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We study the superconducting properties of the thin film BCS superconductor proximity coupled
to a magnetically doped time-reversal invariant topological insulator(TI). Using mean field theory,
we show that Fulde-Ferrell(FF) pairing can be induced in the conventional superconductor through
the inverse proximity effect(IPE). This occurs when the IPE of the TI to the superconductor is
large enough that the normal bands of the superconductor possess a proximity induced spin-orbit
coupling and magnetization. We find that the energetics of the different pairings are dependent
on the coupling strength between the TI and the BCS superconductor and the thickness of the
superconductor film. As the thickness of the superconductor film is increased, we find a crossover
from the FF pairing to the BCS pairing phase. This is a consequence of the increased number
of the superconducting bands, which favor the BCS pairing, implying that the FF phase can only
be observed in the thin-film limit. In addition, we also propose transport experiments that show
distinct signatures of the FF phase.

I. INTRODUCTION

The surface state of the time reversal invariant topolog-
ical insulator(TI) exhibits a spin momentum locked mass-
less Dirac fermion1–4. This spin-orbit coupled bands have
been explored for potential applications to spintronics5–8

and topological quantum computation9–13. Among these
various applications, the superconducting surface state
has gathered a lot of interest due to the possible emer-
gence of the Majorana fermions when proximity cou-
pled to BCS superconductor9–14. The underlying idea
of this proximity coupled system is that resulting het-
erostructure mimics a p + ip superconductor9. Along
these lines, it has been proposed to utilize the proximity
coupled surface states as a new platform to realize un-
conventional superconducting states with the non-zero
spin and the angular momentum15–17. The proposed un-
conventional superconducting states include the helical
pairing state with p± ip pairing15, spin triplet pairing in
magnetically doped TI17, p+ ip pairing due to interface
spin-orbit coupling in half metal/s-wave superconductor
heterostructure18, and odd frequency superconductivity
in thin film TIs19.

Besides the non-trivial angular momentum states of
the Cooper pairs, the superconducting states with non-
trivial linear momentum have been proposed to ex-
ist in strong spin-orbit coupled materials other than
TI20–29. The examples are spin orbit coupled Fermi
gases in the cold atom systems21–24 and the bulk
doped Weyl semimetals25–29. This unconventional su-
perconducting state is known as Fulde-Ferrell-Larkin-
Ovchinnikov(FFLO) phase, in which Cooper pairs in
equilibrium have a non-zero linear momentum. The
FFLO phase is predicted to exhibit phenomena, which
are not found in the conventional BCS superconductors
such as a spatial modulation of the pairing potential30;31

in equilibrium. The FFLO phase has been proposed

when coupled with the ferromagnetic alloys30, which uti-
lize spin imbalanced Fermi surface to generate finite mo-
mentum pairing32. Interestingly, a non-trivial Fraun-
hofer pattern in HgTe quantum well33, which may sup-
port the finite momentum pairing, has been recently ob-
served with the application of the external magnetic field.
Nevertheless, a clear signature of the FFLO pairing in the
absence of the external field is lacking in the condensed
matter systems. While the spin-orbit coupled materials
are known to offer a larger parameter space to support
the FFLO phase21, it is desirable to explore candidate
spin-orbit coupled systems comprised of readily available
materials. In this regard, we propose a ground state with
the FF pairing can occur in a conventional BCS super-
conductor that is proximity-coupled to a magnetically
doped TI surface state. The FF pairing is a specific type
of the FFLO phase that is characterized the spatial mod-
ulation of the order parameter phase while the LO pair-
ing is characterized by the modulation of the supercon-
ducting pairing amplitude. In our setup, the magnetic
dopants within the TI induce a uniform Zeeman field
pointing in a direction parallel to the surface. Our pro-
posal has clear advantages in experimental accessibility:
i) The proximity coupled superconductivity on the sur-
face of the TI has been widely realized15;34;34–42. ii) The
magnetic energy gap in the magnetically doped surface
of TI with non-zero exchange field has been experimen-
tally observed43–45. iii) There is no magnetism inside the
superconductor. Thereby ensuring superconductivity is
preserved.

In this work, we analyze the energetics of a proximity-
coupled magnetically doped TI-superconductor structure
to determine the stability of the FF phase as function
of experimentally relevant parameters. First, in section
II, we introduce a model that describes the proximity
coupled structure of a TI and a conventional BCS su-
perconductor. Here we utilize the low energy bands
of Bi2Se3 derived from ARPES experiment and a free
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electron model with effective mass and chemical poten-
tial derived from first principle calculation to accurately
capture the relevant physics of the recent experiments
NbSe2

