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Low energy inelastic response in the superconducting phases of PrOs4Sb12

Chandan Setty, Yuxuan Wang, and Philip W. Phillips
Department of Physics and Institute for Condensed Matter Theory,
University of Illinois 1110 W. Green Street, Urbana, IL 61801, USA

Recent AC susceptibility and polar Kerr effect measurements in the skutterudite superconductor
PrOs4Sb12 (POS) [Levenson-Falk et. al arXiv:1609.07535] uncovered the nature of the supercon-
ducting double transition from a high temperature, high field, time reversal symmetric phase (or the
A phase) to a low temperature, low field, time reversal symmetry broken phase (or the B phase).
Starting from a microscopic model, we derive a Ginzburg-Landau expansion relevant to POS that
describes this entrance into the time reversal symmetry broken phase along the temperature axis.
We also provide a study of the low energy inelastic (Raman) response in both the A and B phases
of POS, and seek additional signatures which could help reveal the exact form of the gap functions
previously proposed in these phases. By appropriately manipulating the incoming and scattered
light geometries, along with additional subtraction procedures and suitable assumptions, we show
that one can access the various irreducible representations contained in the point group describing
POS. We demonstrate how to use this technique on example order parameters proposed in POS.
Depending on whether there exist nodes along the c− axis, we find additional low energy spec-
tral weight within the superconducting gap in the Eg geometry, a feature that could pin point the
location of nodes on the Fermi surface.

I. INTRODUCTION

Ever since its original discovery early last decade1,2,
the heavy fermion skutterudite superconductor
PrOs4Sb12 has met every measure used to quantify
unconventionality in superconductors3,4. Two distinct
specific heat jumps have been observed5 at temperatures
close to Tc ∼ 1.85K and Tc ∼ 1.7K indicating two
different transitions to the superconducting state in the
absence of a magnetic field. This conclusion has been
backed by additional thermal expansion6 and transport7

measurements which report identical jump-like features
supporting a double transition to the superconducting
state. The power-law behavior of the Nuclear Mag-
netic Resonance (NMR) spin-lattice relaxation rate8,9,
Nuclear Quadrupole Resonance (NQR)10, penetration
depth11 and specific heat1,2,5 seem to suggest a point-
nodal superconducting gap-like behavior, although other
thermal conductivity, muon spin resonance (µSR) and
NQR studies seem to support a fully gapped Fermi
surface12–14. The presence of a non-zero Kerr angle15,16

points toward a chiral time reversal symmetry broken
(TRSB) superconducting ground state, with a more
recent measurement16 reporting that the TRSB state
is specific to the low temperature, low magnetic field
superconducting phase (B phase) and absent in the
high temperature, high magnetic field phase (A phase).
Additionally, Knight shift measurements17 have shown
signs of spin triplet pairing and, along with TRSB,
has motivated a recent proposal18 suggesting that POS
could prove to be a promising candidate for a chiral
superconductor hosting three-dimensional Majorana
fermions. In the normal state of POS, low temperature
specific heat measurements19 in the presence of a
magnetic field have identified a broad magnetic field
induced ordered phase characterized by an enhancement
of the 4f magnetic moment.

A fundamental question concerning the character
of the superconducting ground state is the pairing mech-
anism and symmetry of the order parameter defined
on the Fermi surface. Several theoretical efforts have
already been put forth to classify and probe the pairing
mechanism and symmetry in POS20–25. The structure
of the gap functions in the spin singlet pairing chan-
nel have been considered23 using a Ginzburg-Landau
(GL) phenomenological approach in both the A and B
phases. In the absence of any spin orbit coupling, it was
concluded that in the A phase a strongly anisotropic
s-wave is favored; using the basis functions for the
irreducible representations of the Th point group (see
the Character table in Table I), a single order parameter

component of the forms ∆(~k) = s + k4
x + k4

y + k4
z or

∆(~k) = s + k2
xk

2
y + k2

yk
2
z + k2

zk
2
x with an Ag symmetry

were argued to be competent (s is a scalar number). In
the B phase, a TRSB s+ id state with a gap structure of

the form ∆(~k) = (s+ k2
xk

2
y + k2

yk
2
z + k2

zk
2
x) + i(k2

x − k2
y),

with combinations of the one dimensional Ag and two
dimensional Eg representations was argued to be the
ground state. In the presence of spin orbit coupling,
an f -wave pairing state with point nodes along all the
three axes in momentum space was suggested in25, an
novel s+ g− wave pairing was found in ref21, and, using
a microscopic approach with quadrupole fluctuation
mediated pairing, Miyake and coworkers24 found a
chiral px + ipy pairing order parameter. Several other
order parameters were proposed20 based on a rigorous
symmetry analysis in which the authors, following the
work of Volovik and Gor’kov26, minimized a Landau free
energy functional that was invariant under the point
group, gauge and time reversal symmetries, and studied
the ensuing gap nodal structures.

Electronic Raman scattering in superconductors27–31 has



2

proved to be an indispensable tool for determining the
structure and symmetry of the gap in unconventional,
anisotropic superconductors. Light is incident with a
certain initial electric polarization and energy (êi, ωI)
and scattered with a final polarization and energy
(ês, ωS). The energy difference corresponds to the
energy needed to break a Cooper pair or to excite a low
energy in-gap mode. The Raman scattering vertex, in
general, can have contributions from all the irreducible
representations (IRRP), Γi, of the point group of the
crystal; however, a proper choice of the polarization
geometries of the incoming and outgoing light beams
can single out contributions from a single IRRP to
the total scattering cross section. As a result of this
selective Brillouin zone averaging, the quasiparticle
energy gaps are probed only in certain directions in the
Brillouin zone. Thus this technique is sensitive to the
position of gap nodes, and therefore provides indirect
information about the symmetry of the gap function and
its anisotropies. If there are several candidate pairing
symmetries with different location of nodes on the Fermi
surface, this method can (at least) help narrow down
the various possible candidates.

In this work, starting from a microscopic model,
we derive a GL expansion relevant to POS that shows its
entry into the TRSB phase at low temperatures. We also
estimate the GL coefficients using their relationships to
the various microscopic parameters. As an experimental
means to probe the proposed pairing symmetries, we
examine the low energy inelastic (Raman) response in
both the A and B phases of POS; in particular, we
seek to qualitatively understand its dispersive features
for low energy and zero momentum transfer. By ap-
propriate manipulation of the incoming and scattered
light geometries, as well as other subtraction procedures
routinely applied29 in this method, we demonstrate that
one can probe the various irreducible representations
contained in the Th point group describing POS. For
the purposes of illustration, we stick to the spin singlet,
even parity forms of the gap functions proposed by
Goryo23 in the A and B phases, as was discussed in
the preceeding paragraphs. Depending on the existence
of nodes along the c− axis, we find an enhancement
(nodal) or suppression (gapped) of the low-energy
spectral weight in the Eg(1) and Eg(2) geometries (here
(1), (2) etc. denote the individual elements of the
respective multi-component IRRP-). This constitutes a
defining property in electronic inelastic light scattering
that could help pin-point the exact location of nodes
on the fermi surface and, thereby, narrow down the
candidate pairing symmetries proposed for POS.

