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2Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud,
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We demonstrate an enhanced, bidirectional, in-plane magnetic field tuning of the gyrotropic
resonance frequency of a magnetic vortex within a disk by introducing a flat edge. When the core
is in its vicinity, the flat edge locally reduces the core’s directional dynamic stiffness for movement
parallel to the edge. This strongly reduces the net dynamic core stiffness, leading to the gyrotropic
frequency being significantly less than when the core is centered (or located near the round edge).
This leads to the measurable range of gyrotropic frequencies being more than doubled and also
results in a clear chirality-mediated bistability of the gyrotropic resonance frequency due to what is
effectively a chirality-dependence of the core’s confining potential.

Magnetic vortices are curled magnetization configura-
tions that arise naturally in thin magnetic elements with
lateral dimensions from ∼ 0.1 µm to a few µm1–4. They
are characterized by an in-plane, curling magnetization
which surrounds an out-of-plane magnetized nano-scale
region known as the vortex core [Fig. 1(a)]. Magnetic
vortices are examples of topological solitons or defects
and can display dynamic behavior which is intrinsically
nonlinear5–9, a characteristic which has generated signif-
icant theoretical interest.

The potential for device applications10–12,
which include tuneable radiofrequency signal
generators/detectors13–15 and data storage devices10,
has strongly motivated studies in tuning the frequency
of the gyrotropic resonance of magnetic vortices, fG.
This resonance involves the vortex core following an
orbit-like path around its equilibrium position16–20. The
gyrotropic resonance frequency is proportional to the
vortex stiffness17, κ, which is typically determined by
a geometrically induced, primarily magnetostatic17,21,
core confining potential (there can also be non-negligible
contributions from exchange interactions22 or current-
generated Oersted fields23). Although the confining
potential can be treated as harmonic for small radial
core displacements (∆E = 1

2κX
2 where E is the

system energy and X the radial core displacement), it
is typically anharmonic24, meaning that κ, and thus
fG, are both dependent on the position of the vortex
core. For example, in circular24–26 disks (as well as in
elliptical disks, although the behavior there is slightly
more complex27), the gyrotropic frequency becomes
higher as the core is displaced from the disk’s center due
to a core stiffening.

In this letter we present results on vortex core dynam-
ics in a ferromagnetic disk that has one side which has
been made flat (‘chopped’) [Fig. 1(b)]. The flat edge
enables control over the vortex chirality28–34 which de-

scribes the direction of the (clockwise or anti-clockwise)
curling magnetization. The chirality is critical in this
study as it determines the lateral direction that a core
will be displaced under the action of a given static in-
plane magnetic field28. Chirality control thus enables
core displacement control. Despite both the flat and
round edges being repulsive to the core under static dis-
placements towards the edge, we show that a core un-
dergoing gyrotropic motion near the flat edge exhibits a
strongly reduced dynamic stiffness when moving along
the flat edge (i.e. perpendicular to the direction of the
static displacement). As a result, the net dynamic core
stiffness27 is also reduced, leading to fG at the flat edge
being lower than fG for the disk-centered core. fG can
thus either be strongly increased (by shifting the core
towards the disk’s round edge) or decreased (by mov-
ing the core towards the flat edge). This leads to the
range of accessible fG-values being approximately dou-
bled (i.e. we can both significantly increase and decrease
fG relative to its value for a non-displaced vortex in zero
field). We note that frequency downshifting has also been
observed in square ferromagnetic elements35,36 and, to a
lesser degree, in triangular elements37 when moving the
core towards a flat edge within the element.

A final consequence of the geometrical asymmetry
in our system is that the vortex is characterized by a
clear chirality-induced, dynamic bistability. Indeed, for
a given, finite, static in-plane magnetic field (applied such
that it acts to displace the core perpendicular to the
disk’s flat edge), two values of fG can be observed de-
pending on the vortex chirality. This is reminiscent of
the polarity-induced bistability studied by de Loubens et
al38. Here however, it is chirality-mediated and arises
because, for a given in-plane field polarity, the chirality
determines which part of the asymmetric confining po-
tential the gyrating core is subject to.