15;34;42. In this model, we choose the model of
the superconductor to be relevant to NbSe2 due to its
wide use in experiments15. In section III, we show
that the metallic bands of the superconductor exhibit an
anisotropic Fermi surface in the Brillouin zone(BZ) as a
consequence of the ’inverse proximity effect’(IPE), which
we denotes as the proximity effect of the TI acting upon
the superconductor46. In section IV, we use mean-field
theory of superconductivity to calculate the energetic sta-
bility of the BCS pairing and the FF pairing. We show
that the metallic bands of the superconductor can have
a FF pairing as its ground state in the thin film limit
due to the proximity induced anisotropic Fermi surface,
where the decay length of the IPE exceeds the entire re-
gion of the superconductor. We also consider the case
where the thickness of the superconductor exceeds the
penetration length of the IPE. We find that the FF pair-
ing becomes unstable as the thickness of the supercon-
ductor increases, since more BCS favored bands become
populated and overwhelm the FF phases. Nevertheless,
we show that the FF pairing can survive at the inter-
face of the heterostructure in the thick sample limit. In
section V, we propose two transport methods to measure
the induced FF phase. Our transport proposals show dis-
tinct transport signatures that distinguish the FF phase
from that of the conventional superconductor. Finally,
in section VI, we conclude our study and summarize our
results.

II. MODEL

In Fig. 1, we show the system comprised of a metallic
superconductor grown on top of a magnetically doped 3D
TI. We begin our discussion by writing down the metallic
Hamiltonian that describes the parent superconductor.
We model the metallic bands of the superconductor using
a free electron model with the effective mass mM and the
effective chemical potential µM

47;48:

ĤM (k) =
k2

2mM
− µM (1)

where k =
√
k2
x + k2

y is the magnitude of the in-plane

momentum, Throughout this work, we set the value of
the effective mass to be 1

2mM
= −0.5eV and the chemical

potential to be µM = −0.8eV in order to capture the rel-
evant scale of parameters in existing experiments using
2H −NbSe2 as 2H −NbSe2 is the most commonly used
superconductor to observe the proximity effect in the TI.
2H−NbSe2 is known to be superconducting even in sin-
gle layer limit having a reduced critical temperature of
T = 1.9K, as compared to its bulk critical temperature
of T = 7.2K49. We extracted the parameters of the ef-
fective mass and the chemical potential from the central

x
y

z
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doped surface

FIG. 1: The schematic figure of the magnetically doped TI
superconductor hetero-structure. On the top of the TI sur-
face, a thin film of the BCS superconductor is deposited. The
magnetization points out the parallel direction to the surface
of the TI to shift the location of the Dirac cone in momentum
space.

Fermi pocket of NbSe2 at Γ point using quadratic fit-
ting. We only consider the central Fermi pocket as it has
momentum matching with the topological surface states.

We now consider the surface state Hamiltonian of the
magnetically doped 3D TI:

ĤTI(k) = vF (kxσy − kyσx) +mσx − µTII2, (2)

where, without loss of generality, we set ~ = 1. vF is the
Fermi velocity of the TI surface state, m is the exchange
field Zeeman term, µTI is the chemical potential of the
TI, I2 is 2 × 2 identity matrix, and σi is the i-th Pauli
matrix for spin. The choice of the above parameters is
taken from ARPES experiments50 of the surface bands
to derive the values of the parameters: vF = 1.19eV and
µTI = 0.26eV . From Eqs. (1) and (2), our system is
described by the total Hamiltonian written as

HM−TI = HM +HTI +Hcoupling. (3)

In Eq. (3), the metallic Hamiltonian is HM =∑
k ψ
†
M,kĤM (k)ψM,k in which we define the 2 compo-

nent spinor ψM,k = [dk↑, dk↓]
T , and d†k↑ (dk↓) is up-

spin (down-spin) electron creation (annihilation) oper-
ator of the metal. Likewise, the TI Hamiltonian is

HTI =
∑

k ψ
†
TI,kĤTI(k)ψTI,k where we define ψTI,k =

[ck↑, ck↓]
T where c†k↑ (ck↓) is up-spin (down-spin) elec-

tron creation (annihilation) operator. In Eq. (3), we in-
troduce Hcoupling which couples the TI and the metallic
system as

Hcoupling =
∑

k,s=↑↓

tc(c
†
ksdks + d†kscks) (4)



3

where tc is a coupling constant between the metal and
the TI. In general, the tunneling between the TI sur-
face and the superconductor hops between different in-
plane momenta in the BZ. This is due to a lattice mis-
matching between the two materials and disorder on
the interface. In this work, we assume a clean inter-
face limit between the two materials. Therefore, the
in-plane momentum is conserved. From the Hamilto-
nian in Eqs. (1), (2), and (4), we construct the ma-
trix form of the metal-TI heterostructure Hamiltonian,

HM−TI =
∑

k Ψ†kĤM−TI(k)Ψk, where

ĤM−TI(k) =

(
ĤM (k) Ĥcoupling

Ĥ†coupling ĤTI(k)

)
, (5)

with the operator Ψk = [ψTI,k, ψM,k]T , and the coupling

Hamiltonian Ĥcoupling = tcI2.