FIG. 1. (Left) Lattice structure of the skutterudite
PrOs4Sb12 which belongs to the Im3̄ (Tetrahedral, Th) space
group (only the Pr (magenta) and Sb (gray) atoms are
shown). The Pr atoms form a body centered cubic lattice
while the Sb atoms form an icosahedral cage surrounding each
Pr atom. (Right) Closer image of the icosahedral cage (Black
solid lines) formed by twelve Sb atoms. This can be thought
of as three rectangular planes (red, green and blue dashed
lines) orthogonal to each other and intersecting at a common
origin.

II. LATTICE AND FERMI SURFACE

The lattice structure of POS is shown in Fig 1(left).
The relevant space group of interest is the Im3̄ (No. 204)
with a tetrahedral Th point group. The lattice structure
consists of Pr atoms (shown in magenta) forming a
body centered cubic lattice and the Sb atoms (shown in
gray balls) forming icosahedral cages (yellow structures)
encapsulating the Pr atoms. The Os atoms (not shown
for purposes of clarity) form a cube and are intercalated
within the body centered cubic structure. The icosahe-
dral cage is shown in more detail in Fig 1 (right). Each
cage consists of three rectangular planes (shown in red,
green and blue) of Sb atoms lying perpendicular to each
other, along the three coordinate planes, with a common
intersection point at the origin. The symmetry group
describing of the Pr atoms, by themselves, is the cubic
Oh group, while that of the Sb atoms is the tetrahedral
Th group. Since the cubic Oh is a larger symmetry
compared to the tetrahedral Th (all symmetry elements
in Th are also present in Oh), the symmetry of the entire
lattice is determined by the smaller Th point group. One
should, therefore, use the irreducible representations of
Th (for example, see refs32,33) to construct invariants
to describe POS (this is made possible because the
symmetry axes belonging to the Sb icosahedral cages
coincide with that of the Pr body centered cubic lattice ).

Several quantum oscillation measurements34–36 have
been performed to map out the Fermi surface structure
of POS. The Brillouin zone is a rhombicdodecahedron
(just as in the case of a body centered cubic lattice),
with its origin at the Γ point and the center of the
rhombic face labelled as the N point (for more details
about the other high symmetry points and axes, the
reader can refer to37). All quantum oscillation mea-
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Th E 3C2 8C3 i 3iC2 8iC3 Basis

Ag 1 1 1 1 1 1 r2s + z2

Eg 2 2 -1 2 2 -1 (r2a,2z2 − r2s)

Tg 3 -1 0 3 -1 0 (xz, yz, xy)

Au 1 1 1 -1 -1 -1 -

Eu 2 2 -1 -2 -2 1 -

Tu 3 -1 0 -3 1 0 (x, y, z)

TABLE I. Character table for the Th point group. In the basis
function column we have defined r2s = x2+y2 and r2a = x2−y2.

surements observe two hole pockets centered around
the Γ point − an inner spherical pocket and an outer
rounded cubic pocket. There is another larger multiply
connected pocket, centered again around the Γ point,
and touching the face of the boundary rhombus at the
N point. The Brillouin zone and the Fermi surface of
POS is shown in fig 2. Currently, we do not know

FIG. 2. Fermi surfaces obtained from the basis functions ap-
pearing in the character table for the Th point group (see
Table I). The enclosed volume denotes the Brillouin zone
for the body centered cubic lattice (a dodecahedron). (Left)
Two Fermi hole pockets centered around the Γ point: an inner

spherical pocket (ε1(~k)) and an outer rounded cubic pocket

(ε2(~k)). (Right) A multiply connected pocket with parts of
its surface intersecting the N point (mid point of each face of

the dodecahedron) obtained from ε3(~k).

of any exhaustive study attempting to write down a
simple tight-binding model that captures all the essential
kinematics such as the band structure, Fermi surface
and orbital character of POS. However, to study the
electronic Raman response of a material, we only need
the underlying symmetry properties of POS. Hence, for
the purposes of this paper, we will only be interested in
the symmetry characters of the individual bands and not
other microscopic details. To achieve this, and at the
same time maintain analytical and numerical tractability
of the problem, we will work in the band basis and ignore
any interband effects. This is a reasonable assumption

as the low energy interband response can be neglected
for widely spaced bands. To construct these dispersions,
we will rely on the basis functions appearing in the
character table presented in Table I. For the three Fermi
surfaces shown in Fig 2, we simply construct invariants
(i.e functions that transform as a singlet Ag) with
respect to symmetry operations of the Th point group.
We have chosen the invariants such that the Fermi
surfaces match the experimentally measured contours in
refs34–36 through quantum oscillations. These invariants
are given as

ε1(~k) = ε1 +Ag(~k)− µ
ε2(~k) = ε2 +Ag(~k)− 2 ~Eg(~k) · ~Eg(~k)− µ
ε3(~k) = ε3 − ~Tu(~k) · ~Tu(~k)− µ (1)

where (ε1, ε2, ε3) = (−6.88,−6.7, 3)eV , µ = −1eV , and
the basis functions are given by

Ag(~k) = 2(cx + cy + cz)

~Eg(~k) = 2

(
cx − cy, 1− cz −

1

2
(2− cx − cy)

)
~Tu(~k) = 4

(
s x

2
(cy − cz), s y

2
(cz − cx), s z

2
(cx − cy)

)
.(2)

Here, we have defined cx = cos(kx), s x
2

= sin(kx/2)
and so on. It is easy to check that Eqs (2) transform
according to their respective irreducible representations
(albeit in a lattice version) as specified in the character
table in Table I. It should also be noted that in the
last equation for ~Tu(~k), we have used higher order
basis functions that are not present in Table I. This
state of affairs arises because writing the dot product
invariants with the lowest order basis functions of the Tu
representation yields a function equivalent to ε1(~k). The
three dispersions in Eqs. 1 provide the Fermi surface
contours in Fig 2.

III. TIME REVERSAL SYMMETRY BREAKING

In the following analysis, we derive a generalized GL
expansion to understand time reversal symmetry break-
ing in POS. On the theoretical side38–40, the effect of
magnetic and quadrupole moments on the phase dia-
gram was outlined. Motivated by the evidence of such
magnetic moments1,2,19,41–43, magnetic exchange correla-
tions, quadrupole moments19,41,43,44 and quadrupole ex-
change correlations, and taking into account the crys-
tal symmetries appropriate for quartic interactions gen-
erated by such correlations, we start with the following
form of the action written in momentum space
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S(c̄, c) = β
∑
αβ
kσ

c̄ασ(k)
(
−iknδαβ − εαβ(~k)

)
cβσ(k)− βg

∑
kk′α

c̄α↑(k)D(~k)c̄α↓(−k)cα↓(−k′)D(~k′)cα↑(k
′). (3)

Here c̄ασ(k) and cβσ(k) are the creation and annihila-
tion Grassmann numbers that follow Grassmannian al-
gebra for electrons with Bloch momentum ~k and Mat-
subara frequency kn (collectively denoted by k), spin σ

and orbital indices α, β, εαβ(~k) are the orbital matrix
elements, g is the interaction strength which is taken
to be a constant, β is the inverse temperature, and

D(~k) ≡ φs(~k) + φd(~k) is the total form factor which is a
mixture of the s− wave and d−wave form factors. Here
we have defined φs(~k) = ∆sΦs(~k) and φd(~k) = ∆dΦd(~k),
where ∆s and ∆d are complex scalar amplitudes, along

with Φs(~k) = (k2
xk

2
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yk
2
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2
x) and Φd(~k) = (k2

x−k2
y).