A scanning electron microscope image of a chopped
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FIG. 1. Simulated vortex configurations in (a) circular and
(b) chopped NiFe-like disks in zero external magnetic field.
The diameter of the circular disk is 2 µm. The geometry of the
chopped disk matches that shown in (c). The (c) Schematic
of the experimental setup used for probing the core dynamics
including a scanning electron micrograph showing the lateral
dimensions of a chopped disk used in our experiments. (d)
Experimentally obtained resonance peak at H|| = 0. Simu-
lated transition from the (e) right- and (f) left-oriented sat-
urated states to, respectively, an ACW and CW vortex state
(H|| = 0). Hsat is used experimentally to approach the satu-
rated state and controllably produce (A) CW vortex configu-
rations.

disk is shown in Fig. 1(c). The distance from the disk’s
center to the round edge is 1 µm (radius of the circu-
lar part of the disk) while the shortest distance from the
disk’s center to the flat edge is 0.7 µm. Disks were fabri-
cated from a continuous sputtered //NiFe(30 nm)/Au(8
nm) layer via Argon ion milling using a hard Ti mask de-
fined by electron beam lithography (NanoBeam Limited).
Evaporated lateral contacts were defined using electron
beam lithography and liftoff. Auger spectroscopy sug-
gests that approximately 30 nm of Ti remains on the top
of the NiFe/Au chopped disk26. The measured device
was wire bonded to a sample mount which was placed be-
tween the poles of an electromagnet in such a way that a
static, in-plane magnetic field, H||, could be applied along
the flat edge of the disk (note that simulations detailed
below will suggest the presence of a small misalignment of
∼ 3◦ between the field and the disk’s flat edge). A nano-
voltmeter (200 ms integration time) was used to measure
the voltage across the device in the presence of injected
dc or rf currents [Fig. 1(c)]. The rf source output power
was -14 dBm.

An rf current injected across the device generates a
transverse, rf Oersted field in the lower NiFe layer which
can drive gyrotropic core motion26. On resonance, this
generates an oscillation in the sample’s resistance (via
anisotropic magnetoresistance, AMR) which can mix
with the input rf current to generate a measurable rec-
tified voltage and enable the electrical identification of

fG
25,26,39–42. In Fig. 1(d) we show the rectification peak

obtained in the chopped disk at zero applied field from
which we can extract fG ≈ 126 MHz. This value matches
closely with the simulated fG = 128 MHz at H|| = 0 (see
below). Note that in circular disks, a rectification peak
is not generated for H|| = 0 due to the symmetry of the
core trajectory around the center of the disk which results
in the generated voltage time-averaging to zero26,43. In
contrast, the chopped disk geometry leads to the core’s
equilibrium position being shifted away from the circular
center of the element even for H|| = 0 [Fig. 1(b)] which
enables the generation of a finite amplitude peak. This
result is discussed further in Supplementary Figure 144.

The vortex chirality defines the direction of the core
shift for a given H||

28. For example, a positive H|| shifts
the core to the round edge for an ACW vortex but shifts
it to the flat edge for a CW vortex [insets of Fig. 2]. Mi-
cromagnetic simulations performed using the MuMax3
micromagnetic code45 demonstrate the ability to choose
the vortex chirality in the chopped disk by starting from
an in-plane saturated state and then returning the field
to zero [Figs. 1(e,f)]. In the simulations, we used 30 nm
thick cells with lateral dimensions of ∼ 3.9 × 3.9 nm2