III. INVERSE PROXIMITY EFFECT

After establishing the description of the model and the
Hamiltonian, we now consider the IPE of the TI to the
metallic bands of the superconductor. We choose to ex-
amine the IPE in this model in recognition of the fact that
the IPE on the superconductor will significantly alter the
metallic bands and the corresponding superconductivity.
The IPE can be evaluated by calculating the effective
Hamiltonian of the metallic region in the presence of the
finite coupling, tc, with the TI. To calculate the effec-
tive Hamiltonian, we first consider the full matrix form
of the Schrodinger equation without the superconducting
pairing term, as given in Eq. (5):(

ĤM Ĥcouple

Ĥ†couple ĤTI

)(
ψm
ψTI

)
= E

(
ψm
ψTI

)
(6)

where ψm and ψTI is the wave function in the metallic
and the TI region respectively and E is the corresponding
energy eigenvalue. To derive the self-energy term, Σ̂(E),
which takes account the effect of the IPE, we integrate
out the wave function in the TI region. The new effective
Hamiltonian of the metal with the self-energy term now
satisfies the following Schrodinger equation,

Ĥeff (E)ψm = (Ĥm + Σ̂(E))ψm = Eψm (7)

where the self energy is evaluated as,

Σ̂(E) = Ĥcouple(E − ĤTI)
−1Ĥ†couple (8)

=
t2c

m2 + (vF |k|)2 − µ2
TI

(
µTI +m −vF (ky + ikx)

−vF (ky − ikx) µTI −m

)
.

As it has been shown from Eq. (8), the effective metallic
Hamiltonian now possesses a non-zero spin-orbit coupling
and a non-zero Zeeman field with the coefficients of the
strengths being

t2cvF
m2+(vF |k|)2−µ2

TI
and

t2cm

m2+(vF |k|)2−µ2
TI

, re-

spectively. The presence of the both spin-orbit coupling

and the Zeeman field distort the isotropic Fermi surface
and shift the center of the momentum, which eventually
decreases the energy gain from the Fermi surface insta-
bility under the singlet BCS pairing of the metal.

After deriving the analytical insight into the IPE, we
now confirm the IPE by numerically evaluating the local
density of state in the metallic region. The local density
of state(LDOS) can be computed from the calculation of
the imaginary part of the spectral function which is given
as,

LDOS(ω, i, k) =
∑
n

−Im(
|φn,i(k)|2

ω − En + iη
) (9)

where η is the infinitesimal broadening of the states, φn,i
is the n-th eigenstate, and En is the corresponding energy
eigenvalue of the system. i is the orbital degree of the
freedom which represent the z coordinate. The local spin
density of state(LSDOS) can be similarly calculated by
inserting pauli matrix by following

LSDOSj(ω, i, k) =
∑
n

−Im(
< φn,i(k)|σj |φn,i(k) >2

ω − En + iη
)

(10)

In Fig. 2, we plot the numerically computed LDOS(ω, k)
to show the change of the metallic bands of the super-
conductor due to the IPE. Figs. 2 (a) and (b) show the
LDOS of the TI and the metallic layers, respectively, at
tc = 0. In Fig. 2 (a), we find that the Fermi surface of
the TI is shifted in x̂ direction as the finite Zeeman term
shifts the location of the Dirac cone to ∆kx = m

vF
in the

BZ. Since the IPE(tc = 0) is zero, Fig. 2 (b) still shows
isotropic fermi surfaces of the metallic bands in which
one can always find a conventional BCS cooper pair with
opposite momenta K and −K on the Fermi surface. On
the other hand, as tc is turned on, we find that the the
surface bands of the TI and the metallic bands of the
superconductor layers start to hybridize. Fig. 2 (c) and
(d) shows the hybrdized Fermi surface and correspond-
ing spin texture of the TI and the first layer of the metal
respectively. While the singlet superconducting pairing
only couples the opposite spins, the LDOS depicted in
Fig. 2 (d) does not possesses a pair of the states that
have opposite spins and zero net momentum simultane-
ously. On the other hand, Fig. 2 (d) alternatively shows
that a pair of the states with opposite spins have rather
a finite net momentum along x direction, which leads to
the FF instability. In this case, it is not guaranteed to
find two arbitrary electrons with the opposite momenta
and the opposite spin on the Fermi surface. As a con-
sequence, the BCS pairing may not be efficiently formed
to lower the total ground state energy and the finite mo-
mentum pairing phase may have lower ground state en-
ergy. Indeed, we observe that the system with induced
anisotropic Fermi surface favors FF states in certain pa-
rameter space in section IV. Additionally, Figs. 2 (e)-(h)
show the LDOS of the TI and the first, the second, and



4

-2 0 2
-2

0

2

k y(1
/a

)

(a)

-2 0 2
-2

0

2(b)

-1 0 1
-1

0

1(c)

-1 0 1
-1

0

1(d)