The spin structure in the interaction term is chosen since
we anticipate a BCS-like singlet superconducting order
parameter. At this point, from an experimental perspec-
tive, it is not fully clear if the gaps on the different or-
bitals need to be distinct or not; hence from now on, for

simplicity, we will choose the total form factor D(~k) to
be independent of the orbital index α. Such an assump-
tion will allow us to work in a basis where the kinetic
energy and the order parameter matrices appearing in
the Hamiltonian are both diagonal because they com-
mute and hence, will simplify the problem to a collec-
tion of independent bands with the same superconduct-
ing gap on each band. Note that this is not always true
in generic multiband superconductors (for example, the
Iron- based superconductors) where the gap and kinetic
energy matrices do not commute. Changing to the band

basis with energy eigenvalues εα(~k) by using the uni-

tary transformation, cασ(k) = Uαβ(~k)ψβσ(k), perform-
ing a Hubbard-Stratonovich transformation to decouple
the quartic terms in the action, and integrating out the
fermionic degrees of freedom results in a free energy in
the superconducting state of the form (see Appendix and
Ref.45)

Fs = αs|∆s|2 + αd|∆d|2 + βs|∆s|4 + βd|∆d|4 + 4β1|∆s|2|∆d|2

+α′(∆∗s∆d + ∆s∆
∗
d) + β2

(
∆2
s∆
∗2
d + ∆∗2s ∆2

d

)
+ 2

∑
ν=±

gν(|∆s|2 + ν|∆d|2)(∆s∆
∗
d + 2∆∗s∆d),

with the detailed form of the coefficients given in the
Appendix. For the case of the s− and d−wave sym-
metries chosen in our paper for POS, α′ and g± are
small compared to the rest of the coefficients due to
negligible overlap between odd powers of the s− and
d− wave form factors, and hence can be neglected
in the lowest-order approximation. We will later in-
clude these terms to see their effects on the phase dia-
gram. If we define the relative phase between ∆s and
∆d to be η, minimization of the free energy with re-
spect to η fixes η = π/2. Minimizing with respect
to |∆s| and |∆d| gives us four sets of solutions of the

form, (|∆s|, |∆d|) = (0, 0), (|∆s|, |∆d|) = (0,
√
−(α−δα)

2βd
),

(|∆s|, |∆d|) = (
√
−(α+δα)

2βs
, 0), (|∆s|, |∆d|) = (Ds, Dd),

where

Ds =

√
α(β1 − βd)− δα(β1 + βd)

2(βsβd − β2
1)

(4)

Dd =

√
α(βs − β1)− δα(βs + β1)

2(β2
1 − βsβd)

. (5)

Here we have defined α = (αs + αd)/2 and
δα = (αs − αd)/2. The last pair of solutions where
the relative phase between ∆s and ∆d is fixed by the

β2 term at ±π/2 gives rise to the TRSB phase. Such
a phase has the lowest free energy but is obviously a
stable solution only when (|∆s|, |∆d|) are both real.

Hence, the conditions α(β1−βd)−δα(β1+βd)
2(βsβd−β2

1)
> 0 and

α(βs−β1)−δα(βs+β1)
2(β2

1−βsβd)
> 0 define the TRSB phase. The

s−wave and d−wave pairings are stable when −(α+ δα)
and −(α − δα) are positive respectively. These phases
are shown in Fig 3(a-c) for βs = βd (Fig 3(a)), βs > βd
(Fig 3(b)) and βs < βd (Fig 3(c)). Given the candidate

pairing symmetries we have chosen for POS, viz. Φs(~k)

and Φd(~k), we find that POS belongs to the case where
βs < βd.

The presence of linear terms with the coefficients
α′ and g± reflects the fact that the s-wave and d-wave
order parameters are not distinguished by symmetry.
Then a transition between s-wave and d-wave states does
not require further breaking any symmetries – in fact,
the s and d-wave components are always mixed even in
the time-reversal invariant phase. Thus when ∆s ∼ ∆d,
the two order parameters coexist in two competing ways,
either preserving or breaking time-reversal symmetry.
Since the linear coupling terms are already present
at the quadratic level, while the terms responsible for
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FIG. 3. Phase diagram of the competing s− and d−wave phases for the free energy appearing in Eq.37. Panels (a-c) correspond
to the case when the linear terms proportional to (∆∗

s∆d+∆s∆
∗
d) are ignored: (panel a) when βs = βd, (panel b) when βs > βd

and (panel c) when βs < βd. The case of POS corresponds to βd > βs. The labels in panels (b) and (c) follow along the lines

of panel (a). The TRSB phase is bounded by the inequalities α(β1−βd)−δα(β1+βd)
2(βsβd−β2

1)
> 0 and α(βs−β1)−δα(βs+β1)

2(β2
1−βsβd)

> 0. Panel (d)

corresponds to the case where the linear terms are included for βs = βd. ε is a number much smaller than unity.

time-reversal symmetry breaking enter at the quartic
level, the mixing of the two orders breaks time-reversal
only at low-temperatures when order parameters have
larger expectation values. Treating the α′ and g± terms
perturbatively, we obtain a schematic phase diagram
shown in Fig 3(d). A more detailed calculation for
obtaining this phase diagram is found in Ref46.

IV. INELASTIC (RAMAN) SCATTERING

The scattered light intensity is written in terms of the
differential scattering cross section27–31 as

∂2σ

∂ω∂Ω
=
ωS
ωI
r2
0Sγγ(~q, ω) (6)

Sγγ(~q, ω) = − 1

π
[1 + nB(ω)]Imχγγ(~q, ω), (7)

where nB(ω) is the Bose-Einstein distribution function,
ωS and ωI are the frequencies of the scattered and in-

cident light respectively and r0 = e2

mc2 . The imaginary
part of the inelastic response Imχγγ(~q, ω) (the subscript
γ denotes that the fluctuations are weighted by a vertex
function) is related to the generalized structure factor
Sγγ through the fluctuation-dissipation theorem. The
inelastic response, in the long wavelength limit, is sensi-
tive to effective density fluctuations (χγγ(ω) ≡ χγγ(0, ω))
given by

χγγ(ω) =

∫ β

0

dτe−iωmτ 〈Tτ ρ̃γ(τ), ρ̃γ(0)〉|iωm→ω+iδ (8)

where the effective (weighted) density is written as

ρ̃γ =
∑
~k,σ

∑
n,m

γn,m(~k)c†n,σ(~k)cm,σ(~k), (9)

n,m denote band indices, γn,m is the vertex, and c†n,σ(~k)
is the electron creation operator for band n, momentum
~k and spin σ. If we are interested only in the low energy
response, we can neglect the off-diagonal vertices by sub-
stituting γn,m → δmnγn, and thereby ignore interband
transitions to write the vertex in the form

γn(~k) = êiês +
1

m

∑
j 6=n

〈n,~k|êsp|j,~k〉〈j,~k|êip|n,~k〉
εn(~k)− εj(~k) + ωI

+
〈n,~k|êip|j,~k〉〈j,~k|êsp|n,~k〉

εn(~k)− εj(~k)− ωS
.