(512 × 512 cells for the 2 × 2 µm2 simulation region)46.
We then initialized the system with a uniform magneti-
zation parallel to the flat edge and let the magnetization
evolve towards a final, converged state in zero magnetic
field with damping parameter α = 0.01 (saturation mag-
netization = 800 kA/m; exchange stiffness = 13 pJ/m; nil
anisotropy; γ = 1.7595×1011 rad(T.s)−1 which is within
∼ 5 % of the experimentally determined value47). We
find that the initial direction of the magnetization along
the flat edge remains fixed upon the return to zero field
and thus defines the chirality of the relaxed, curled vortex
state [Figs. 1(e,f)]. Note that the simulated transition to
the single vortex state proceeds via a non-trivial inter-
mediate state analogous to that seen in Co disks with
widths > 800 nm32. Experimentally, the left and right
saturated magnetic states are approximated by applying
an in-plane saturating field, Hsat = ±0.6 T, along the
flat edge of the disk [Figs. 1(e,f)]. In Supplementary Fig-
ure 244 we confirm our ability to choose the core chirality
by exploiting differences in the vortex annihilation fields
at the flat and round edges29 (as well as general differ-
ences in the quasi-static magnetization reversal process).
Dynamic results presented below will also confirm our
ability to set the chirality and controllably displace the
core towards the flat or round edge of the disk.

We now use the on-resonance rectification to experi-
mentally measure the influence of the core’s equilibrium
position on fG. We first set a CW vortex chirality, re-
turn to zero field and then apply µ0H|| = +10.6 mT. This
shifts the core towards the disk’s flat edge [Fig. 2(a), left].
An rf signal is then injected across the disk, sweeping
from low frequency to high frequency, enabling us to de-
termine fG = 108 MHz (black dashed lines in Fig. 2(a)).
Note that the measured frequency is significantly lower
than the value found at H|| = 0 in Fig. 1(d) (≈ 126
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FIG. 2. Experimentally obtained magnetoresistive rectifica-
tion traces demonstrating chiral bistability in a chopped disk
at µ0H|| values of (a) +10.6 mT and (b) −10.6mT for CW
and ACW vortices. Insets show simulated at-equilibrium vor-
tex configurations with shifted cores (µ0H|| = ±10 mT). For
simplicity, each peak has been given a negative sign (the peak
sign will depend on the core polarity26,41 which was not con-
trolled in these experiments).

MHz). Repeating the measurement for an ACW chiral-
ity at the same field allows us to probe core dynamics
at the round edge of the disk [Fig. 2(a), right] for which
we find fG = 140 MHz [solid red line in Fig. 2(a)]. This
confirms the chiral bistability in that we can observe two
different values of fG for a fixed H||, depending on the
vortex chirality. Changing the polarity of H|| changes
the direction of the core displacement for a given chiral-
ity. As such, for µ0H|| = −10.6 mT [Fig. 2(b)], it is now
the CW vortex core which moves to the round edge of
the disk, resulting in it having the higher fG.

The results of experiments carried out for both chiral-
ities are given in Fig. 3, showing the full evolution of fG
with H||. An example of peaks obtained by carrying out
field sweeps at fixed frequency (field-resolved measure-
ments) are also shown as insets in Fig. 3 and show good
agreement with the frequency-resolved data. Note that
there are two data sets in Fig. 3 corresponding to CW
(filled squares) and ACW (filled circles) vortices. Here, it
is again clear that for a given finite in-plane field, fG can
be either above or below the zero field value of fG depend-
ing on the vortex chirality with low frequencies obtained
when the core is shifted towards the flat edge (H|| < 0 for
an ACW vortex and H|| > 0 for a CW vortex). Also note
that the difference between fG values for the two chirali-
ties increases with H|| as the core is pushed further away
from the disk’s center. Simulated gyrotropic frequencies
(open circles) for different chiralities and H|| values are
also shown in Fig. 3 with good agreement between the
simulation and experimental results. Note however that
the best agreement is obtained by including a misalign-
ment of 3◦ between H|| and the flat edge (this causes the
core to be slightly displaced towards the point where the
flat edge meets the disk’s round edge, slightly increasing
the stiffness and thus fG; see Supplementary Figure 3).