FIG. 2: The local density of the state in momentum space at the TI and the superconductor with m = 0.4eV and tc = 0.5eV .
(a) and (b) show the LDOS of the TI and the first layer of the superconductor when tc = 0. The magnetically ordered dopants
shift the Dirac cone along the x-direction because the magnetism is aligned in the x-direction. As tc is turned on, the IPE starts
to hybridize the Fermi surface. (c) and (d) show the LDOS and the spin texture. We find the non-zero spin orbit coupling and
the effective Zeeman field in the superconductor. (e)-(h) show the LDOS of the TI surface and the first, the second, and the
third layer of the superconductor. We find that the Fermi surface starts to recover the isotropy and the IPE decays as we look
further away from the surface of the TI.

the third superconductor layer respectively. While Figs.
2 (e) and (f) shows the same anisotropic LDOS shown in
Figs. 2 (c) and (d), we immediately observe that Fig. 2
(g) and (h) show the anisotropy of the Fermi surface de-
cays as we look further away from the interface between
the metal and the TI. This is the consequence of the ex-
ponential decaying of the IPE away from the interface.
As can be seen from Eq. (8), the strength of the IPE
decays exponentially as the inter-layer directional hop-
ping of the NbSe2 is known to be very small compared
to the hopping in the intra-layer direction47;48, so that
we expect the proximity effect of the TI only survives in
the first few layers.

IV. NUMERICAL CALCULATION OF THE
GROUND STATE ENERGIES

A. Single-layer limit of the superconductor

With our understanding on the IPE of the metal-
lic Hamiltonian, we consider superconducting phase to

calculate ground state energy of the BCS and the FF
states. We first consider the s-wave superconducting or-
der in metallic system. The s-wave pairing Hamiltonian
in mean-field level is

HBCS = −U
∑
k

[∆d†k↑d
†
−k↓ + ∆∗d−k↓dk↑ − |∆k|2] (11)

where U = 2eV > 0 is the on-site attractive interac-
tion and ∆ =

∑
k〈d−k↓dk↑〉 is the superconducting order

parameter. As our major interest is in FF phase, we
further introduce FF pairing in the Hamiltonian whose
mean-field form is

HFF = −U
∑
k

[∆qd
†
k+q↑d

†
−k+q↓ + ∆∗qd−k+q↓dk+q↑],

(12)
where the superconducting order parameter is now de-
fined as ∆q =

∑
k〈d−k+q↓dk+q↑〉, and the Cooper pair

carries a finite momentum of 2q. We construct Bogoli-
ubov de Gennes (BdG) Hamiltonian whose matrix form
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is

HBdG =
∑
k

Φ†k+q

(
ĤM−TI(k) Ĥpair(q)

Ĥ†pair(q) −Ĥ∗M−TI(−k)

)
Φk+q,

(13)
where we define the 8-component Nambu spinor Φk+q =
[Ψk+q,Ψ

∗
−k+q]T , and the pairing Hamiltonian is defined

as

Ĥpair(q) =

(
U∆qiσy 0

0 0

)
. (14)

Alternatively, we may define

ĤBdG(k,q) =

(
ĤM−TI(k− q) Ĥpair(0)

Ĥ†pair(0) −Ĥ∗M−TI(−k− q)

)
,

(15)

which satisfies HBdG =
∑

k Φ†kĤBdG(k,q)Φk. By setting
q = 0, Eq. (15) becomes BdG Hamiltonian for BCS
pairing.

With the Hamiltonian defined in Eq. (15), the BdG
Hamiltonian can be diagonalized through Bogoliubov
transformation as51(

dks
d†−ks̄

)
=
∑
n

(
u∗n,s vn,s
−v∗n,s̄ un,s̄

)(
γn
γ†n

)
, (16)

where s =↑ (↓) is an index for up (down) spin, s̄ indi-
cates opposite spin index from s, γ†n (γn) is the creation
operators for a quasi-particle (quasi-hole) operator, and
n is the eigenstate index. In Eq. (16), u and v are the ma-
trix elements of the eigenvector matrix, V , which satisfies
ĤBdGV = V D where D is a diagonal matrix containing
2n eigenvalues. Then, the correlation function at zero
temperature is obtained as

Fss̄(k,q) = 〈d−ks̄dks〉 =
∑
n

u∗n,s̄vn,s (17)

where the summation over n is performed up to the filled
states. The correlation function contains the information
of the singlet order parameter, and it may be obtained
from the following relation51,

∆q =
∑
k

1

2
[F↑↓(k,q)− F↓↑(k,q)] . (18)

The order parameter from Eq. (18) is fed back to Eq.
(15) until the change of each of the components of the
density matrix reaches the convergence of 10−4. Finally,
at zero temperature limit, the ground state energy is
computed by51

Eq =
∑
n

En + U∆2
q, (19)

where we sum over all negative energies. Given the mag-
netization of the TI, we sweep over all possible q to ob-
tain the minimum energy for finite q to determine the

ground state energy of the FF pairing states, denoted
by EFF . In addition, we obtain BCS ground state en-
ergy by setting q = 0, denoted by EBCS . Then the
favored supercodnucting ground state is determined by
comparing EFF and EBCS . It is important to note that
we only add superconducting pairing interaction in the
metallic region to model the proximity effect. As a conse-
quence, the corresponding energetics are not dependent
on the superconducting state of the TI. More precisely,
we examine the FF superconducting state of the parent
superconductor, even if the parent superconductor orig-
inally favors the BCS ground state. We look for the FF
phase induced in the parent superconductor due to the
spin orbit coupling from the IPE.