Here we have defined the electron mass m, |n,~k〉 as the

FIG. 4. (Left) Imaginary part of the low energy effective
Raman response, (χγγ(ω) ≡ χγγ(0, ω)), for a square lattice
for different polarization geometries for the gap function
∆0(coskx − cosky) for ∆0 = 30meV . (Right) Fermi surface
(red contour) of a nearest and next-nearest neighbor disper-
sion as well as the square of the d-wave gap function plotted
in the Brillouin zone. The bright (dark) regions indicate large
(small) squared gap values. The function is exactly zero along
the zone diagonals. Γi denote the IRRPs.

Bloch state with band index n and crystal momentum
~k, êi,s denotes the polarization directions of the incident
and scattered light respectively, p is the momentum op-

erator and εn(~k) are the Bloch energies. The vertex func-
tion on the nth band can be broken down into various
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contributions from the IRRPs of the point group as

γn(~k) =
∑
µ

γµnI µ
n (~k) (10)

where the index µ denotes the contributions from the
different point group irreducible representations and the

functions I µ
n (~k) are the corresponding basis functions of

the µ’th IRRP in the nth band. The Raman response
from the nth band can then be written as (in the inde-
pendent band approximation)

χ(n)
γγ (iω) =

∑
~k

|γn(~k)|2λn(~k, iω) (11)

with λn the Tsuneto function given by28–31

λn(~k, iω) =
∆n(~k)2

En(~k)2

(
1

2En(~k) + iω
+

1

2En(~k)− iω

)
,

(12)

where ∆n(~k) is the gap function on the nth band

and En(~k)2 are the quasiparticle energies and equals

εn(~k)2 + ∆n(~k)2. As we assumed earlier, for simplicity,
we will take the gap function to be independent of the

orbital or band indices and denote it by ∆(~k). We
will use the expression in Eq. (11) to evaluate the
response functions in the following sections. We would
like to point out that in deriving the expressions in
Eq. (11), we have ignored the role of vertex corrections
through final state interactions, and long range Coulomb
interactions. A recent work47 studied these effects in a
generic multi-band system and concluded that vertex
corrections remove the 2∆0 singularity and create a
broad peak at higher energies. These conclusions should
not invalidate our low energy calculations, but must only
modify the exact position of the peaks. The authors
also find that in the q → 0 limit, long range Coulomb
interactions are irrelavant to the Raman response for all
polarization geometries. Additional effects arising from
subleading interaction channels due to vertex corrections
leading to collective in-gap (ω < 2∆0) Leggett and
Bardasis-Schrieffer modes will not be considered in this
study. We have also assumed that the light scattering
occurs within a region where superconductivity is
uniform. In the presence of domain walls separating
different superconducting states, the responses must be
averaged over the domains, and isolating the pairing
symmetry is not straightforward.

A. Light Polarization and Symmetry:
Square Lattice

As a warm up, we recall the arguments for the case
of probing a d-wave gap for a square lattice (e.g. the
Cuprates)29. We start with a dispersion of the form

FIG. 5. Square of the vertex “weighting factor”, γ2
~k
, plotted

on the outer cubic fermi surface. Clockwise from top left:
constant ΓAg (constant), ΓEg (1) (x2−y2), ΓEg (2)(z2− 1

2
(x2+

y2)) and ΓTg (3)(xy)

ε(~k) = −2t(cos(kx) + cos(ky)) + 4t′ cos(kx) cos(ky) − µ
where we choose (t, t′, µ) = (1, 0.65,−1)eV . This gives
us a Fermi surface contour shown in the right panel
of fig 4. The crucial feature that makes inelastic light
scattering of Bloch electrons powerful, is the ability
of the experimentalist to control the vertex function

γn(~k) by manipulating the incoming and scattered
light polarization geometries êi and ês. For a generic
multiband system (one can think of a single band system
as a multiband system with infinite energy separation
between bands), as long as the bands are substantially
(compared to the frequency of incoming/scattered light)
far apart near the Fermi energy, one can approximate
the equation for the vertex function in Eq (10) as a
band curvature29,31. Note that this approximation
breaks down when the bands touch each other at or near
the fermi level and could yield qualitatively different
results48. Keeping in mind that there are three distinct
irreducible representations, −A1g, B1g, B2g− that have
been accessed in the square lattice point group, each
IRRP (selected through its appropriate polarization
geometry) can selectively average different regions of
the Fermi surface, yielding distinct responses in the su-
perconducting state. The basis functions for the square
lattice IRRPs are given by B1g ∼ cos(kx) − cos(ky),
B2g ∼ sin(kx) sin(ky) and A1g ∼ cos(kx) + cos(ky).
The B2g geometry can be accessed, for example, by
setting êi = (1, 0), ês = (0, 1)T or vice-versa, while
the B1g representation can be obtained by rotating
the B2g polarization vectors by π/4. To access the
A1g representation, one needs to use the left and right
circularly polarized light for the incoming/outgoing
polarization vectors. The low energy inelastic response
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in these geometries for the square lattice is plotted
in Fig 4(left) for a d−wave gap function of the form
cos(kx) − cos(ky). The low energy curves behave very
anisotropically for different geometries. For example, in
the A1g and B2g cases, they behave linearly for small
ω while for the B1g case, the response is super-linear
(∼ ω3)28,29. To understand this behavior one has to
look at the regions of the Fermi surface that are being
sampled− in the B2g geometry, the momentum average
is focussed along the kx = ±ky directions where the
d−wave nodes are located, while the B1g geometry
samples the anti-nodal regions (along the kx or ky axes)
of the Fermi surface. Thus the low energy response in
the B1g grows slower (∼ ω3) relative to the B2g case
(∼ ω). In the A1g scenario, there is sampling of both
the nodal and anti-nodal regions and, thus, the low
energy response is dominated by the nodes (∼ ω). In
the following paragraphs, we will follow a similar line of
argument for the Th point group.