To obtain simulated fG values, we performed field-pulse-
driven ‘ringdown’ simulations48 (e.g.49,50) for a number
of H|| values.

FIG. 3. Experimental data showing the gyrotropic resonance
frequency as a function of H|| for CW (solid squares) and
ACW (solid circles) vortices. Four data points obtained from
field-swept measurements (see insets) at 140 Mhz and 110
MHz are plotted as open triangles. The plot also shows sim-
ulated gyrotropic frequencies for a perfect alignment of the
flat edge and H|| (‘0 deg’; shown for both chiralities) and for
a misalignment of 3◦ (‘3 deg’; shown for ACW).

To understand the observed drop-off in fG for cores
at the flat edge of the disk, we look at the relation-
ship between fG and the core stiffness which depends
not only on the location of the core but the direction of
core movement27:

fG =

√
κxκy

2πG
. (1)

Above, κx and κy correspond to the local core stiffness in
the x and y directions [defined in Fig. 1(a,b)] and G is the
gyroconstant17,51,52 (considered field-independent here).
Note that in a circularly symmetric system17,21, fG is
simply given by κ/2πG with

√
κxκy here replacing the

otherwise direction-independent κ ≡“κtot”. The stiffness
coefficient along an axis x is defined via ∆E = 1

2κxx
2

(valid for small24 x) where E is the energy of the system.
An accurate description of dynamics must however take
into account the energy of the moving core rather than
static displacements22,27. To extract the dynamic κ from
micromagnetic simulations, core dynamics were driven
using an in-plane sinusoidal field with an amplitude of
5 µT and frequency equal to fG as obtained from the
ringdown simulations50. κx and κy were then extracted
from parabolic fits to the total system energy as a func-
tion of core displacement along the x and y directions
respectively.

Fig. 4(a) shows the extracted κx and κy values versus
in-plane field for an ACW vortex for which a negative
H|| will displace the core toward the disk’s flat edge. Al-
though κy is relatively symmetric about µ0H|| = 0 mT,
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FIG. 4. (a) κx and κy and (b) κtot = κxκy as extracted from
simulations for an ACW vortex as a function of H||. (c) Sim-
ulated, calculated [via Eq. (1)] and experimental values of fG
as a function of H|| for the ACW vortex. (d) Demagnetizing
energy profile extracted from simulation for a core displacing
approximately along the flat edge (solid triangles) and round
edge (open circles). The energy is shown as a function of
equilibrium core displacement along the x-direction (induced
by application of a stepped field along the y-direction; i.e.
perpendicular to the flat edge). Insets in (b) show the core
trajectory at resonance when the core is displaced towards
the flat edge (µ0H|| = −15 mT) or towards the round edge
(µ0H|| = +15 mT).

κx, related to displacements along the flat edge of the
disk, is clearly asymmetric and lowest when the core is
located near the flat edge (H|| < 0). This is despite that
edge of the disk being repulsive in terms of static displace-
ments of the core towards it [i.e. the equilibrium position
of the static core at H|| = 0 remains relatively close to the
disk’s center; Fig. 1(b)]. The asymmetry in κx is critical
to understand the drop-off in fG as it leads to a strong lo-
cal reduction in the

√
κxκy ≡ κtot term [Fig. 4(b)] which

in turn leads to a strong reduction in fG as per Eq. (1).
Indeed the fG predicted from the extracted κx and κy
values using Eq. (1) can be used to accurately reproduce
the simulated frequencies which in turn approximate the
measured frequencies well [Fig. 4(c)].