Using the self-consistent calculation of the supercon-
ductivity described in Eqs. (13)-(19), we now present the
numerical calculations of the ground state energy with
finite momentum pairing. Fig. 3 (a) shows the energy
contour plot as a function of the Zeeman field, m, and
the momentum, q, of the FF phase. As indicated by the
blue line in Fig. 3 (a), We find that the local minimum
of the energy with the non-zero q exists at each Zeeman
field, m. By tracking the location of the local minimum,
qmin, at each m, we find a linear relationship between m
and qmin, which shows the clear signature that the finite
Zeeman field in TI is inducing a FF ground states. This
proximity induced local minima can be better understood
by repeating the same calculations for various values of
the coupling strength between the TI and the supercon-
ductor. Fig. 3 (b) shows the dependence of qmin with the
Zeeman field m with various value of tc. We find that the
slope of the qmin increases as tc increases. The increase
of the slope can be understood from the enhancement of
the proximity effect due to the increase of tc. From the
calculation of qmin, we conclude that the anisotropy of
the Fermi surface due to the IPE favors the finite mo-
mentum pairing state. It is important to note that the
clear linear dependence we find is limited in the weak
Zeeman field limit. This linear dependence of the qmin
has been similarly observed in other spin orbit coupled
systems in the weak field limit21.

As we find that the energy of the FF state can be
lower than the BCS energy ground state, we now draw
the region within parameter space where the FF state is
stabilized. This is calculated by comparing the ground
state energy of the FF state with all possible momentum
q and that of the BCS state. By computing the differ-
ence of the energies in Fig. 3 (c), we find that the region
of the parameter spaces where the FF phase is favored.
As we can see from the dependence of the Zeeman field,
m, and the coupling strength, tc, we find that the area
of FF phase increases as tc increases and m increases.
This trend is a consequence of the stronger anisotropy of
the metallic bands resulting from the IPE with higher tc
and m. Interestingly, in both weak and strong coupling
regime of tc, we still find the stable FF phase around
10meV strength of the Zeeman field, which is an experi-
mentally achievable value.
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FIG. 3: (a) The energy contour of the ground state energy
as a function of q and m. The region with q = 0 corresponds
to the BCS energy. As m increases, we find the minimum of
the energy occurs at non-zero q which signals the FF ground
state. The blue line shows the evolution of the location of the
minimum as m increases. We find that qmin increases as m
increases. (b) The calculation of qmin with various values of
tc = 0.3, 0.6, 1eV . We find a clear linear dependence of qmin

respect to m. As tc increases the slope of the line increases
due to the enhanced IPE. (c) By sweeping all possible value
of qmin, we determine the pairing of the ground state with
different values of tc and m. We find that the stronger tc and
m enhance the stability of the FF phase.

B. Multiple-layers of the superconductor

In the previous section, we found the stable FF phase
in the single layer limit of the superconductor. In this
section, we now consider the case where the 2D super-
conductor is thick enough that the normal bands have
multiple Fermi surfaces. Unlike in the case of the single
layer limit of 2D superconductor, the multi-layer super-
conductor may have a smaller region of the FF phase
since the number of the bands, which originally favors
the BCS superconductivity, is increased. Moreover, as
shown in the section III, the IPE is a short ranged ef-
fect where the strength of the spin-orbit coupling decays
exponentially away from the interface between the TI
and the superconductor. Hence, we expect the FF phase
becomes more unstable as the thickness of the supercon-
ductor increases. In this section, we numerically calculate
the thickness dependence of the stability of the FF phase.
To do so, we consider multi-layer metallic Hamiltonian.

In order to consider the multilayer Hamiltonian, we
introduce the Hamiltonian that connects two adjacent
metallic systems, Ĥm = tmI4, where tm is inter-layer
hopping parameter. We also model the TI surface state
by explicitly modelling bulk Hamiltonian, HTI,bulk

50,
possessing the same surface Hamiltonian as Eq. (2).
Then we construct the multi-layer metallic Hamiltonian
using the following construction:

Ĥ3D =



ĤM2 Ĥm 0 · · · · · · 0

Ĥ†m ĤM2 Ĥm · · · · · · 0

0 Ĥ†m ĤM2
. . .

...
...

...
. . .

. . . Ĥm

...
...

... Ĥ†m ĤM2 Ĥcouple

0 0 · · · · · · Ĥ†couple ĤTI,bulk


.

(20)

where Ĥcouple = tcI4, and Ĥm = tmI4. HM2 = HM ⊗ I2.
I4 is four dimensional identity matrix During the calcu-
lation of the multi-layer superconductivity, we model all
the coordinates in the real space by numerically fourier
transforming the Hamiltonian to consider the interface
FF.