B. Light polarization and symmetry−Th point
group

In this section, we will highlight the connections be-
tween light polarizations that can be experimentally ma-
nipulated, and the symmetry of the Raman vertex in the
Brillouin zone for the Th point group. For simplicity, we
will illustrate this connection using dispersions obtained
by individual IRRPs for the calculation of the Raman
vertex. The total vertex for the band structures (used
above) can then be obtained by a simple linear combina-
tion of the vertices of these representations. In order to
keep our equations tractable in this example, we will work
in the continuum limit; this can be easily generalized to
the lattice case with the inclusion of trigonometric func-
tions in momenta instead of polynomials. Let us begin

with a dispersion obtained from the ~Eg representation
appearing as a term in Eqs. 1. In the continuum limit,
this is given by

εEg (~k) = ~Eg(~k) · ~Eg(~k)− µ (13)

~Eg(~k) =
(
(k2
x − k2

y), 2k2
z − (k2

x + k2
y)
)
, (14)

with µ the chemical potential. We can evaluate the Ra-
man vertex for this dispersion using the band effective
mass approximation for the nt band as31

γn(~k) =
∑
µν

êiµR
µν
Γ êsν , (15)

RµνΓ = m
∂2εΓ(~k)

∂kµ∂kν
(16)

where, εΓ(~k) is the band dispersion formed from the ir-
reducible representation Γ and µ, ν are the coordinate

indices. For these dispersions, the Raman tensor Rµν is

RµνEg =

3k2
x − k2

z 0 −2kxkz
0 3k2

y − k2
z −2kykz

−2kxkz −2kykz −k2
x − k2

y + 6k2
z

 . (17)

An arbitrary choice of the incoming and scattered po-

larization vectors yields a combination of Ag, ~Eg and ~Tg
representations. We can obtain a pure representation by
choosing êi and ês such that only the representation of
interest contributes to the scattering cross section. This
is not always straightforward, as we will see, and one
will need to resort to subtraction procedures. The sim-

plest cases to access are the Eg(1) and ~Tg representations.
Choosing êi = (1,−1, 0)T and ês = (1, 1, 0), it is easy to
verify that

∑
µν ê

i
µR

µν
Γ êsν = 3(k2

x− k2
y), which transforms

as the first component of the ~Eg representation. Simi-
larly, choosing êi = (0, 0, 1)T and ês = (1, 0, 0), or, êi =
(0, 0, 1)T and ês = (0, 1, 0), picks up the Tg(1) or Tg(2)
representations respectively (the Tg(3) component is zero
here). To obtain the Eg(2) and Ag representations, we
need to choose two different sets of incoming and scat-
tered polarizations. As our first choice, (c+), we select
êi = (

√
α, i
√
α,
√
β)T and ês = (

√
α,−i

√
α,
√
β), and for

our second choice (c−), we select êi = (
√
α, i
√
α,−
√
β)T

and ês = (
√
α,−i

√
α,−
√
β). Here, α and β are constants

that must be determined. These two choices c± for the
polarization give us vertices

γn(~k)± = (3α− β)
(
k2
x + k2

y

)
+ (6β − 2α)k2

z (18)

±
√
αβ(−2kxkz).

At this point, the constants α and β can be related to
each other in two useful ways. We consider first the case
where the coefficients of (k2

x + k2
y) and k2

z are equal, i.e,
when (3α − β) = (6β − 2α) or 5α = 7β. With this

condition, the vertices γn(~k)± in Eq (18) are the sum
and difference of the Ag (k2

x + k2
y + k2

z) and Tg(1) (kxkz)
representations alone. Thus, we have

γn(~k)± = γ(~k)Ag ± γ(~k)Tg(1), (19)

where γ(~k)Ag and γ(~k)Tg(1) are vertices that individually
transform as Ag and Tg(1) representations respectively.

Summing the responses from γn(~k)+ and γn(~k)− using
Eq. ( 11), and noting that we know how to obtain a pure
Tg(1) contribution, we can calculate the response from
a pure Ag representation by a mere subtraction of the
two resulting responses. For the pure Eg(2) response, we
equate the coefficients of the (k2

x+k2
y) and k2

z : 6β−2α =
−2(3α − β) or α = −β. Substituting this condition into
Eq. (18), we obtain the vertices as

γn(~k)± = γ(~k)Eg(2) ± iγ(~k)Tg(1), (20)

where γ(~k)Eg(2) is the vertex that transforms as the
second component of the Eg representation. Again
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using Eq. (11), for either γn(~k)±, and equipped with
knowledge of the Tg(1) response, we can isolate the
response in the Eg(2) channel by subtracting the two
resulting responses.

As an example of a dispersion that can be obtained
through an Ag representation in Table I, we choose a
dispersion of the form

εAg (~k) = cx + cy + cz + cxcy + cycz + cxcz − µ, (21)

which is a generalization of the function Ag(~k) used in
eq 2. The Raman tensor Rµν for this dispersion is given
as

RµνAg =

−Cx;yz sxsy sxsz
sxsy −Cy;zx sysz
sxsz sysz −Cz;xy,

 . (22)

where we have defined Ci;jk = −ci(1 + cj + ck). To

obtain the components of a pure ~Tg representation, we
can follow arguments analogous to what we did in the
previous paragraph. For the third component of the
~Tg representation, we need to choose êi = (0, 1, 0)T

and ês = (1, 0, 0), and similarly for the first and
second components. To obtain the response in the
Ag channel, we choose c+ to be êi = (1, i, 1)T and
ês = (1,−i, 1) and select c− to be êi = (1, i,−1)T and
ês = (1,−i,−1). The resulting vertices corresponding to
these two choices are the sum and difference of the Ag
and Tg(1) symmetries; the pure Ag response can then
be extracted by using eq 11 for these vertices, along
with our knowledge of the pure Tg(1) response. One can

repeat this analysis for a dispersion εTu(~k) (of the form
appearing in eq 1) obtained from the basis functions of

the ~Tu representation in Table I. Fig 5 shows regions of
the outer hole pocket that are sampled by the various
representations studied in this section. We will use
this figure to understand the frequency dependence of
the low energy inelastic response in the following section.

At this point, it is important to note certain cir-
cumstances where this procedure of extracting pure
irreducible representations breaks down. First, in order
to isolate the cross section from a pure irreducible repre-
sentation, we note that the subtraction process requires
some basic assumptions about the band structure and
superconducting gaps. Such assumptions have been
made in the context of the cuprates as well28–31. In our
analysis, we used simple band structures created from
invariants using basis functions in Table I; but once a
more accurate tight-binding band structure calculation
emerges, our subtraction procedure can be used to
analyse inelastic Raman data with greater confidence.
More complications could arise when there are multiple
bands crossing the Fermi level (as the case is here) due

to the fact that a pure IRRP in one band need not
correspond to the same IRRP in the other. In such
cases, one could still think of indirect ways to avoid
mixing of different representations. For example, on
could rely on the fact that, in general, the gaps on
different bands have different magnitudes. With an
approximate knowledge of the values of the gaps on each
band (from experiments like ARPES), it is possible to
isolate the response from an individual band by keeping
only the response in the relevant energy window and
subtracting the contributions not in that window; this
could be done for each polarization geometry separately.
Although this procedure is less straighforward, one could
avoid mixing of different IRRPs to a certain extent.
However, this procedure becomes ambiguous when the
gaps are similar in magnitude and/or have different
form factors on different bands, and could have limited
applicability. In such cases, one has to be satisfied
with studying the responses with multiple contributing
IRRPs (all be it with knowledge of what IRRPs form
the combination). One could still make reasonably
accurate comparisons with the corresponding theoretical
predictions of the responses in mixed geometries Second,
in the presence of vertex corrections, there are additional
contributions that need to be incorporated into the
inelastic response31,47 which might, in general, make
it difficult to isolate pure representations. Third, the
effective mass approximation used in our analysis is
valid only when the frequency of the incoming and
scattered light is either small or large in comparison to
the inter-band spacings31,48. This may not always be