The reduced value of κx at the disk’s flat edge is pri-
marily due to a weaker dependence of the demagnetizing-
energy on the x-position of the core at that side of the el-
ement (contributions from demagnetizing, exchange and
Zeeman energies are compared in Supplementary Figure
444 for the chopped and unchopped disk). This weaker
dependence can be directly visualized in Fig. 4(d) where
we show the change in the system’s demagnetizing energy
for a core that is quasi-statically shifted approximately
laterally along the flat and round edges via a y-oriented
magnetic field. One sees that small lateral displacements

near the curved edge lead to larger changes in the de-
magnetizing energy (per unit displacement) than do lat-
eral displacements along the flat edge. At least for static
magnetization configurations with laterally shifted cores,
the demagnetizing energy (as well as the displacement-
induced change in the demagnetizing energy) is concen-
trated within lines that join the core to positions which
are close to the meeting points of the flat and curved
edges of the disk (these lines are essentially domain walls;
see Supplementary Figure 544). As an aside, we note that
the reduced κx at the flat edge also has a strong effect
on the orbit, with simulations predicting that the orbit
will be strongly elongated in the x-direction (lower inset
in Fig. 4(b)) as compared to the orbit near the curved
edge (upper inset in Fig. 4(b)).

In conclusion, we have shown that the introduction of
a flat edge into a magnetic disk can generate a chirality-
driven bistability of the vortex gyrotropic resonance fre-
quency as well as an increased rage of accessible gy-
rotropic resonance frequencies. Indeed, depending on the
vortex chirality, a static in-plane magnetic field can drive
the core either towards the disk’s round edge (where the
gyrotropic frequency is known to increase) or towards its
flat edge (which is shown here to reduce the gyrotropic
frequency). The latter frequency downshifting is demon-
strated to be a dynamic effect related to the core moving
both parallel and perpendicularly to the flat edge during
gyrotropic motion. Calculations of the stiffness of the res-
onating core demonstrate that the core’s dynamic stiff-
ness along the flat edge (κx) is strongly reduced when the
core is close to the flat edge, resulting in a lower net dy-
namic stiffness (∝ √κx) and thus the lowered gyrotropic
resonance frequencies that we observe in experiment.
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sius, M. Kläui, L. J. Heyderman, F. Kronast, R. Mattheis,
C. Ulysse, and et al., Phys. Rev. B 82, 104427 (2010).

41 M. Goto, H. Hata, A. Yamaguchi, Y. Nakatani, T. Ya-
maoka, Y. Nozaki, and H. Miyajima, Phys. Rev. B 84,
064406 (2011).

42 M. Goto, H. Hata, A. Yamaguchi, Y. Nakatani, T. Ya-
maoka, and Y. Nozaki, J. Appl. Phys 109, 07D306 (2011).

43 S. Sugimoto, N. Hasegawa, Y. Niimi, Y. Fukuma, S. Kasai,
and Y. Otani, Appl. Phys. Express 7, 023006 (2014).

44 Supplementary information to be provided at a later date.
45 A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen,

F. Garcia-Sanchez, and B. Van Waeyenberg, AIP Adv.
4, 107133 (2014).

46 Frequencies obtained using a full z-discretization (8 cells)
were within 1.6 MHz of those obtained with a single z-
discretization.

47 J. M. Shaw, H. T. Nembach, T. J. Silva, and C. T. Boone,
J. Appl. Phys 114, 243906 (2013).

48 After relaxing the system at the given H|| value [applied
along the x-axis as per Fig. 1(a)], we apply an in-plane sinc
field pulse along the y-axis [as per Fig. 1(a)] with an ampli-
tude of 2 mT, a 300 ps time offset and a cut-off frequency
of 30 GHz. This induces damped gyrotropic core dynamics



6

around the core’s H||-dependent, equilibrium location. The
resulting time trace of the x−component of the system’s
spatially averaged magnetization is then Fourier analyzed
to extract fG.

49 R. D. McMichael and M. D. Stiles, J. Appl. Phys 97,
10J901 (2005).

50 J. P. Fried, H. Fangohr, M. Kostylev, and P. J. Metaxas,
Phys. Rev. B 94, 224407 (2016), 1605.01830.

51 A. Thiele, Phys. Rev. Lett. 30, 230233 (1973).
52 D. L. Huber, Phys. Rev. B 26, 3758 (1982).