By comparing the ground state energies of the Hamil-
tonians which have the FF and the BCS pairing over the
entire region of the superconductor, Fig 4 (a) shows the
energy difference(∆E = EFF − EBCS) between the FF
and BCS as a function of the number of the supercon-
ductor layer, Nlayer, where tc > tm. Although we ex-
pect tc < tm regime is more experimentally relevant, this
choice of parameters allows us to estimate the effect of
the multiple superconducting layers using perturbation
theory. Here we use the form of the FF order parameter
that has the same momentum over the entire supercon-
ductor, which we refer it as the ’homogeneous FF’. We
find that the energy gain of having the FF ground state
quickly decays as Nlayer increases. Fig. 4 (a) shows a
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FIG. 4: The evolution of the ground state energy difference
between the FF phase and the BCS phase. The negative value
indicates the FF phase is more energetically favored. (a) The
energy difference when tc > tm = (0.1eV ). We find that
the energy gain of having the FF phase linearly decreases as
NLayer increases. The different value of tc sets the initial en-
ergy gain when NLayer = 1. The red, the green and the blue
indicates the value of tc = 0.3, 0.6, 1eV respectively. (b) The
same plot when tc < tm = (1eV ). The linear dependence
disappears in the small NLayer, however the same trend still
holds in large NLayer (c) The calculation of the energy differ-
ence between the interface FF pairing and the BCS pairing.
Unlike the homogeneous FF, we find that the energy differ-
ence saturates as NLayer increases, indicating that the inter-
face FF might still survive in large NLayer limit. The red, the
green and the blue indicates the value of tm = 0.1, 0.3, 0.6eV
respectively.

steady decrease in ∆E and the full BCS pairing becomes
more favored as Nlayer increases. The critical thickness
where the FF and BCS ground state energy meet equal
is also dependent on the coupling strength, tc, between
the TI and the superconductor, and larger tc can sustain
FF superconductivity in more metallic layers. This can
be understood from the enhancement of the IPE when
tc increases. Moreover, regardless of the value of tc, we
find that the same rate in the decrease of ∆E as Nlayer
increases. This is due to the fact that the energy loss
of having the FF pairing in the additional layers of the
superconductor is simply proportional to the number of
the layers. As a result, the energetic cost of having the
FF pairing in the spin-orbit free superconducting layers
increases with Nlayer, where we expect a linear relation-
ship between ∆E and Nlayer. Furthermore, Fig. 4 (b)
shows ∆E when tc < tm. In this case, we cannot argue
the multi-layer effect using the perturbation theory. Ac-
cordingly, we lose simple linear dependence of the energy
as shown in Fig 4 (a) when Nlayer is small. Nevertheless,
the overall trend of decreasing ∆E as a function of Nlayer
still holds.

In addition to the homogeneous FF order pa-
rameter over the entire region of the superconduc-
tor(homogeneous FF), we now postulate an additional
form of the FF order parameter in which the finite mo-
mentum of the cooper pairs only survives near the in-
terface region(interface FF). The inferface FF is defined
as the order parameter profile with the momentum of
the cooper pair q that exists only within the first layer
of the superconductor. The interface FF becomes more
energetically favored than the homogeneous FF in the
thick superconductor limit as the additional energy cost
of having FF phase in the upper metallic region without
spin-orbit coupling is no longer considered. This effect
is numerically supported in Fig. 4 (c). The Fig. 4 (c)
shows the energy difference as a function of the thickness
and tm, and we find that the energy difference saturates
as Nlayer becomes larger than two. As the interface FF
does not distinguish the upper layers of the superconduc-
tor from the BCS superconductivity, the resulting energy
difference saturates with increasing numbers of supercon-
ducting layers. Interface becomes energetically advanta-
geous as the homogeneous FF costs a constant amount of
energy as the thickness of the superconductor increases.
In addition to the thickness dependence, the interface
FF has additional dependence on tm. As we increase the
values of tm, the energetic difference proportionally in-
creases in the interface FF. This is due to the increased
Josephson energy between the interface and the upper
layer of the superconductor. In other words, there is a
cost of energy associated with the large gradient of order
parameter when the momentum of the order parameter
rapidly decays. It is important to note that, in order to
find the global minima of the ground state energy, the
ground state energy of all the possible FF momenta in
each layer must be compared. In this work, we postulate
the interface FF and the homogenous FF as examples of
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the FF order parameter profile that might become more
stable than the BCS pairing.

V. TRANSPORT MEASUREMENT

A. Four terminal Josephson junction

In the previous sections, we analyzed the stability of
the FF pairing. In this section, we now propose a Joseph-
son junction transport and compare the transport signa-
tures of the three different pairing scenarios: the conven-
tional BCS phase, the homogeneous FF phase, and the
interface FF phase. Fig 5 (a) shows the schematic figure
of the transport configuration which consists of a Joseph-
son junction between the TI-SC heterostructure and the
conventional BCS superconductor separated by normal
insulator. On the top of the superconductors we attach
the four transport terminals through which current is in-
jected or extracted. The two terminals are attached on
the top of the two different superconductors so that the
two junction can have a different phase of the supercon-
ducting order parameter by either applying the voltage
bias or external current, IJ . The other two contacts are
attached on the top of the BCS superconductor to drive
the current in the perpendicular direction(Iper) of the
Josephson junction.