FIG. 6. (Left)Imaginary part of the low energy effective
Raman response, (χγγ(ω) ≡ χγγ(0, ω)), in POS for differ-

ent polarization geometries for the gap function ∆(~k) =
∆0(k2xk

2
y + k2yk

2
z + k2zk

2
x) with ∆0 = 0.5eV . Note that ∆0

has to be large to get an experimentally reasonable value of
the gap due to the fourth powers in momentum. (Right)
the outer (cube-like) fermi hole pocket centered around the Γ
point. The color scale on the Fermi surface denotes the value

of the gap function ∆(~k) = ∆0Φs(~k) that has six nodes, two
along each of the coordinate axes. The gap has been nor-
malized such that its maximum value on the Fermi surface is
1.

accurate48 and one must be careful in not overestimating
the vertex in certain regions of the Fermi surface. Due
to the above outlined reasons, our calculations should
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not be considered any more than qualitative.

C. Low energy Raman response

Having outlined the procedure to isolate the response
from select irreducible representations above, we now
demonstrate its use in determining the exact form of
the pairing symmetry in POS. We confine ourselves to
the spin singlet, even parity forms of the gap functions
proposed in Goryo’s work23. Similar arguments can be
carried out in a straightforward manner for other pairing
forms. We choose the temperature and broadening
parameter in the response function to be 2 meV and 3
meV respectively. Fig 6 (right) shows a color plot of

the Ag gap function, ∆(~k) = ∆0Φs(~k), proposed in the
A phase of POS. The brighter (green) regions show the
location of the six nodes on each face of the cube. Fig
6 (left) shows the low energy response for such a gap
function in channels belonging to different irreducible
representations. A suppression of spectral weight for
small ω is observed in the Tg(3) (xy) geometry, with the
Eg(1) and Eg(2) geometries showing enhancement for
small ω. To understand this result, we see from Fig 5
that the Fermi surface averaging in the Tg(3) channel
occurs mainly along the x = ±y directions on the
x − y plane. It is exactly along these directions where
the chosen Ag gap function makes the Fermi surface
fully gapped, thus, suppressing low energy quasiparticle
response. The Eg(1) and Eg(2) geometries, on the other
hand, sample at least two of the gap nodes (see Fig
5) and excite a low energy quasi-particle response. To
confirm this picture, we repeated the calculation for a

four-dip state given by ∆(~k) = ∆0(k2
xk

2
y + k2

yk
2
z + ak2

z),
which has nodes only along the kx and ky axes. In
this case, in addition to the Tg(3) geometry, a small
suppression of quasiparticle spectral weight occurs
in the ΓEg (2) geometry as well. The suppression is
only small due to the fact that the Eg(2) geome-
try −inspite of its extended lobe-like feature along
the kz axis− has a small vertex contribution coming
from the equatorial plane as well (see fig 5 bottom right).

We can follow a similar analysis in the B
phase. For the sake of convenience, we choose

a gap function, ∆(~k) =
(

Φs(~k) + iΦd(~k)
)
≡

∆s0(k2
xk

2
y + k2

yk
2
z + k2

zk
2
x) + i∆d0(k2

x − k2
y), such

that there are two nodes along the kz axis (such a
choice is possible provided the basis functions are also
transformed appropriately). Given that the intensity of
the Raman cross section depends only on the absolute
value of the gap function, it is insensitive to the total
phase of the order parameter but is sensitive to relative
phases of the individual components. Fig (7) (right)
shows the gap nodal structure in the B phase − the

FIG. 7. Same as Fig 6 but with a gap function that has only
two nodes instead as observed in7. Because the point group
of POS has a Th symmetry, we can arbitrarily choose the two
nodes to lie along the kz axis with no nodes along kx and
ky. (Left) Imaginary part of the low energy effective Raman
response in POS for different polarization geometries for the

gap function ∆(~k) = ∆s0(k2xk
2
y+k2yk

2
z +k2zk

2
x)+ i∆d0(k2x−k2y)(

≡
(

Φs(~k) + iΦd(~k)
))

with ∆s0 = 0.5eV and ∆d0 = 50meV .

Note that ∆s0 has to be large to get an experimentally reason-
able value of the gap due to the fourth powers in momentum.
(Right) The color function in this panel corresponds to the
absolute value of the gap, as measured by Raman scattering.
The gap has been normalized such that its maximum value
on the Fermi surface is 1.

Fermi surface now has nodes along the kz direction
and is gapped everywhere else. Following arguments
presented in the previous paragraph, we see that in the
Tg(3) and Eg(1) geometries, which represents sample
regions primarily along the kx = ±ky and kx = 0, ky = 0
directions respectively, the low energy response is re-
duced (see Fig (7) left panel, and Fig 8 which compares
the Eg(1) response for different pairing forms). However,
in the Eg(2) geometry, the gap function along the kz
axis is projected; as a result, one should expect an
increased low energy response. In the Ag geometry, all
the high symmetry regions are averaged over and results
in a response intermediate in curvature to the other
geometries. The four-dip state in the TRSB has been
argued23 to be highly accidental and hence we will not
discuss this state. However, if indeed, this state were to
be realized, one would obtain a low energy increase of
the intensity in the ΓEg (1) geometry as well.

At this juncture, we would like to emphasize what
we briefly pointed out earlier regarding the response in
the Eg(2) geometry. For the gap with four nodes, this
geometry exhibits an intermediate behavior between
enhancement and suppression. This is because there is
also an equatorial contribution, although small, that
cannot be entirely neglected compared to the axial
contribution (see Fig 5). One should, therefore, in
the process of trying to extract nodal behavior in gap
functions, interpret the Eg(2) response with care.
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FIG. 8. Comparison of the low energy responses,
(χγγ(ω) ≡ χγγ(0, ω)), in the Eg(1) for different pairing form
factors as marked. There is a clear suppression (slower
than linear behavior) of the spectral weight for the TRSB
case in the energy scale of the order of the gap. The 4-

Dip state is described by ∆(~k) = ∆0(k2xk
2
y + k2yk

2
z + ak2z)

where a = 0.5 and ∆0 = 0.4eV and has four nodes all ly-
ing on the equatorial plane. The 6-Dip state is described by

∆(~k) = ∆0(k2xk
2
y + k2yk

2
z + k2zk

2
x) (∆0 = 0.5 eV) with four

nodes along the equator and two along the axial direction.
TRSB corresponds to the time reversal symmetry breaking
state with only two nodes along the axial direction.

