + (A2 + q̃2 − A2

c)
2 /4 + A2

c q̃
2
2

)2

−k
2
B(v2

F − v2
∆)

3vFv∆

∫
d2q̃

2π

Γ2A2
cA

2/2(
Γ2A2

c + (A2 + q̃2 − A2
c)

2 /4 + A2
c q̃

2
2

)2 (B7)
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for the diagonal conductivity. The integrals in Eq. (B7) can be analytically evaluated in

the clean limit. We first cast the integrals in terms of dimensionless variables γ = Γo/Ac,

qi = q̃i/Ac and α = A/Ac, measuring energy in units of Ac = k0vF .

I1 =

(
1− α2

2

)∫
d2q

2π

γ2(
γ2 + (1 + q2 − α2)2 /4 + q2

2

)2 ≡
(

1− α2

2

)
I3

I2 =
α2

2

∫
d2q

2π

γ2(
γ2 + (1 + q2 − α2)2 /4 + q2

2

)2 ≡
α2

2
I3 (B8)

Now we change variables to q1 = 1 + x cos θ, and q2 = x sin θ. Then the denominator of the

integral can be written as:

γ2 +
(
1 + q2 − α2

)2
/4 + q2

2 = γ2 + x2 +

(
x2 + α2

2

)2

+ x(x2 + α2) cos θ

=
(
γ̃2 + 1 + h2 + 2h cos θ

)
x2, where γ̃ = γ/x, h =

x2 + α2

2x

(B9)

Plugging this back into the integral and shifting θ → θ + π, we find:

I3 =

∫ ∞
0

dx x

2π

∫ π

−π
dθ

γ̃2x2

x4 (γ̃2 + 1 + h2 − 2h cos θ)2

=

∫ ∞
0

dx x

π

∫ π

0

dθ
γ̃2x2

x4 (γ̃2 + 1 + h2 − 2h cos θ)2

=

∫ ∞
0

dx

πx
I4 (B10)

where

I4 ≡
∫ π

0

dθ
γ̃2

(γ̃2 + 1 + h2 − 2h cos θ)2

=
2π(1 + h2)

(1 + h)3
D(h− 1, γ̃2), with D(u, v) ≡ v2/2

(u2 + v2)3/2
(B11)

where we have already used γ̃ → 0 to simplify the integral. Note that D(u, v) vanishes in

the limit of v → 0 for all u expect u = 0, where it diverges. Moreover, it also satisfies:∫ ∞
−∞

duD(u, v) = 1 (B12)

Therefore, in the Γo → 0 limit, which also corresponds to the second argument γ̃2 → 0, we

can replace D(h− 1, γ̃2) by δ(h− 1). In this limit, we have:

I4 =
2π(1 + h2)

(1 + h)3
D(h− 1, γ̃2)

γ̃2→0−→ π

2
δ(h− 1) (B13)
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Finally, we can plug back I4 into I3 and evaluate the sum over the delta-function:

I3 =

∫ ∞
0

dx

πx

π

2
δ

(
x2 + α2

2x
− 1

)
=

1

2

∫ ∞
0

dx

[
δ(x− x+)√

1− α2
+
δ(x− x−)√

1− α2

]
, where x± = 1±

√
1− α2

=
1√

1− α2
provided α < 1, and 0 otherwise (B14)

Putting all of this together, we arrive at the finite expression of the static diagonal thermal

conductivity in the clean limit for coexisting Néel order and superconductivity:

κii(Ω→ 0, T )

T
=

k2
B

3vFv∆

[√
1− α2 v2

F +
1√

1− α2
v2

∆

]
Θ(1− α), where α =

A

Ac
(B15)

Appendix C: Particle-particle bubble in spiral antiferromagnet or algebraic charge

liquid

In this paper, as well as in Refs. [23, 24], it was assumed that Cooper pairs in a spi-

ral antiferromagnetic state have vanishing total momentum. In order to substantiate this

assumption, we compute the particle-particle bubble in a spiral state. Its momentum de-

pendence at vanishing bosonic frequency is given by

LPP(q) =−
∫

d3k

(2π)3

{
f(k + q

2
)2G++(k0,k)G−−(−k0,k +Q) (C1)

+ f(k + q
2
)f(k +Q+ q

2
)G+−(k0,k)G−+(−k0,k +Q)

}
.

where Gij are the components of Eq. (3.2). This result can be rewritten as

=−
∫

d3k

(2π)3

{
f(k + q

2
)2G++(k0,k)G++(k0,k)∗ (C2)

+ f(k + q
2
)f(k +Q+ q

2
)G+−(k0,k)G+−(k0,k)∗

}
by exploiting the definition of the components of the propagator. Evaluation of the frequency

integral yields

=−
∫

d2k

(2π)2

∑
i=±,j=±

εiεj
1− nF (Ek+q,i)− nF (Ek,j)

(Ek+q,i + Ek,j)(Ek+q,+ − Ek+q,−)(Ek,+ − Ek,−)

×
{
f(k + q

2
)2(Ek+q,i − ξk+q+Q)(Ek,j − ξk+Q) + f(k + q

2
)f(k +Q+ q

2
)A2
} (C3)

where ε± = ±1. In Fig. 16 we show numerical results for the particle-particle bubble in the

d-wave channel. It is very strongly peaked at q = 0, as assumed in Refs. 23 and 24. This
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FIG. 16: Momentum dependence of the d-wave particle-particle bubble for t′ = −0.35,

A = 0.51, η = 0.08 and p = 0.09.

is already suggested by the functional form of LPP(q) when written as in Eq. (C2). The

momentum dependence does not possess a four-fold rotation symmetry, as expected in a

spiral state.
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