After establishing the setup of the Josephson junction,
we now explain the manner in which current flows in this
Josephson junction. Our setup utilizes the mismatch of
the order parameter wave function on the interface be-
tween the BCS pairing and the FF pairing, this method
has been similarly proposed to measure the LO state in
the bulk doped inversion symmetric Weyl semi-metal29.
We first consider the weak coupling regime of the junc-
tion where the normal insulator is thick enough so that
the Josephson current between the BCS and the FF su-
perconductor can be approximated as,

max(IJ) ≈ tj
∫
d2x∆top(x)∗∆bottom(x), (21)

IJ(φ) ≈ max(IJ)sin(φ).

where tj is the coupling strength between the junction.
∆top and ∆bottom is the order parameter wave func-
tion of the top and bottom superconductor respectively.
The integration indicates the sum over the two dimen-
sional junction region. As can be seen from Eq. (21),
the Josephson current is strongly suppressed when there
exists a spatial interference pattern in the inner prod-
uct of the order parameters of the two superconductor.
As a result, the intrinsic spatial oscillations of the FF
order parameter(i.e. ∆bottom ≈ |∆|eiqx) strongly sup-
press IJ when it is coupled to BCS superconductor(i.e.
∆top ≈ |∆|) in equilibrium. However, when Iper is ap-
plied to the BCS superconductor, the BCS Cooper pairs
possess the finite net momentum, resulting in the form
of the order parameter, ∆top = |∆|eiqperx. The current
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FIG. 5: (a) The schematic figure of the Josephson junc-
tion setup. On the top of the magnetically doped TI-
superconductor junction, the normal insulator barrier is de-
posited, and the another superconductor is placed on the top
of the normal insulator. The four terminal current is placed
on the top of the superconductors. The two are attached on
the different superconductors to drive the Josephson current.
The other two are attached on the top BCS superconductor to
drive the current in a direction parallel to the FF momentum.
(b) Numerically calculated Josephson current as a function of
the transverse momentum qper. The blue, the black, and the
red lines represent the Josephson current in the BCS pairing,
the homogeneous FF pairing and the interface FF pairing
respectively. We find that the blue(BCS) line has the maxi-
mum located at the qper = 0 and the black(homogenous FF)
line has the maximum located at the qper = q = 0.3. The
red(interface FF) line which has the peak at the qper = 0 are
the interface FF phase with NLayer = 2.

induced spatial oscillations of the order parameter can
cancel the oscillatory component of the FF order param-
eter in Eq. (21) when qper = q, and recover IJ . Due to
this momentum mismatch between the two superconduc-
tors, the Josephson junction between the FF state and
the BCS state have a maximum of max(IJ) under the
non-zero parallel current, Iper, while the junction made
with the two BCS superconductor always have a maxi-
mum in the absence of the parallel current.

We now illustrate this idea discussed above by numer-
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ically calculating the Josephson current in the proposed
device structure. In this calculation, we model the nor-
mal insulator barrier using a small coupling strength tJ
between the superconductors. We also model Iper by
adding the finite momentum ,qper, in the order parameter
of the BCS superconductor. The Josephson current can
be calculated from the full energy spectrum of the bound
state in the junction by using the following formula51

J(φ) =
∂Eground(φ)

∂φ
(22)

where φ is the phase difference between the two supercon-
ductors. Eground is the ground state energy. By explic-
itly sweeping φ from 0 to 2π, we derive the amplitude
of the Josephson current as given in Eq. (21). Fig. 5
(b) shows the amplitude of the numerically calculated
Josephson current as a function of Iper in the case of the
three different scenarios of the superconducting order pa-
rameter. First of all, the blue curve shows the current in
the case of the BCS pairing. As explained above, we
find that the maximum of the current occurs in equilib-
rium when qper = 0 and the addition of the transverse
current strongly suppresses the Josephson current as it
introduces an additional spatial variation in the order
parameter products. Unlike the case of the BCS super-
conductor, shown by the black lines, which shows the
Josephson current in the BCS-FF case, has a maximum
in the presence of non-zero parallel current which cancels
the intrinsic spatial variation of the FF superconducting
order parameter. As long as the FF state persists we
find that this non-trivial Josephson current serves as an
important signature that is distinguished from the con-
ventional BCS pairing. Further, the red lines shows the
transport of the interface FF pairing. Unlike the BCS
and FF order parameter, we now find a crossover in the
location of the maximum current layer increases. In the
single layer limit, we find the maximum of the current
occur in the same position as FF phase. However, as the
NLayer increases more than two, we find that the current
pattern resembles the BCS phase, since the interface FF
has identical order parameter to the BCS order parame-
ter on the top. This shows that the Josephson current is
only sensitive to the form of the order parameter near the
junction region and the interface FF shows the distinct
signature of the FF phase only in the thin superconduc-
tor limit.