V. FINAL REMARKS

We derived a Ginzburg-Landau theory starting from
a microscopic model that describes the entry of the
skutterudite superconductor PrOs4Sb12 (POS) into a

time reversal symmetry broken (TRSB) phase as a
function of temperature, in accordance with recent AC
susceptibility and polar Kerr effect measurements16.
Using the expansion, we calculated the GL coefficients
using their relationships to the various microscopic
parameters and determined the shape of the contour
bounding the TRSB phase. As an experimental means
to probe the proposed pairing symmetries, we examined
the low energy inelastic (Raman) response in both the
A and B phases of POS. We provided a qualitative
understanding of the low energy and zero momentum
transfer response for various light polarization geome-
tries. By appropriate manipulation of the incoming and
scattered light geometries, as well as other subtraction
procedures, we demonstrated that one can access the
various irreducible representations contained in the
Th point group describing POS. Depending on the
existence of nodes along the c− axis, we found an
enhancement (nodal) or suppression (gapped) of the
low energy spectral weight, based on what regions of
the Fermi surface were being sampled. Inelastic light
scattering could, thus, help pin-point the exact loca-
tion of nodes on the fermi surface and, thereby, narrow
down the candidate pairing symmetries proposed in POS.
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G. Lapertot, and J. Flouquet, Physical review letters 97,
236403 (2006).

13 D. MacLaughlin, J. Sonier, R. Heffner, O. Bernal, B.-
L. Young, M. Rose, G. Morris, E. Bauer, T. Do, and
M. Maple, Physical review letters 89, 157001 (2002).

14 H. Kotegawa, M. Yogi, Y. Imamura, Y. Kawasaki, G.-q.
Zheng, Y. Kitaoka, S. Ohsaki, H. Sugawara, Y. Aoki, and
H. Sato, Physical review letters 90, 027001 (2003).

15 Y. Aoki, A. Tsuchiya, T. Kanayama, S. Saha, H. Sugawara,
H. Sato, W. Higemoto, A. Koda, K. Ohishi, K. Nishiyama,
et al., Physical review letters 91, 067003 (2003).

16 E. Levenson-Falk, E. Schemm, M. Maple, and A. Kapit-
ulnik, arXiv preprint arXiv:1609.07535 (2016).

17 W. Higemoto, S. Saha, A. Koda, K. Ohishi, R. Kadono,
Y. Aoki, H. Sugawara, and H. Sato, Physical Review B
75, 020510 (2007).



11

18 V. Kozii, J. W. Venderbos, and L. Fu, arXiv preprint
arXiv:1607.08243 (2016).

19 Y. Aoki, T. Namiki, S. Ohsaki, S. R. Saha, H. Sugawara,
and H. Sato, Journal of the Physical Society of Japan 71,
2098 (2002).

20 I. Sergienko and S. Curnoe, Physical Review B 70, 144522
(2004).

21 K. Maki, H. Won, P. Thalmeier, Q. Yuan, K. Izawa, and
Y. Matsuda, EPL (Europhysics Letters) 64, 496 (2003).

22 K. Maki, S. Haas, D. Parker, H. Won, K. Izawa, and
Y. Matsuda, EPL (Europhysics Letters) 68, 720 (2004).

23 J. Goryo, Physical Review B 67, 184511 (2003).
24 K. Miyake, H. Kohno, and H. Harima, Journal of Physics:

Condensed Matter 15, L275 (2003).
25 M. Ichioka, N. Nakai, and K. Machida, Journal of the

Physical Society of Japan 72, 1322 (2003).
26 G. Volovik and L. Gorkov, in Ten Years of Superconduc-

tivity: 1980–1990 (Springer, 1985) pp. 144–155.
27 M. V. Klein and S. B. Dierker, Phys. Rev. B 29, 4976

(1984).
28 T. P. Devereaux and R. Hackl, Rev. Mod. Phys. 79, 175

(2007).
29 T. P. Devereaux and D. Einzel, Phys. Rev. B 51, 16336

(1995).
30 T. P. Devereaux, D. Einzel, B. Stadlober, R. Hackl, D. H.

Leach, and J. J. Neumeier, Phys. Rev. Lett. 72, 396
(1994).

31 T. Devereaux, A. Virosztek, and A. Zawadowski, Physical
Review B 54, 12523 (1996).

32 M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group
theory: application to the physics of condensed matter
(Springer Science & Business Media, 2007).

33 M. Cardona and Y. Y. Peter, Fundamentals of semicon-
ductors (Springer, 2005).

34 H. Sugawara, S. Osaki, S. Saha, Y. Aoki, H. Sato, Y. In-
ada, H. Shishido, R. Settai, Y. Ōnuki, H. Harima, et al.,
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VI. APPENDIX: LANDAU-GINZBURG ANALYSIS

Here we outline some details about calculations involved in obtaining the phase diagrams appearing in Fig 3 of the
main text. We will start by repeating the following form of the action written in momentum space:

S(c̄, c) = β
∑
αβ
kσ

c̄ασ(k)
(
−iknδαβ − εαβ(~k)

)
cβσ(k)

−βg
∑
kk′
qα

c̄α↑(k + q)c̄α↓(k
′ − q)Ṽ (~k, ~q)cα↓(k

′)cα↑(k). (23)

Here c̄ασ(k) and cβσ(k) are Grassmann numbers that follow Grassmannian algebra for electrons with Bloch momentum
~k and Matsubara frequency kn (collectively denoted by k), spin σ and orbital indices α, β, εαβ(~k) are the orbital matrix
elements, β is the inverse temperature (not to be confused with the index β), g is the interaction strength which is

taken to be a constant, and Ṽ (~k, ~q) is the four body interaction giving rise to superconductivity. Changing to the

band basis with energy eigenvalues εα(~k) by using the unitary transformation, cασ(k) = Uαβ(~k)ψβσ(k), gives us the
action

S(ψ̄, ψ) = β
∑
α
kσ

ψ̄ασ(k) (−ikn − Eα(k))ψασ(k)

−βg
∑
kk′
qα

ψ̄α↑(k + q)ψ̄α↓(k
′ − q)V (~k, ~q)ψα↓(k

′)ψα↑(k), (24)

where V (~k, ~q) is the resulting interaction related to Ṽ (~k, ~q) through the band matrix elements. As we are interested
in zero-momentum pairing, we will assume that k′ = −k. After making the shift q→ q− k, we obtain the standard
BCS action for independent bands

S(ψ̄, ψ) = β
∑
α
kσ

ψ̄ασ(k) (−ikn − Eα(k))ψασ(k)

−βg
∑
kqα

ψ̄α↑(q)ψ̄α↓(−q)D(~q)D(~k)ψα↓(−k)ψα↑(k), (25)

where the interaction has been factorized in terms of D(~k) ≡ φs(~k) + φd(~k), which is the total form factor and is a
mixture of the s− wave and d−wave form factors. The total partition function can be written as

Z =

∫
D(ψ, ψ̄)e−S(ψ,ψ̄). (26)

We can now decouple the quartic term appearing in the partition function using the Hubbard-Stratonovich transfor-
mation for fermions given by