B. Y junction

Another useful experimental method to detect FF
phase is Andreev interferometer52. Fig. 6 (a) shows
the Andreev interferometer with the Y-junction with two
arms separated by Lx in x̂ direction placed on the top
of the superconductor. In the presence of the magne-
tization vector, m = |m|(sinθ, cosθ) on the TI surface,
our analysis shows that the FF phase with the momen-
tum vector, q = |q|(cosθ, sinθ) ⊥ m, is induced. In this

Magnetically 
doped surface

Lx

Measure Andreev 
reflection interference

θx y

(a)

x y
z

Interference between 

reflected holes

x1 x2

Top view

θ

x

y

FIG. 6: (a) A schematic of the Andreev interferometer using
Y-junction method to measure the unconventional supercon-
ductivity. (b) A plot of conductance as a function of finite
momentum angle, θ, of the FF phase. From the outermost
to innermost, we plot the calculation results with different q
where |q| = 0, π/8, π/6, and π/4, respectively. We use a
value of vF = 6.61× 105 m/s for the Fermi velocity, that has
been extracted from the metal Hamiltonian parameter, and
plot the conductance at the incident electron the energy of
E = 0.5∆, where the ∆ is superconducting gap. We set the
barrier height at the interface of the metal arms and super-
conductor to be transparent.

case, the superconducting order parameter at each con-
tact has different phases due to the phase modulation
resulting from the finite longitudinal separation with re-
spect to the momentum of the FF phase, q. We pa-
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rameterize the different phases by assigning the order
parameters |∆|e−iqx1 and |∆|e−iqx2 at the upper and
the lower contacts respectively, where x1 and x2 are
the coordinates of the upper and lower contacts. The
phase difference between the two contacts is given as
∆φ = q(x1 − x2)cosθ = |q|Lxcosθ. When the current
flows through the Y-junction, the electrons injected from
lower and the upper contacts undergo Andreev reflection
process and reflected as holes. Due to the presence of the
FF order parameter, the holes gain additional phases of
either ∆e−iqxx1 or ∆e−iqxx2 depending on whether it is
reflected from the upper or the lower contacts that com-
prise the Y-junction. The generation of this additional
phase can be understood from an examination of the pair-
ing Hamiltonian, Hpairing(x) = ∆e−iqxxcxiσycx + h.c.,
at the interface between the contact, which annihilates
a electron and create a hole with an additional phase of
∆e−iqxx. Eventually, when the holes are collected to the
central branch of the Y junction, the phase difference be-
tween different contacts generates an interference pattern
as a function of ∆φ ≈ cosθ and, most importantly, when
|q|Lxcosθ = π, destructive interference occurs and the
conductance vanishes.

To illustrate the qualitative behavior of the Y-junction
Andreev interferometer, we use the metallic Hamiltonian
in Eq. (1) with assumed FF superconducting order.
The conductance is obtained from Blonder-Tinkham-
Klapwijk theory53 with an assumed interface barrier
height that is transparent52.The outermost line (Green
solid line) in Fig. 6b shows the conductance with no fi-
nite momentum in the superconducting system, or q = 0.
The conductance shows a uniform distribution whereas
we observe non-uniform conductance oscillation for Q >
0. The innermost line (Red solid line) in Fig. 6 (b)
shows qx = π/Lx where the phase difference between
two arms is qxLx = π cos θ, and the conductance shows
a destructive interference at θ = 0 and π. Consequently,
the signature of the conductance oscillation in Y-junction
is a direct result of spatially varying nature of the order
parameter. In addition, the Andreev interferometer is
an optimal scheme for our proposal as one can adjust

the angle of the finite momentum (θ) before each trans-
port measurements by applying in-plane magnetic field
to adjust the orientation of the magnetic dopants rather
than needing to fabricate different devices or multiple Y-
junctions. However, it is important to note that that the
minimum momentum shift required to observe a clear
destructive interference pattern is either q = π/Lx or
Lx and that this quantity needs to be chosen within the
scope of the maximum Q that can be realized by the
magnetic doping on the TI surface.

VI. CONCLUSION

In conclusion, we have studied the stability of the
FF phase in magnetically doped TI-BCS superconductor
heterostructures. We find that the FF state can be more
energetically favorable than the traditional BCS pairing.
This is due to the anisotropy of the Fermi surface in
the superconductor that arises from the IPE where the
normal bands of the superconductor near the interface
have an effective spin-orbit coupling and Zeeman field.
We find that the IPE quickly decays as the coupled state
moves farther away from the interface into the bulk of the
superconductor. As a consequence, the FF state gains
more energy as the thickness of the superconductor in-
creases and the stability of the FF state quickly decays.
Nevertheless, in the thick superconductor limit, we find
the FF phase can survive at the interface of the proxim-
ity structure. We expect the FF pairing in our proposal
can be experimentally measured through the four probe
transport experiment utilizing a Josephson junction or
through the Y-junction method.
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