πgegab =

∫
dφdφ̄ eaφ+bφ̄e

−|φ|2
g (27)

where a and b are two commuting elements of a Grassmann algebra, defined by the numbers ψ, ψ̄ which follow the
anti-commutation relations {ψi, ψj} = {ψi, ψ̄j} = {ψ̄i, ψ̄j} = 0 with i and j sets of electron quantum numbers. In

our case, we have defined a ≡ ψ̄α↑(q)ψ̄α↓(−q)D(~q) and b ≡ ψα↓(−k)ψα↑(k)D(~k) and it is easily seen that a and b
commute. Using this, we can rewrite the partition function as

Z =

∫
D(ψ, ψ̄)D(φ, φ̄)exp

[
−β|φ|

2

g
− β

∑
kασ

ψ̄ασ(k)
(
−ikn − Eα(~k)

)
ψασ(k)

]

×exp

[
β
∑
kα

(
φψ̄α↑(k)ψ̄α↓(−k) + φ∗ψα↓(−k)ψα↑(k)

)
D(~k)

]
, (28)

which can be further simplified using matrix notation as

Z =

∫
D(ψ, ψ̄)D(φ, φ̄)exp

[
−β

(
|φ|2

g
+
∑
kα

Ψ̂†kαĜ−1
kα Ψ̂kα

)]
. (29)
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Here we have defined

Ĝ−1
kα =

−(ikn + Eα(~k)
)

−D(~k)φ

−D(~k)φ∗ −
(
ikn − Eα(~k)

) (30)

along with Ψ̂kα =
(
ψ̄α↑(k), ψα↓(−k).

)
. Performing the Fermionic functional integral, we obtain

Z =

∫
D(φ, φ̄)exp

[
−β|φ|2

g
+
∑
kα

Tr
(
Log

[
Ĝ−1
kα

])]
. (31)

In order to perform an expansion in powers of the superconducting order parameter, we write the total Green function

inverse as a sum of non-interacting and superconducting self energy parts; that is, we write G−1
kα = Ĝ−1

0kα + Σ̂, where,

Ĝ−1
0kα =

−(ikn + Eα(~k)
)

0

0 −
(
ikn − Eα(~k)

) (32)

and

Σ̂ =

(
0 −D(~k)φ

−D(~k)φ∗ 0.

)
(33)

We now perform an expansion keeping in mind that Log
[
Ĝ−1
kα

]
= Log

[
Ĝ−1

0kα + Σ̂
]

= Log
[
Ĝ−1

0kα

]
+∑∞

n=1
(−1)n+1

n

(
Ĝ0kαΣ̂

)n
. All the powers odd in n vanish because of the Matsubara sums and we are only left

with even powers in n. We will only be interested in second and fourth order powers of Σ in the Landau-Ginzburg
expansion. With this, the superconducting contributions to the free energy become

Fs '
|φ|2

g
+

1

β

∑
kα

(
1

2
Tr

[(
Ĝ0kαΣ̂

)2
]

+
1

4
Tr

[(
Ĝ0kαΣ̂

)4
])

. (34)

We decompose the pairing terms into two channels: the s− wave and d− wave symmetries according to the point
group symmetries of the lattice. For the second order contribution, we have

F (2)
s = T

∑
kα

|φs + φd|2(
Eα(~k)2 + k2

n

) , (35)

and the fourth order contribution is given by

F (4)
s =

T

2

∑
kα

|φs + φd|4(
Eα(~k)2 + k2

n

)2 . (36)

Note that here φs and φd have the respective momentum dependences from the point group of the crystal. Thus,

we define ∆s and ∆d by φs,d ≡ ∆s,dΦs,d(~k) with the functions Φs,d(~k) containing all the momentum dependence. We
now evaluate these contributions to the free energy by expanding into the quadratic and quartic powers of ∆s and
∆d to give

Fs = αs|∆s|2 + αd|∆d|2 + βs|∆s|4 + βd|∆d|4 + 4β1|∆s|2|∆d|2

+α′(∆∗s∆d + ∆s∆
∗
d) + β2

(
∆2
s∆
∗2
d + ∆∗2s ∆2

d

)
+2
∑
ν=±

gν(|∆s|2 + ν|∆d|2)(∆s∆
∗
d + 2∆∗s∆d), (37)
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FIG. 9. Feynman diagrams contributing to the free energy which are independent of the relative phases of the two constituent
order parameters. The dashed and wiggly lines represent d−wave and s−wave cooper pairing.

with the following definitions of the coefficients (with g± ≡ (gs ± gd)/2)

αs,d = T
∑
kα

Φ2
s,d(

~k)

Eα(~k)2 + k2
n

(38)

α′ = T
∑
kα

Φs(~k)Φd(~k)

Eα(~k)2 + k2
n

(39)

βs,d = T
∑
kα

Φ4
s,d(

~k)(
Eα(~k)2 + k2

n

)2 (40)

β1 = β2 = T
∑
kα

Φs(~k)2Φd(~k)2(
Eα(~k)2 + k2

n

)2 (41)

gs,d = T
∑
kα

Φ3
s,d(

~k)Φd,s(~k)(
Eα(~k)2 + k2

n

)2 . (42)

Given that α′ and g± are small compared to the other coefficients due to negligible overlap between odd powers of

Φs(~k) and Φd(~k), and for simplicity in minimizing the free energy, it is easier to study the problem in the absence
of linear couplings of ∆s and ∆d, i.e we ignore terms in the free energy proportional to (∆∗s∆d + ∆s∆

∗
d). Defining a

phase difference between the d−wave and s−wave gaps to be equal to η, the free energy is minimized when η = π/2.
Minimization of Fs with respect to |∆s| and |∆d| yields two sets of equations for ∆s and ∆d given by (defining
αs,d = α± δα)

|∆s|
(
α+ δα+ 2βs|∆s|2 + 2β1|∆d|2

)
= 0

|∆d|
(
α− δα+ 2βd|∆d|2 + 2β1|∆s|2

)
= 0.

Solving these equations gives us four combinations of solutions (|∆s|, |∆d|) = (0, 0), (|∆s|, |∆d|) = (0,
√
−(α−δα)

2βd
),

(|∆s|, |∆d|) = (
√
−(α+δα)

2βs
, 0) and (|∆s|, |∆d|) =

(√
α(β1−βd)−δα(β1+βd)

2(βsβd−β2
1)

,
√

α(βs−β1)−δα(βs+β1)
2(β2

1−βsβd)

)
. The last pair of solu-

tions which gives rise to a time reversal symmetry broken (TRSB) phase (|∆s|+ i|∆d|) has the lowest free energy but

is obviously a stable solution only when (|∆s|, |∆d|) are both real. Hence, the conditions α(β1−βd)−δα(β1+βd)
2(βsβd−β2

1)
> 0 and

α(βs−β1)−δα(βs+β1)
2(β2

1−βsβd)
> 0 define the TRSB phase. The s−wave and d−wave pairings are stable when −(α + δα) and

−(α− δα) are positive respectively. These phases are shown in Fig. 3 (panels a-c) of the main text. The presence of
the linear terms can be treated perturbatively and yields Fig 3 (d) as described in the main text when βs = βd.
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FIG. 10. Feynman diagrams contributing to the free energy which depend on the relative phases of the two constituent order
parameters. The dashed and wiggly lines represent d−wave and s−wave cooper pairing.


